ABS Algorithms for Linear Systems and
Linear Least Squares: Theoretical Results and
Computational Performance

Emilio Spedicato’

ABS methods have been introduced by Abaffy, Broyden and Spedicato [1] initially for
solving linear systems and have been later extended to solving linear least squares, nonlinear

systems and nonlinear optimization problems.

In this paper, we first review the basic

theoretical properties of ABS methods for linear systems and linear least squares. Then
we discuss extensive computational experience on sequential, vector and parallel computers.
A comparison with codes in the NAG, LINPACK and LAPACK libraries shows that ABS
methods are of comparable accuracy (marginally more accurate on ill-conditioned problems)

and faster on vector/parallel computers.

INTRODUCTION

The Basic ABS Class

ABS methods have been introduced by Abaffy,
Broyden and Spedicato [1] initially for solving
a determined or underdetermined linear system
Az =b, A= (ay,...,an)T €ER™", z€ R, b€
R™, m < n, by the so-called basic or unscaled
ABS class of algorithms defined by the following
procedure, where e; denotes the ¢th unit vector:

(4)

(B)

Give z; € R™, an arbitrary estimate of
the solution z*; give H; € R™"™, an
arbitrary nonsingular matrix; set ¢ = 1.

Compute s; = H;a;. If s; # 0 go to
(C). If s; = 0 and aTz; — bTe; = 0, set
Tiy1 = T, Hipy = H; and go to (F), the
ith equation is a linear combination of
the previous equations; otherwise stop,
the system has no solution.

(0)

(D)

(E)

Compute the search vector p; by:
bi = HiT Zi, (1)

where ziv € R™ is an arbitrary vector
satisfying 27 Ha; # 0.

Update the estimate of the solution by:
Tit1 = Ty — Q;p; , (2)
where the stepsize «; is given by:

o; = (afz; — b7e;)/pla; . (3)

Update the (Abaffian) matrix H; by:

Hi+1 = Hi - H,'a,-w?Hi/w;‘rHiai 3
(4)

where w; € R™ is an arbitrary vector
satisfying wf H;a; # 0.

1. Department of Mathematics, University of Bergamo, Piazza Rosate 2, 24100 Bergamo, Italy.

Scientia Iranica, Vol. 1, No. 4, © Sharif University of Technology, January 1995.

290

(F) If i = m, stop, Tm+1 solves the system,
otherwise increment ¢ by one and go to

(B).

Basic properties of the above procedure
are the following:

(A1) H;a; = 0 iff a; is a linear combination of
AiyereyAi_q.

(A2) The search vectors py,.|..,p; are linearly
independent.

(A3) Let Ai = (a17' o ,ai)T, PI = (pla"' ,Pi)
and define L; by:

L;= AP, (5)

then, if rank (A;) = i, L; is nonsingular
lower triangular.

(A4) The vector z;;; solves|the first ¢ equa-
tions of the system, i.e., a7z = b7e;,j =

(A5) The general solution of the first ¢ equa-
tions has the form:

T =Ty + H,-q_;lq , (6)
with ¢ € R™ arbitrary.
(A6) Null (H;,,) = range (A]) implying
Hi AT =0,
rank (H;.;) = n — 1 if rank (4;) = 4;
null (4;) = range (H%).

(A?) HiHl_lHi = H,;.

The matrices defined by recursion in Equa-
tion 4 have been denominated Abaffian matri-
ces at the First International Conference on
ABS Methods, held in Luoyang, September
1991.

THE SCALED ABS CLASS

Let V = (vy,...,v,) € R™" be an arbitrary
nonsingular matrix, called the scaling matrix.
Then the scaled system VT Az = VTb is equiv-
alent to the system Az = b in the sense that
both systems possess the same set of solutions.

Scientia Iranica, Vol. 1, No. 4

Let r(z) = Ax — b be the residual of the
original system. Let r; = r(z;). Then, by
applying the basic ABS class procedure to the
above scaled system, we obtain the following
recursions, which define the scaled ABS class
procedure:

(A') Same as (A).

(B') Compute s; = H;ATv,. If s; # 0, go
to (C"). If s; = 0 and rfv; = 0, set
Tiy1 = &, Hiyy = H; and go to (F'), the
1th equation of both the original and the
scaled system is a linear combination of
the previous equations. Otherwise stop,
the system has no solution.

(C") Compute the search vector as in (C’),
with 2; € R™™ arbitrary save that
ZiTH,;AT’U,' -‘;é 0.

(D') Update the estimate of the solution by
Equation 2 with «; given by:

o; = rTv;/pl ATv; . (7)

(E') Update the Abaffian by:
Hi—{-l = Hi - H,‘AT'U,'ZUTHZ'/'IU?‘HZ‘AT’U,; 5

where w; € R™ is an arbitrary vector
satisfying w? H;ATv; # 0.

(F') Same as (F).

We note that at the ith step of the scaled
ABS class procedure, only the ith column wv;
of V is used, implying that V need not be
defined initially and that v; can be considered as
a parameter, arbitrary save for linear indepen-
dence from vy, ...,v;_;. We note also that z,,4;
solves both the scaled and the original systems,
hence the scaled ABS class is a generalization,
with the extra scaling parameter v;, of the
basic class for solving Az = b. It can be
shown that essentially any algorithm of the
form x;,4y = z; — a;p; which, starting from
an arbitrary zx;, solves a linear system in a
number of steps no greater than the number of
equations, is a member of the scaled ABS class,

Spedicato on ABS Algorithms

i.e., it corresponds to some parameter choices
in that class.

