Numerical Simulation of Viscoelastic Fluid
Flow Past a Cylinder

R. Kharrat! and S. Vossoughi?

Numerical methods have been applied to the flow problems of viscoelastic fluids for
some considerable time. However, many of the theoretical predictions do not agree with
experimental observation. This is even true for the simple geometry such as viscoelastic
liquids past a single cylinder. Among the different numerical schemes considered, the method
of lines was found to be the most promising. In this method, the partial differential equations
were reduced to a system of ordinary differential equations and then the resulting system of
equations was solved using the Runge-Kutta method. Consistent with the available literature
data, a downstream shifting of the streamlines was found for low elasticity while for the high
elasticity the streamline shifting was pronounced at upstream. The pressure and vorticity
distribution around the surface of the cylinder was found to alter in the presence of shear-
thinning parameter. Solution was found to be mesh size dependent; hence, caution should
be exercised to avoid the numerical artifact.

INTRODUCTION

In the last decade, a considerable effort has
been dedicated to the prediction of viscoelastic
behavior exhibited by polymer solutions and
melts and its impact on polymer processing.
This behavior becomes most evident in non-
viscometric flows such as the entry flow through
an abrupt contraction and the die exit flow
encountered in all extrusion operations.

The flow of viscoelastic fluids over a cylin-
der is an idealization of the flow situation com-
monly encountered in industrial processing. It
is, furthermore, a flow configuration which has
been studied with a great detail for Newtonian
fluids-both experimentally and theoretically—
and which can be used as a base of comparison
with the viscoelastic fluid flow.

Due to the complexity of the equations in-
volved, most efforts have been directed toward
numerical techniques and several investigations
have been reported in the literature [1-4]. From
the review of the literature, the following facts
emerged:

1. Numerical schemes “diverge” for compar-
atively low elasticity values. In addition,
it has been found very difficult to obtain
solutions for flows of highly viscoelastic
liquids; consequently, smoothing procedures
and transient solutions have been recom-
mended.

2. The numerical schemes predict a down-
stream shift of the streamlines for the low
values of the viscoelastic parameters, such
as relaxation time and retardation time.
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Figure 1. Coordinate system.

However, no numerical technique has yet
been devised to predict the upstream shift-
ing associated with the high values of the
viscoelastic parameters.

The transient solution of the viscoelastic
fluid past a cylinder has its own stability
and divergence problems as well as truncation
errors. The objective of this work is to try
different schemes of finite difference methods,
in search of the most effective one in solving
the partial differential equations describing the
flow of viscoelastic liquid past a cylinder.

BASIC EQUATIONS AND THEORY

The unsteady state flow of an incompressible
viscoelastic liquid past a cylinder of radius “a”
and of infinite length is considered. All motions
are referred to as a set of cylindrical polar
coordinates (r, 8, z), where the z axis coincides
with the axis of the cylinder as shown in
Figure 1. At a large distance from the cylinder,
the flow of liquid is assumed to be constant with
an approaching velocity, V, in the positive z-
direction. The equations of continuity, momen-
tum, and an implicit four-constant time depen-
dent Oldroyd rheological equation of state are
used to describe the flow of viscoelastic fluid
flow past a cylinder. In addition, the concepts
of vorticity and stream functions are employed.
The appropriate boundary conditions on the
cylinder and at infinity are used to complete
the specification of the problem. The detail
analysis and derivation is given in Appendix L.
It should be noted that the Oldroyd model is
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employed to be able to observe the viscoelastic
effect in the presence and absence of the shear-
thinning effect by varying the corresponding
parameters independently.

METHODS OF SOLUTION

In order to discretize the equations, some finite-
difference grids need to be adopted. Since
it is desirable to have a finer mesh near the
cylinder surface, an exponential transformation
of the r-coordinate, as given in Appendix II,
was considered. Because of the symmetry, only
half of the cylinder needs to be considered. The
finite-difference grid for half of the cylinder is
given in Figure 2.

Initially, the equation of state was solved
by direct iteration and the stream function by
the point relaxation method. This approach
has been adopted by several investigators for
steady state flow of viscous and viscoelastic
fluid around an object. Two problems were
encountered during the computation process,
one being large computation time and the
second, lack of convergence at moderate values
of Reynolds numbers.

The second approach was to solve the
problem using the alternating direction method
for the equation of state. This method makes
use of splitting the time step to obtain a multi-
dimensional implicit method which requires
only the inversion of a tri-diagonal matrix.
This approach is currently the most popular
method to viscous problems. Although the
computation time was reduced, the divergence

Figure 2. Finite-difference grid.
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Table 1. Programs description.

Program Name | Subroutine | Method of Solution
Stream Point Relaxation
PROG.OLD Rheology Direct Iteration
Vorticity | Alternating Direction
Stream Point Relaxation
PROG.ADI Rheology | Alternating Direction
Vorticity | Alternating Direction
Stream Point Relaxation
PROG.GIL Rheology Runge-Kutta-Gill
Vorticity Runge-Kutta-Gill
Stream Point Relaxation
PROG.FUL Rheology Fully Implicit
Vorticity Fully Implicit

problem at moderate values of Reynolds num-
bers persisted. To remedy the problem, the
mesh size and time steps had to be reduced,
which in turn increased the computation time
substantially.

In the third approach, a fully implicit
method was tried. Although this method was
more stable and the solution converged at
moderate values of Reynolds numbers, its long
computation time restricted its usage.

The final approach was to improve the
accuracy of the time derivative terms by intro-
ducing higher order of truncation. The method
of lines was then adopted. The computation
time was significantly reduced in comparison to
the other techniques and no divergence problem
was observed for moderate values of Reynolds
numbers and elasticity parameters. Still finer
mesh sizes and smaller time steps had to be
used for high values of Reynolds numbers and
elasticity parameters.

Table 1 identifies the names, subroutines
and methods used in each program generated
in this work. The numerical methods used in
each program will be briefly discussed in the
following paragraphs. Complete discussion of
the numerical techniques employed in this work
is given elsewhere [4].
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PROG. OLD

In this program, the stream function is solved
using the point relaxation method. The basic
theme of this method is to begin the solution
with initial estimate values for the dependent
variable and to use repeated substitution and
recalculation to arrive at the converged val-
ues. The criterion for convergence involved a
requirement that two successive iterates differ
by less than an assigned tolerance.

A direct iterative method was used to
solve the stress equations. The derivatives
are represented by either forward or backward
differences or a combination of the two, so that
the resulting algebraic equations are diagonally
dominant. A single iteration loop incorporates
all three equations and they are solved simul-
taneously. The vorticity equation is solved
using the Alternating Direction/Implicit (ADI)
method.

PROG. ADI

In this program, the stream equation is solved
as before, whereas the vorticity and the three
stress equations are solved using the ADI
method.

PROG. GIL

In this program, the point relaxation method
is used for the stream function, whereas the
Runge-Kutta-Gill method is used for the vortic-
ity and the three stress equations. The partial
differential equations are reduced to ordinary
differential equations. The central difference is
the space derivative used, which gives a second-
order truncation error while the time derivative
is fourth-order using the Runge-Kutta method.

PROG. FUL

In this program, the fully implicit method
is used for the three subroutines. Here, all
variables are evaluated at the same time step,
while in the other programs the stream function
always lags in time. In the formulation of the
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Figure 3. Flow chart of the simulator.

fully implicit method, a general penta-diagonal
matrix is generated. The solution of the matrix
is obtained by using a Bandmatrix program.
Another approach to the problem is to reduce
the penta-diagonal to a tri-diagonal matrix and
to solve it with the Thomas algorithm. In this
case, the values of the unknown parameters
at the deleted diagonals are taken at previous
iteration.

Various steps involved in the numerical
solution process can be conveniently discussed
by reference to the flow chart given in Figure 3.
The algorithm is started with the initial values
and the known boundary conditions. The
subsequent sequence of events is summarized
below:

1. Calculate the stream function.

2. Compute the vorticity on the surface using
the calculated stream function values from
step 1.
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3. Calculate the velocities ©v and v from the
known values of the stream function.

4. Calculate the three stresses on the bound-
ary.

5. Calculate the three stresses in the domain
using the calculated stresses from step 4 and
the known velocities and stream functions.