Properties (A1) to (A7) are easily reformu-
lated for the scaled ABS class. In particular the
factorization relation in Equation 5 becomes
now, with V; = (vy,...,v):

VTAP =1L, . (8)

Property (A4) now says that the residual r;;; is
orthogonal to the previous scaling vectors, i.e.:

rLv; =0, j=1,..,i. (9)

The Scaled Block ABS Methods

ABS methods can also be given in a block
formulation, which can be useful in dealing with
special structures in the coefficient matrix and
which has also turned out to be efficient for
improving the speed-up on vector and parallel
computers. Assuming for simplicity that A has
full rank, the scaled block ABS method is given
by the following procedure:

(A") Give r; € R"™ arbitrary. Give H; € R™"
arbitrary nonsingular. Let mq,...,m, be
positive integers such that m; + -~ +
m, =m. Let 1 =1.

(B") Compute the residual r; = Az; — b. Stop
if T, = 0.

(C") Let V; € R™™ and Z; € R™™ be
arbitrary full rank matrices such that the
matrix VT AHT Z; is nonsingular. Define
the matrix P, € R™™ by:

(D") Update the estimate of the solution by:

Tip1 = T3 — Pd; , (11)
where d; € R™ is the unique solution of
the system:

‘/zTAP,d, = ‘/iT'I’,; . (12)

If ¢ = p stop, x,41 solves the system.

291

(E") Update the matrix H; by:
Hi+1 = H,; - HiATV;W,iTH,; 3 (13)

where W, € R™™ is an arbitrary full
rank matrix satisfying the condition:

WIHATV, = I, . (14)

(F") Increment i by one and go to (B”).

ALTERNATIVE IMPLEMENTATIONS

The basic and the scaled ABS class have
been given here in the so-called standard ver-
sion, based upon the n by n Abaffian matrix
H;. There are several alternative formulations,
some discussed in Abaffy and Spedicato [2],
others in more recent papers, e.g., Bodon and
Spedicato [3], Chen, Deng and Xue [4], Spedi-
cato and Zhu [5], essentially based upon the
use of non-square matrices, resulting generally
in a reduction of both storage and overhead.
For brevity we will consider only some of these
versions and only with reference to the unscaled
class.

The first version was derived by analogy
with the memoryless quasi-Newton method and
is particularly convenient if one is dealing with
underdetermined systems with m <« n. It
requires, at step 7, the storage of 2¢ — 2 vectors.
It uses the following recursions, starting with

= Hya, and u; = H wy:

=Hlz - Zujsfz,- , (15)
i<i
s; = Hia; — Z sjufai , (16)
j<i
= HIw; — Zujs}'w,- .)
i<i

Notice that:
1+1 = H1 Z S] . (18)

i<

Another approach assumes, without loss
of generality, that w; = z;/zT H;a; and that

292

feasible parameters zy, .. ., z,, are given initially.

Then p; = wu, where uj

i
1,...,n, and the vectors u}
t=1,...,m, by:

uft = uf — (FuifaTudhu

This approach, related to
methods considered by Slobod
storage of n — ¢ vectors at st

= Hszj, j =
are updated, for

j=i+1,...,n.
(19)

a class of parallel
a (6] requires the
ep ¢. Note that

the linear variety comprising all solutions of the

first 4 equations consists of the
the form:

T = Tiy1 +U1d s

where d € R™* is arbitr
(uith, ., ui).

The version of Spedicato
formulas formally similar to t
ABS procedure save that the

n by nbutisn+1—1¢ by n.

vectors = having

(20)
ary and U' =

and Zhu [5] uses
hose in the basic
matrix H; is not
At each step,

after the update of H;, a row of H,,, is deleted.

The deleted row is dependent

on the remaining

rows. It is proved that if the £&th component of

w; is nonzero, then the kth r
deleted. A difference with th

ow of H; can be
e version defined

by recursions in Equation 19 is that the vectors
2z; and w; have now dimension n + 1 — 7 and

must not be specified in advance.

PARTICULAR ALGORITHMS IN

THE BASIC ABS CLASS

We consider now some special

choices of the pa-

rameters in the ABS class, defining algorithms

which are related to well-kno

wn methods but

whose ABS formulation may differ in computa-

tional complexity, in storage

requirement, nu-

merical stability and degree of parallelization.

The Huang and the Modified Huang

Algorithms
The Huang algorithm, origina

|ly considered by

Huang [7] in a paper which has been seminal for
the development of the ABS class, is based upon

the well-defined choices H; =
which provide:

pi = Ha;

I, Z; = w; = a;,

(21)

Scientia Iranica, Vol. 1, No. 4

H'H-I = Hi - Hiaia?H,-/a?Hiai . (22)

The search vectors generated by the Huang
algorithm are orthogonal and coincide, in ex-
act arithmetic, with the vectors generated by
the Gram-Schmidt orthogonalization procedure
applied on the rows of A. If z; = 0, then
Z;y1 is the solution of least Euclidean norm of
the first ¢ equations and moreover the solution
zt (of least Euclidean norm) is approached
monotonically from below (in Euclidean norm).

The modified Huang algorithm is a modi-
fication of the previous algorithm which, while
generating the same iterates in exact arith-
metic, is more accurate in presence of roundoff,
as shown for instance in the experiments of
Spedicato and Vespucci [8]. It is based upon
the formulas:

p: = Hi(H;a;) , (23)

Hi, =H; —Pip?/P?pi . (24)

From Equation 23, we see that the search
vector in the original Huang algorithm is re-
projected onto the range of H;, which coincides
with the null space of A;_;. This operation
tends to annihilate components of the origi-
nal Huang search vector in the null space of
H; which are not zero due to roundoff. A
theoretical analysis of Broyden [9] shows that
the error growth of the ¢ — 1 small eigenval-
ues of H;, which should be zero if there was
no roundoff, is two orders lower if formulas
in Equations 23 and 24 are used, resulting
actually, under simplifying assumptions, in no
further error growth. The reprojection tech-
nique is applicable to most ABS algorithms.
It has been shown numerically to substantially
improve the accuracy of several methods in
ABS formulation, as the QR, Craig, Hestenes-
Stiefel algorithms (see, for instance, Bodon and
Spedicato [10,11]).

The Implicit Lu or Gauss-Choleski

Algorithm

This algorithm is obtained by the choices H, =
I, z; = w; = e;. It is well defined if A is strongly

Spedicato on ABS Algorithms

nonsingular (all the principal submatrices are
nonsingular), in which case, the scalar prod-
uct el H;a;, appearing at the denominators of
Equations 3 and 4, is identical with the pivot
at the ith stage of Gaussian elimination. The
matrix P, in Equation 5 is upper triangular,
motivating the name. The formulas for the
search vector and the Abaffian update are:

Di = Hg‘ei s (25)

Hiyy =H; - Hﬂil’?/l’?ai . (26)

From Equation 25, p; is just the ith row of H;.
From Equation 26, it follows easily that H;,
has the following structure:

0 0
Hiy =) (27)
Si I'n—i

where S; € R*** can be shown to have the
following structure,

S; = —A(AD), (28)

where A is the ith principal submatrix of AT
and A* € R™ % is the matrix comprising the
last n — ¢ columns of A; .

It is easy to verify that the number of
multiplications required by the implicit LU
algorithm is n3/3 + O(n?), as for the classical
algorithm, while the maximum storage is n?/4+
O(n). Some other properties are:

e The search vectors are A-semiconjugate,i.e.,
pTAp; = 0, j < i. Hence A-conjugacy holds
if A is symmetric but not necessarily positive
definite.

e If A is symmetric and positive definite,
then e/ H;a; > 0 and, if we set z, =
e:/(eT Ha;)V/?, then P7' = LT in Equa-

tion 5, hence the algorithm implicitly gen-
erates the Choleski factorization.

e If A is symmetric and positive definite,
then z;,, minimizes the quadratic function
F(z) = (x — z*)TA(z — =*) over the linear
variety z; + Range (P;). It also follows that
z* is approached monotonically from above
in the A-weighted Euclidean norm.

293

If H, is not the identity matrix, we ob-
tain the generalized implicit LU algorithm (sec
Spedicato and Zhu [12]). This algorithm is well
defined if the matrix AHT is strongly nonsin-
gular. It can be shown that any algorithm in
the basic ABS class, with parameters Hy, z; =
w; = 8, is equivalent to the generalized implicit
LU algorithm with initial Abaffian H; = SH,,
S = (s1,...,8,). For such an algorithm, the
number of multiplications is at most n3.

SUBCLASSES IN THE SCALED ABS
CLASS

The Conjugate Direction Subclass

This is a subclass of the scaled ABS class where
v; = p;, a choice which is well-defined if A is
square symmetric and positive definite. From
the factorization relation in Equation 8, we
obtain, with P = P,:

PTAP=D, (29)

with D diagonal, implying that the search
directions are A-conjugate. This subclass con-
tains the Lanczos and the Hestenes-Stiefel algo-
rithms, the last one corresponding to H; = I,
z; = w; = 1;. It can also be shown that the
implicit LU algorithm is a member of this class.

The Orthogonally Scaled Subclass

This subclass is obtained by the choice v; = Ap;
and is well-defined for A with full column rank.
From Equation 8 we obtain, with V =V

VIV = PTATAP =D, (30)

hence, the search vectors are AT A-conjugate
and the scaling vectors are orthogonal. Two
important algorithms in this class are the im-
plicit QR algorithm, given by H; = I, z; =
w; = e;, for which P; in Equation 8 is upper
triangular, and the algorithm with H; = I, 2; =
w; = ATr;, which generates the same iterates
z; as the minimum residual conjugate gradient
method. The vector z;y; in this subclass
minimizes the function F(z) = r(z)Tr(z) over
the linear variety z; + F.ange (P;).

294

The Optimally Stable Subclass

This subclass, well-defined for A square non-
singular, corresponds to the choice v; = A~Tp;;
the inverse appearing in this definition can be
removed in the actual recursions, which are
also well-defined for underdetermined systems.
Taking, without loss of generality, z; = w;, the
Abaffian update can be written in the form:

Hy = H; — ppl [p]p: . (31)

Setting z; = ATu,, the stepsize can be written
as:

a; = T?Ui/a?m . (32)

The search vectors in this subclass are
orthogonal. Setting u; = e;, we get the Huang
algorithm. Setting u; = r;, we obtain an algo-
rithm generating the same iterates z; as Craig’s
conjugate gradient algorithm for nonsymmetric
systems.

The name of this class comes from the fact
that the scaling matrix satisfies the relation:

VTAATV =D, (33)

with D diagonal, which was shown by Broy-
den [13] to characterize the class of algorithms,
in his general class equivalent tp the scaled ABS
class, such that the error in 2,4, due to the in-
troduction of a single error € in x;, is minimized
(being actually not greater than). It can be
shown that the algorithms in the unscaled and
in the orthogonally scaled subclass minimize a
similar error with respect to the residual r,;.
Hence, the Huang algorithm, being a member
of both the unscaled and the joptimally stable
subclasses, possesses both properties, while the
implicit LU and QR algorithms are optimal
only with respect to the residual error.

SOLVING LINEAR LEAST SQUARES

Overdetermined linear systems can be solved
by several ABS approaches for their generalized
solution in the least squares sense, i.e., for the
vector x* that solves the normal equations of
Gauss:

ATAz = A"b . (34)

Scientia Iranica, Vol. 1, No. 4

The system in Equation 34 is always compati-
ble. The solution is unique if A has full column
rank, otherwise one usually is interested in the
solution of least Euclidean norm, formally given
by relation:

z* = A*b (35)

where A* is the Moore-Penrose pseudoinverse.