6. Compute the vorticity in the domain using
the known values of the stresses and veloci-
ties.

7. Check on the convergence of the vorticity
values on the surface if required (this is the
inside loop).

8. Check the steady state condition if required.
9. Increment the time.

10. Repeat all steps until the selected time is
approached.

11. Print results.

GENERAL STRATEGY

As mentioned in Appendix I, one of the bound-
ary conditions for vorticity requires its value
being zero for all the time at r = R,. However,
since the vortex moves with time toward the
boundary, the outer boundary distance, R,
used for the calculations must be chosen large
enough so that the condition of vorticity at the
boundary is not violated. The steady state
condition was established by checking the value
of the total drag in several consecutive time
steps being approximately the same.

The various computer programs were
checked against Newtonian fluid flow by set-
ting the elastic parameters in the rheological
equation of state equal to zero. This is because
of the stress contribution from elasticity being
zero for the case of Newtonian fluid.

To achieve stability, the mesh sizes, espe-
cially in the normal direction, had to be reduced
with increasing Reynolds number and the time
steps had to be reduced at low Reynolds num-
bers. For every Reynolds number, the stability
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and convergence of the solution is established
first through the appropriate selection of mesh
sizes and time steps, then the elastic parameters
were considered. For a given computation time
the solution for the Newtonian case was found
to converge faster than the solution for the
viscoelastic case.

INVISCID FLOW RESULTS

The analytical solution of the potential flow of
an inviscid fluid past a cylinder is well known.
Streamlines were generated numerically and
compared with the analytical solution. The
agreement was satisfactory and the relative
error was found to be less than 1% for all the
stream functions investigated.

VISCOUS FLOW RESULTS

Figures 4 and 5 compare the vorticity and
pressure distribution on the surface of the cylin-
der respectively with those of Apelt [5] for the
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Figure 4. Vorticity distribution on the cylinder
surface.
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steady state case. It is evident that the present
work is in good agreement with the work of
previous investigators. It should be noted
that the steady state solution in the present
work was obtained from the transient solution.
Also a drag coefficient of 1.51 and an angle of
separation of 50° were obtained which were in
good agreement with the reported values in the
literature.

The transient solution was compared with
the work of Son and Hanratty [6] for Reynolds
number of 20. Comparisons were made for the
pressure and the vorticity distribution on the
cylinder surface and for the streamlines projec-
tion. Figures 6 and 7 compare the pressure
distribution on the cylinder surface. For the
sake of keeping the length of the paper reason-
able, the other figures are not included. Good
agreement was achieved in all cases. Consistent
with their work, the point of separation of the
zero streamline from the surface of the cylinder
was observed. In addition, the formation of the
dead zone was also noticeable.
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Figure 5. Pressure distribution on the cylinder
surface.
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Figure 6. Numerical solution for flow around a
cylinder [6].

VISCOELASTIC FLUID FLOW
RESULTS

In comparing the performance of the different
numerical schemes, a base case of the Reynolds
number of 2.5, the elastic parameters of 0.6 and
0.1 for the relaxation time and the retardation
time respectively, were considered. These val-
ues were used in the work of Townsend [3] for
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Figure 7. Pressure distribution on the cylinder
surface for Re = 20, present study.
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the viscoelastic fluid flow over a fixed and rotat-
ing cylinder. The adaption of these values will
provide a useful comparison with the results of
this work.

Figure 8 shows the variation of the to-
tal drag on the cylinder surface with time
calculated by different methods. As noticed,
all the methods employed produced practically
the same solution. However, the CPU time
of 5.84 minutes for the method of lines was
lowest among the other two, namely, alternat-
ing direction being 6.19 minutes and the fully
implicit 32.33 minutes. All the computations
were carried out on the Harris 1200 and 800 at
the University of Kansas.

In order to reduce the computation time of
the fully implicit program, the penta-diagonal
matrix was reduced to a tri-diagonal matrix as
mentioned earlier. This approach reduced the
computation time by a factor of 13. In addition
to this change, the inside loop as portrayed
by Figure 3 was omitted by taking small time
steps to accommodate the fast changes in the
flow. Due to this modification, the computation
time was further reduced by a factor of three.
The total drag variation on the cylinder surface
with time up to a dimensionless time of 1.0
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Figure 8. Comparison of the different methods of
solution.
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Figure 9. Vorticity distribution on the cylinder
surface.

was generated using the three modified fully
implicit schemes. The close agreement provided
confidence in a semi-fully implicit method that
gave acceptable results.