There are several ABS approaches for the
least squares generalized solution. One possi-
bility is obviously to compute a QR or LQ fac-
torization of A by making explicit the implicit
factorization associated with the implicit QR
or the Huang (or modified Huang) algorithms.
Then, such a factorization can be used in the
traditional way.

A second possibility is to compute the
pseudoinverse A* by ABS techniques (see
Spedicato and Bodon [14] or Spedicato and
Xia [15]). Another approach is based upon the
equivalence of the normal equations with the
following extended system in the variables z
and y:

Az =y, (36)

ATy = ATb . (37)

In order for Equation 36 to be solvable, we must
have y € Range (A), which implies that y must
be the unique solution of least Euclidean norm
of the underdetermined system in Equation 37.
Such a solution can be obtained by the Huang
algorithm. Applying any ABS algorithm to
Equation 36 removes the m — ¢ dependent
equations, in step (B), where ¢ = rank (4) < n.
If ¢ < n and the solution of least Euclidean
norm is wanted, then Equation 36 should be
solved using the Huang algorithm.

A final approach is based upon the algo-
rithms in the subclass where v; = Au;, or V =
AU, U = (u,...,u,) € R™ being arbitrary
nonsingular and A having full column rank. Af-
ter n steps of the algorithm, when H, ., = 0, if
VT A is nonsingular, it follows from Equation 9
that VTr,,, = UTATr,,, = 0. Since U is
nonsingular, then ATr,, = ATAzx, ., — ATb =

Spedicato on ABS Algorithms

0, hence, Z,4; solves the normal equations and
a generalized least squares solution has been
found.

If U = P, the considered subclass reduces
to the orthogonally scaled subclass, whose al-
gorithms, therefore, all have the property of
solving overdetermined linear systems for the
least squares solution. This is then true in
particular for the implicit QR algorithm. If A
does not have full column rank, the obtained
solution is not one of least Euclidean norm,
but, if x, is zero, it is a solution of basic
type, where the last n — ¢ components are zero,
q = rank (A).

NUMERICAL EXPERIENCE WITH
ABS ALGORITHMS FOR GENERAL
LINEAR SYSTEMS

ABS algorithms have been extensively tested
for general linear systems (see [3,8,10,16]). Im-
portant issues to be tested numerically were:

e The numerical stability of the algorithms in
comparison with standard formulations.

e The relative performance, in terms of accu-
racy, of the several alternative formulations
of a given algorithm (half a dozen formula-
tions, not counting the possible use of block
formulations and reprojections).

The tested ABS algorithms have been the
following:

1. The Huang algorithm (see, in particular,
[8))-

2. The implicit LU and implicit QR algorithms
(see, in particular, [10]).

3. Some algorithms of the conjugate gradient
type, including the ABS versions of the
Hestenes-Stiefel, the Craig, the STOD and
the minimum residual method.

From the performed experiments the following
conclusions can be made:

e The alternative versions of a given ABS
algorithm differ not only in overhead and

295

Table 1. Results on ill-conditioned problems.

Method |E1IMED |E2MAX | ERES
Huang 2E-1 6E-1 5E-5

Mod Huang| 3E-2 2E-1 8E-7
QR 8E—2 1E-1 1E-6
Brent 8E-2 5E—-1 1E—-6

storage, but also in the final accuracy. The
most accurate versions are at least as accu-
rate, and often more accurate, on severely ill-
conditioned problems, than the codes, based
upon standard LU factorization with partial
pivoting, of the NAG, LINPACK, ESSL and
LAPACK libraries.

e The use of reprojections, usually on the.
search vector, sometimes on other vectors
(for -instance on the scaling vector in the
implicit QR algorithm), significantly im-
proves the accuracy on the ill-conditioned
problems. Use of more than one reprojection
is not recommended, its effect being usually
negligible.

e While the standard formulation of conjugate
gradient type algorithms is unstable and
gives very poor results on ill-conditioned
problems, the ABS formulation, using re-
projections, approximates the solution with
accuracy comparable with that obtained by
the LU or orthogonalization procedures.

In Table 1, taken from Spedicato and
Vespucci [8], we give the average value, on the
33 tested ill-conditioned problems, of the (ge-
ometric) average relative error in the solution
E1MED, of the average maximum of such error
E2MAX and of the average residual error ERES
for the following methods: standard Huang,
modified Huang, QR implementation in LIN-
PACK (codes SQRDC, SQRSL) and the code
due to Moré and Cosnard [17] implementing
the method of Brent. The results are obtained
in single precision on an IBM 4361 with unit
roundoff error of about 4 x 10~7.

Very extensive numerical experiments, in-
volving several alternative formulations of the

296

implicit LU, implicit QR and
rithms, have been done by B
cato [10], showing that the best
methods have accuracy comp

the Huang algo-
odon and Spedi-
versions of these
arable with that

attained by the QR code in the NAG library.

Further testing is planne

following questions of interest;

o Effect of equations pivoting.

] to evaluate the

o Effect of iterative refinement (which can be

performed in a similar way
dard methods by keeping th

The quoted experiments

as with the stan-
e search vectors).

have given con-

fidence in the ABS algorithm| as a stable and

accurate linear solver. In ter
overhead, the ABS algorithms

ms of storage or
in the sequential

formulation are not better than their classical
counterparts. Experiments on vector/parallel
computers have shown that this judgment may
have to be changed, ABS algorithms having

the potential for better vector
allelism, associated with their
operations on square or recta

ization and par-
use of compact
ingular matrices

with better management of the memory access.
The early experiments with vector ma-

chines are due to Bertocchi and Spedicato [18-

20], who investigated the performance of some

vectorized versions of the ix
Huang algorithms in the nonblg
formulation. The experiments

on the IBM 3090 VF, using

nplicit LU and
ck and the block
were performed

the Dongarra

matrix and taking as benchmarks the LU codes
in the NAG and the ESSL libraries. In order to
obtain an efficient vectorization, the following

steps were taken:

e Storage of matrices and vec

tors to allow use

of stride one as often as possible.

e Use of BLAS routines as often as possible.

e Following an
Sguazzero [21] found useful
the standard LU factorizati
update was modified from a
tion at each step to a rank-k

idea that

Robert and
in the context of
on, the Abaffian
rank-one correc-
correction every

k steps, with corresponding modification
of the formula for the search vector. An

Scientia Iranica, Vol. 1, No. 4

“optimal” value of k (k = 8) was obtained
experimentally.

e Loop unrolling was considered and found
useful in the rank-k corrections.

The obtained vectorized version of the
implicit LU algorithm was found to be about
three times faster than the NAG code and
only 30% slower than the ESSL code (which
was implemented, not in FORTRAN, but in
ASSEMBLER).

The modified Huang algorithm was also
considered in vector implementation. It was
noted that it was better not to take into account
the symmetry and to use a rank-k update of the
Abaffian (optimal value for k was 8 as for the
implicit LU algorithm). The faster version was
obtained using formulas in Equations 15-17. In
Table 2, we give the total time and the obtained
number of megaflops for the standard modified
Huang algorithm (MH), the version with rank-
8 update (MHS8), the version using formulas
in Equations 15-17, which can be viewed as a
rank-n update (MHn) and the ESSL code.

The experiments in Bertocchi and Spedi-
cato [20] have evaluated the effect of the block
formulation. It has been found that the speed-
up depends on the block size and increases
with the dimension (up to 60% for n = 700).
The optimal size of the block also appears to
increase with the dimension.

Experience with vector and parallel ver-
sions of the implicit LU and Huang algorithms
has been obtained by Bodon [22] on the Alliant
FX/80 with 8 processors. Each algorithm was
implemented in several versions depending on:

e Selection from five different formulations of
the search vector and the Abaffian, including
factorized versions of the algorithms devel-
oped by Bodon and Spedicato [3].

o Use of reprojections.
e Use of block formulations.

Table 3 gives the results on some algorithms
compared with the LAPACK code SGETF2-
SGETRS. The ABS algorithms outperform the

Spedicato on ABS Algorithms

297

Table 2. Performance of the vectorized MH algorithm.

n | MH MHS MHn | ESSL
100 | 0.2/30 |0.15/28.4 | 0.11/36.4 | 0.02/33.3
500 | 21/35.8 | 14/38 | 9.4/53.2 | 1.33/62
900 | 121/36.8 | 87.1/35.6 | 58/50.2 | 7.24/67

LAPACK code in megaflops, have lower timing
and are often more accurate. The improvement
appears, however, to degrade with growing n,
as was also observed in experiments with only
vectorization. This suggests the validity of the
following (loosely stated).

Conjecture

For fixed n, there are ABS versions of classical
methods that are faster for a sufficiently large
number of parallel processors or sufficiently
long vector registers. For a given number of
parallel processors, the classical version is faster
for sufficiently large n.

NUMERICAL EXPERIMENTS WITH
ABS ALGORITHMS FOR SPARSE
LINEAR SYSTEMS

Large linear systems are often sparse and spe-
cial methods are developed to take into account
the presence of zeros in A to reduce storage and

overhead. Sparse problems may be structured
or unstructured. Special ABS methods have
been developed for the following types of struc-
tured matrices:

(a) General band matrices (arising in several
PDE discretization processes).

(b) Block angular matrices, i.e., matrices
where A;; = 0 for ¢ < j —k; and j <
n — k; (arising inter alia in automatic

differentiation processes).

ND (nested dissection) matrices, arising
after optimal reordering of positive definite
matrices in finite element (FE) methods.

For matrices of the type (a) and (b),
the relevant formulas have been developed by
Abaffy and Dixon [23] (see also Abaffy [24])
in relation with the implicit LU, implicit QR
and Huang algorithms. For ND matrices,
the formulas have been obtained by Zhu [25]

Table 3. LAPACK versus ABS algorithms on the Alliant FX/8.

n Algorithm EX | ER | Time | M-flops
LAPACK 3E-5 | 1IE-6 | 0.201 3.39

LU 5E-5 | 7TE-T7 | 0.100 10.35
100 LUBLOCK 5E—4 | 9E-T7 | 0.080 11.40
MHUANG TE-7 | 2E-7 | 0.240 21.08
MHUANGBLOCK | 4E-6 | 2E-7 | 0.155 19.69
LAPACK 1E-4 | 8E-6 | 6.23 13.43
LU 8E-5 | 2E-6 | 6.749 18.62
500 LUBLOCK 2E-4 | 3E-6 | 3.701 21.17
MHUANG 2E-5 | 4E-7 | 14.26 35.06
MHUANGBLOCK | 1E-5 | 3E-7 | 4.19 66.41

298

Scientia Iranica, Vol. 1, No. 4

Table 4. Results on tridiagonal matrices.

n Method | Time | M-flops | EX | ERES
10,000 GAUSS | 0.040 2.03 3E-8 | 3E-8
ABS 0.022 3.90 5E-8 | 4E-8
50,000 GAUSS | 0.197 2.03 4E-8 | 3E-8
ABS 0.092 4.60 6E-8 | 4E-8
100,000 GAUSS | 0.394 2.03 4E-8 | 3E-8
ABS 0.181 4.70 6E-8 | 4E-8

and have been further developed in Yang and
Zhu [26]. While the overhead of the special

ABS formulas is not usually

the classical procedures in the

(it is higher, for instance, for
algorithm in the banded case,
unless a block formulation is u
may be lower. For instance, th
by a factor of two for the impl

lower than for
sequential case
the implicit LU

see Galantai [27],

sed), the storage
e storage is lower

icit LU algorithm

in the band case and, in the ND case, it is lower
by a factor which increases with the dimension.