The effect of the Reynolds number on the
flow of an elastic fluid with a relaxation time
of 0.6 was studied in terms of the vorticity,
pressure and the total drag distribution on
the cylinder surface. Figure 9 presents the
vorticity distribution. Higher vorticity values
result from higher Reynolds numbers. The
negative and positive values refer to clockwise
and counterclockwise motions respectively.

In the case of the pressure distribution
(figure not given), as the Reynolds number in-
creased, the pressure decreased. Major changes
occurred for the Reynolds number in the range
of 0.1 to 1.0. The location of the maximum
pressure remained insensitive to the magnitude
of the Reynolds number.

The total drag (figure not given) increased
with increasing Reynolds number. This was
much more pronounced for Reynolds numbers
smaller than 1.0. Total drag became relatively
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Figure 10. Effect of shear-thinning on the
pressure distribution for Re = 2.5, A; = 2 and
A =1 '

insensitive to Reynolds numbers in the range of
5 through 40.

The effects of the shear-thinning param-
eter, fig, on the pressure and vorticity dis-
tribution are shown in Figures 10 and 11,
respectively. These figures were generated for
A1 = 2, A, = 1.0 and Reynolds number of 2.5.
As observed in Figure 10, higher value of shear-
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Figure 11. Effect of shear-thinning on the
vorticity distribution for Re = 2.5, A\; = 2 and
Ao = 1.
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Figure 12. Comparison of elastic and Newtonian streamline patterns for Reynolds number 2.5 (\; =1,

Az = 0.1).

thinning parameter lowered the maximum pres-
sure. However, the maximum vorticity value
increased as the shear thinning parameter was
increased. Hence, the shear-thinning parameter
might enhance the rotation of the fluid particles
which is manifested in the vorticity value.

The effect of the retardation time, Ay, on
the pressure and vorticity distribution was also
studied. The figures generated (not given here)

indicated that, as the value of A, increased, the

maximum pressure decreased. In the case of
the vorticity distribution, the maximum value
shifted toward the upstream region, approach-
ing that of the Newtonian case as the value of
Ay increased.

The downstream and upstream shifting
of the streamlines was studied by considering
small and large relaxation times. Streamline
profiles for Newtonian and viscoelastic fluid
with small relaxation time were generated. The
pattern of the streamlines indicated a down-
stream shift relative to Newtonian, as reflected
in Figure 12. This result compares favorably
with those of Pilate and Crochet [7] and with

those of Townsend [8]. The upstream shifting
is noticed in Figure 13, which was generated
for the highly viscoelastic fluid. This is in
agreement with the experimental observations
of Manero and Mena [9]. The viscoelastic
parameters used in this work are equivalent and
comparable to the Weissenberg number used by
Manero and Mena.

Solutions were also generated for the New-
tonian, elastic and viscoelastic fluids by setting
the appropriate parameters of \;, A3, and p, to
zero. The total drag on the cylinder versus
time is given in Figure 14. In all cases, the
drag value starts at a maximum value at the
initiation of flow and levels off to a steady
state value. The higher drag for the elastic
fluid is consistent with what is reported in the
literature. Figure 15 is a similar plot generated
for much smaller Reynolds number and larger
relaxation time. A slight decrease in the total
drag is noticed at a dimensionless time of 20, at
which, steady state is presumably reached. A
decrease in the total drag has been reported in
the literature at low Reynolds numbers [3].
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Figure 13. Newtonian, elastic and viscoelastic streamlines projection for Reynolds number 0.25.

Effect of Mesh Size

A highly viscoelastic fluid with a Reynolds
number of 2.5 was considered to study the
transient behavior of the flow. Figure 16 shows
the streamlines in the early stages of the flow at
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Figure 14. Total drag variation through time for
Re = 10 (\; = 0.6,y = 0.1, o = 0.1).

a dimensionless time of 1.2. The development
of a dead zone is evident. This zone is marked
by the zero streamline in the downstream region
and moves in the opposite direction of the flow
at the later stages. At a later dimensionless
time of 5, the streamline projection revealed
the existence of two dead zones in the upstream
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Figure 15. Total drag variation through time for
Re = 0.25 (A\; = 5,A2 = 0.6, 4, = 0.1).
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Figure 16. Streamline patterns for Re = 2.5, A\; = 5, 2 = 0.6 and time = 1.2 .

region. The question was raised as to whether
the observed behavior was a numerical artifact.
Hence, the mesh size reduction in both the nor-
mal and the angular direction was considered.
In the case of the latter, no noticeable changes
were observed. However, the variation of the
mesh size in the normal direction affected the
size of the dead zone considerably. Smaller
mesh size also extended the transient solution
over a longer period of time.