Preliminary testing for banded matrices on
a sequential machine was done by Abaffy 28],
who found the ABS methods numerically stable
(and successful on a very large problem where
the Harwell code failed). Ceribelli [29] found
his pilot implementation of the band implicit
LU algorithm several times faster than the
(admittedly out-of-date) LU factorization code
in the IBM SP library (still heavily used by
engineers).

Extensive testing has |been done by
Bodon [30-33] on matrices of the types (a)
and (b) and particularly on |tridiagonal ma-
trices, on the Alliant VF80. |Several versions
of the implicit LU algorithm were studied,
using, in particular, sophisticated partitioning
techniques. The comparison with the LAPACK
solver for band matrices shows that the ABS

solver, despite its generally
in the sequential case, is fas
vector/parallel machine for s
bandsize (less than about 20
accuracy. For tridiagonal ma
codes are about two times

igher overhead
er on the used
ufficiently small

and of similar
trices, the ABS
faster than the

LAPACK code (which is based on an algorithm
essentially not parallelizable). For this type of
problem there is no apparent deterioration with
growing n of the relative improvement obtained
by the ABS algorithms. Table 4 gives timings,
megaflops, relative error in the solution EX and
relative error in the residual ERES for GAUSS
and the best tried ABS algorithm.

Table 5 gives the best results for GAUSS
and the best of the tested algorithms (method
A2 in Bodon [33]) for banded matrices with
band size k = 5 and k = 21. Notice that the
performance of the ABS methods deteriorates
with k£ much farther than GAUSS despite an
improvement in megaflops.

The testing of ABS methods for ND ma-
trices is still at a preliminary stage. A se-
quential code has been implemented by Deng,
Spedicato and Vespucci [34] and has been later
vectorized by Marletta and Vespucci [35]. The
vectorization on the IBM 3090VF improves the
performance when the size of the matrices is
at least 100; the improvement reaches 60% for
n = 300. No comparisons are available with
commercial codes.

For unstructured sparse matrices, one can
consider reordering techniques that reduce the
fill-in in the Abaffian. Preliminary work has
been done by Tuma [36] and Spedicato and
Tuma [37] on Abaffians generated by the im-
plicit LU algorithm in the standard formu-
lation. Benzi and Meyer [38] have indepen-
dently done similar work on the version of
this algorithm corresponding to the formula
in Equation 19. Fill-in growth is controlled

Spedicato on ABS Algorithms

Table 5. Results on banded matrices.

n k Method | Time | M-flops | EX | ERES
5 GAUSS | 0.213 0.09 2E-5 | 4E-7
ABS 0.058 5.70 2E-5 | 3E-6
1000
91 GAUSS | 0.231 1.08 2E-3 | 2E-6
ABS 0.223 10.06 2E-3 | 1E-5
5 GAUSS | 1.707 0.09 5E-6 | 4E-7
ABS 0.424 6.30 TE-6 | 2E-6
8000
91 GAUSS | 1.858 1.08 2E-4 | 6E-6
ABS 1.840 9.84 3E-3 | 8E-6

299

by a Markovitz type approach coupled with
a threshold strategy that sets an element of
the Abaffian to zero if its modulus is below
a given small positive value 7. A sequential
formulation of the algorithm has been tested
on several problems from the Harwell-Boeing
collection. Spedicato and Tuma have compared
the performance with that of the NAG code
MA28. The codes give a similar accuracy,
except on the very ill-conditioned problems
NNC1, NNC2 where MA28 fails while the ABS
code computes a solution with residual norm
less than 107''. Fill-in control performance
differs remarkably between the two approaches,
sometimes being better for the ABS code,
sometimes for the NAG code. While, generally,
MA28 has much lower timings, Benzi and

Meyer have found a class of matrices, related
to equilibrium equations in chemistry, where
the ABS algorithm is significantly faster. See
Table 6 for some results (“Fill” gives the final
number of nonzero elements, “Cond” the con-
dition number). Much further work is needed,
with an expected improvement of the ABS
algorithms on vector/parallel machines.

NUMERICAL EXPERIENCE WITH
ABS ALGORITHMS FOR LINEAR
LEAST SQUARES

Extensive numerical experiments with several
ABS approaches to linear least squares have
been performed on both sequential and vec-
tor/parallel computers. In Spedicato and

Table 6. Results on sparse ill-conditioned matrices.

Problem n Cond. Method Fill ERES | Time
MA28 80585 | 3E+1 208
NNC1 1374 1E+15
ABS 157637 | 5E-12 | 1466
MA28 7053 1E+1 3.7
NNC2 261 9E+14 -
ABS 4851 3E-13 6.5
MA28 410 2E-8 0.08
WEST 156 1E+31
ABS 156 9E-10 0.34

300

Scientia Iranica, Vol. 1, No. 4

Table 7. Results on linear least squares.

m n Method | EX | ERES | Time | M-flops
NAG 9E-3 | 1E-8 | 0.268 9.6
110 100
ABS 1E-4 | 3E-7 | 0.268 9.8
NAG 7TE-3 | 2E-8 | 0.880 11.9
500 100
ABS 9E-4 | 2E-9 | 0.616 18.6
NAG 1E-3 | 2E-8 1.67 124
1000 100
ABS 2E-3 | 2E-8 1.10 20.5
NAG 6E-3 | 1E-7 | 26.00 10.8
1500 300
ABS 1E-3 | 4E-9 12.5 22.5

Bodon [39] algorithms based upon the extended
system in Equations 36 and 37, algorithms in
the subclass with v; = Au;(u; = a; and u; = p;)
and algorithms using the explicit QR and LQ
factorization computed via ABS approach were
tested on about 600 problems and compared
with the NAG and LINPACK [solvers using the
QR factorization via Householder rotations or
the singular value factorization. The results
show that several ABS methods are more accu-
rate than the NAG or LINPACK codes, espe-
cially on ill-conditioned or rank deficient prob-
lems. Similar good performance is shown by
the methods using the ABS computation of the
pseudoinverse (see Spedicato and Bodon [40]).
The best performance, in terms of accuracy, is
given by some implementations of the implicit
QR algorithm with reprojection in both the
search and the scaling vectors (see Spedicato
and Bodon [41]). In all these experiments, only
non-block versions were considered.

Further work on the i
rithm, also using block formulations, has been
done by Spedicato and Bodon [42] on the
Alliant FX 80 with 8 processors. Overall,

31 versions of the implicit QR

algorithm were

implemented, differing in the formulas used for

the search and the scaling ve
block size. Compared with a

ctor and in the
vectorized and

parallelized version of the NAG codes FO1BKF

and F04AUF, the ABS algorithms appear to
be generally more accurate and, in most cases,
faster, up to a factor of three (the factor
depends on n and m). The use of the block
formulation improves the performance of the
ABS methods up to a factor of two, the optimal
block size depending on n and m. Some results
are given in Table 7.

CONCLUSION -

In this paper we have presented the main
theoretical properties of ABS methods for lin-
ear equations and linear least squares. The
numerical results indicate that these methods
are numerically stable, are competitive with
classical methods on ill-conditioned problems
and can perform faster on vector/parallel ma-
chines than their classical counterparts. Fur-
ther work in this area should look more deeply
at ABS formulations of conjugate gradient type
methods and at iterative versions of the ABS
methods via truncation of the procedure. ABS
packages for general distribution should also be
made available.

ACKNOWLEDGEMENT

This work was supported by MURST 40%

Spedicato on ABS Algorithms

Programma Analisi Numerica e Matematica
Computazionale.

REFERENCES

1.

Abaffy, J., Broyden, C.G. and Spedicato,
E. “A class of direct methods for linear
equations”, Numerische Mathematik, 45,
pp 361-376 (1984).

Abaffy, J. and Spedicato, E. ABS Projec-
tion Algorithms: Mathematical Techniques
for Linear and Nonlinear Equations, Ellis
Horwood, Chichester, UK (1989).

Bodon, E. and Spedicato, E. “Factorized
ABS algorithms for linear systems: deriva-
tion and numerical results”, Report DM-
SIA 14/91, University of Bergamo, Italy
(1991).

Chen, Z., Deng, N. and Xue, Y. “A gen-
eral algorithm for underdetermined linear
systems”, Proceedings of the First Inter-
national Conference on ABS Algorithms,
Luoyang, University of Bergamo, Italy, pp
1-13 (1992).

Spedicato, E. and Zhu, M. “A reduced
ABS-type algorithm I: basic properties”,
Report DMSIA 10/94, University of Berg-
amo, Italy (1994).

Sloboda, F. “A parallel projection method
for linear algebraic systems”, Apl. Mat.
Ceskosl. Akad. Ved., 23, pp 185-198
(1978).

Huang, H.Y. “A direct method for the
general solution of a system of linear equa-
tions”, J. Optim. Meth. Appl., 16, pp 429-
445 (1975).

Spedicato, E. and Vespucci, M.T. “Varia-
tions on the Gram-Schmidt and the Huang
algorithms for linear systems: a numerical
study”, Aplikace Mathematiky, 2, pp 81-
100 (1993).

Broyden, C.G. “On the numerical stability
of Huang’s update”, Calcolo, 28, pp 303-
311 (1991).

10.

11.

12.

13.

14.

15.

16.

17.

18.

301

Bodon, E. and Spedicato, E. “Numerical
evaluation of the implicit LU, LQ and QU
algorithm in the ABS class”, Report DM-
SIA 20/90, University of Bergamo, Italy
(1990).

Bodon, E. and Spedicato, E. “On some
STOD-ABS algorithms for large linear sys-
tems”, Report DMSIA 15/92, University of
Bergamo, Italy (1992).

Spedicato, E. and Zhu, M. “The gener-
alized implicit LU algorithm of the ABS
class”, Report DMSIA 3/94, University of
Bergamo, Italy (1994).

Broyden, C.G. “On the numerical stability
of Huang and related methods”, J. Optim.
Meth. Appl., 47, pp 7-16 (1985).

Spedicato, E. and Bodon, E. “Solving
linear least squares by orthogonal factor-
ization and pseudoinverse computation via
the modified Huang algorithm in the ABS
class”, Computing, 42, pp 195-205 (1989).

Spedicato, E. and Xia, Z. “On some ABS
methods for the computation of the pseu-
doinverse”, Ricerca Operativa, 22, pp 35—
41 (1992).

Abaffy, J. and Spedicato, E. “Numerical
experiments with the symmetric algorithm
in the ABS class for linear systems”, Opti-
mization, 18, pp 197-212 (1987).

Moré, J.J. and Cosnard, M.Y. “Numeri-
cal solution of nonlinear equations”, ACM
Trans., 5, pp 64-85 (1979).

Bertocchi, M. and Spedicato, E. “Vec-
torizing the implicit Gauss-Cholesky algo-
rithm of the ABS class on the IBM3090
VF”, Quaderno DMSIA 22/88, Univer-
sity of Bergamo, also Technical Report
1/37 (1989), Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo, Consiglio
Nazionale delle Ricerche, Roma, Italy
(1988).

302

19.

20.

21.

22.

23.

24.

25.

26.

Bertocchi, M. and Spedicato, E. “Vec-
torizing the modified Huang algorithm
of the ABS class on the IBM3090 VF”,
Quaderno DMSIA 23/88, University of
Bergamo (1988), also in Proceedings of the

Bertocchi, M. and Spedicato, E. “Block
ABS algorithms for dense linear sys-
tems in a vector processor environment”,
Quaderno DMSIA 2/90, University of
Bergamo (1990), also in Proceedings of the
Conference on Supercomputing Tools for
Science and Engineering, D. Laforenza and
R. Perego, Eds., Franco| Angeli, Milano,
Italy, pp 39-46 (December 1989).:

Robert, Y. and Sguazzero, P. “The LU
decomposition algorithm|and its efficient
FORTRAN implementation on the IBM
3090 vector multiprocessar”, Report ICE -
006, IBM ECSEC Center, Rome (1987).

Bodon, E. “Numerical results on the ABS
algorithms for linear systems of equa-
tions”, Report DMSIA 9/93, University of
Bergamo, Italy (1993).

Abaffy, J. and Dixon, L.G.W. “On solving
sparse band systems with three algorithms
of the ABS family”, Technical Report 191,
Numerical Optimisation Centre, Hatfield
Polytechnic, Hatfield, UK (1987).

Abaffy, J. “ABS algorithms for sparse lin-
ear systems”, in Computer Algorithms for
Solving Linear Algebraic Equations: The
State of the Art, E. Spedicato, Ed., NATO
ASI Series, F77, pp 111-132, Springer-
Verlag, Berlin (1991).

Zhu, M. “The implicit L
sparse nested dissection
Technical Report 196, N

T algorithm for

sation Centre, Hatfield Polytechnic, UK
(1987).
Yang, Z.H. and Zhu, M. “The practi-

cal ABS algorithm for large scale nested

27.

28.

29.

30.

31.

32.

33.

34.

Scientia Iranica, Vol. 1, No. 4

dissection linear system”, Report DM-
SIA 11/94, University of Bergamo, Italy
(1994).

Galantai, A. “Testing of implicit LU ABS
method on large nonlinear systems with
banded Jacobians”, Report DMSIA 19/93,
University of Bergamo, Italy (1993).

Abafty, J. “Preliminary test results with
some algorithms of the ABS class”, Tech-
nical Report 193, Numerical Optimisation
Centre, Hatfield Polytechnic, Hatfield, UK
(1987).

Ceribelli, C. “Implementazione dell’al-
goritmo di Huang per sistemi lineari a
bande”, Dissertation, University of Berg-
amo, Italy (1989).

Bodon, E. “Numerical experiments with
ABS algorithms on upper banded sys-
tems of linear equations”, Report DM-
SIA 17/92, University of Bergamo, Italy
(1992).

Bodon, E. “Numerical experiments with
ABS algorithms on banded systems of
linear equations”, Report DMSIA 18/92,
University of Bergamo, Italy (1992).

Bodon, E. “Numerical experiments with
Gauss-ABS algorithms on tridiagonal sys-
tems of linear equations”, Report DM-
SIA 31/92, University of Bergamo, Italy
(1992).

Bodon, E. “Numerical performance of the
ABS implicit LU algorithm for banded
type systems of linear equations”, Report
DMSIA 8/93, University of Bergamo, Italy
(1993).

Deng, N., Spedicato, E. and Vespucci,
M.T. “Experiments with the ABS implicit
Gauss-Cholesky algorithm on nested dis-
section matrices”, Technical Report 1/69,
Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Consiglio Nazionale
delle Ricerche, Roma, Italy (1991).

Spedicato on ABS Algorithms

35.

36.

37.

38.

Marletta, C. and Vespucci, M.T. “Vettor-
izzazione di condici per la soluzione di sis-
temi lineari con matrici ND via I’algoritmo
di Gauss-Choleski implicito”, Report DM-
SIA 3/93, University of Bergamo, Italy
(1993).

Tuma, M. “The implicit Gauss algorithm
for solving sparse unsymmetric sets of
linear equations”, Technical Report 1/85,
Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Consiglio Nazionale
delle Ricerche, Roma, Italy (1992).

Spedicato, E. and Tuma, M. “Solving
sparse unsymmetric linear systems by im-
plicit Gauss algorithm: stability”, Report
DMSIA 4/93, University of Bergamo, Italy
(1993).

Benzi, M. and Meyer, C.D. “A direct
projection method and its application to
sparse linear systems”, Report NCSU NA-

39.

40.

41.

42.

303

01051593, North Carolina State University,
Raleigh, USA (1993).

Spedicato, E. and Bodon, E. “Solution
of linear least squares via the ABS algo-
rithms”, Mathem. Progr., 58, pp 111-136
(1993).

Spedicato, E. and Bodon, E. “Biconjugate
algorithms in the ABS class II: numerical
evaluation”, Quaderno DMSIA 4/89, Uni-
versity of Bergamo, Italy (1989).

Spedicato, E. and Bodon, E. “Numerical
behaviour of the implicit QR algorithm in
the ABS class for linear least squares”,
Ricerca Operativa, 22, pp 43-55 (1992).

Spedicato, E. and Bodon, E. “Compu-
tational performance of the implicit QR
algorithm for linear systems on the Alliant
FX80”, Report DMSIA 20/93, University
of Bergamo, Italy (1993).