The observation of the dead zone has
also been reported in the numerical work of
Townsend [8]. He considered the dead zone to
be due to the viscoelastic behavior of the fluid.

CONCLUSIONS

The method of lines was found to be the most
effective approach for solving the viscoelastic
fluid flow equations over a cylinder. The
numerical results compare favorably with the
experimental evidence. Upstream and down-
stream shifting of streamlines was detected.
It was also noticed that the presence of the
shear thinning component altered the pressure

and vorticity profiles to some extent. Small
decrease in drag in presence of elasticity was
predicted for Re << 1 while an increase in
drag in presence of elasticity was predicted for
Re >> 1. Finally, the results of the numerical
solution were found to be mesh-size dependent.
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APPENDIX I
System of Equations
The equations of momentum and continuity

are:
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where p is the density of the liquid, v and v
are the velocity in the r and 6 direction respec-
tively, p denotes the isotropic pressure, and 7,,,
Tye and T, are the relevant components of the
extra stress tensor. The fluid is characterized
by the rheological equation of state:

¢ .
Tiet+XM ETik + 1T} Dy, =

20 [Das + AZ%D%] , (1.4)
where A\;, A, and po are material time con-
stants, D, is the rate-of strain tensor, and
9/9t is the co-deformational derivative. When
operating on a contravariant tensor, the co-
deformational operator produces:

9 a 20Tk
%Ek = &Ek +v S
_ o L (L5)

oxm ' gzm

To complete the specification of the problem,
we need appropriate boundary conditions on
the cylinder and at infinity. Initially, the fluid
is assumed to be at rest but subsequently, the
boundary conditions are given by:

u=v=070, 0<b<m, r=a,

u =wvcosf, 0<f<m, r=R,,
v=—-vsinf, 0<8<m, 71=R,,

v =0, 6 =0and 7. (1.6)

At the far boundary, r = R, the flow is
assumed to be steady, unidirectional and not
influenced by elasticity. We may therefore have:

T, =Te=T0=0. (1.7)
The boundary condition for the stresses on the
cylinder surface and the symmetry lines were
obtained using the velocity conditions.

Before attempting to solve the system of
Equations 1.1-1.4, a number of simplifications
were made. First, the stream function, T,
defined by Equation 1.8, was introduced:

197 oy

=2 =T (L8)



Equation 1.8 satisfies the equation of continuity.
Second, the following non-dimensional variables
were introduced:

r=r/a; v =u/V;, v =v/V,

T = Tua/nV; ¥ =¥/aV; A = A V/a;

Ay = A V/a; t* =tV/a; p*=p/pV>
(1.9)

For the sake of convenience, the *’s are dropped
although non-dimensionality is implied. In
addition, the following changes of variables
were also made:

— Ju
Trr—Trr+28_
10v u
T, = il
w0 = Tao + 2( 89+ =),
10u
T = ro+T ( )+ ~3 (1.10)

The tensor T, represents a deviation from
Newtonian flow behavior. The above transfor-
mation introduces a vorticity diffusion term in
the vorticity equation which will be given later.
The pressure is eliminated from Equa-
tion 1.1 and 1.2 by cross-differentiating Equa-
tion I.1 with respect to § and Equation 1.2 with
respect to r to yield the vorticity and stream
function equations. It should be noted that
the bar notation is dropped for the sake of
convenience and the definition is still applied:

oo 1000 0¥dw 1o,
or r 08 or or 00 Re
. l_‘?_[aTrr laTTO Trr"'TGO]
Re r 80" Or r 00 T
T 18T99
272t 4 2SSy

(1.11)

where Re(= paV/no) is the Reynolds number,
V2 is the usual Laplacian operator and w is the

magnitude of the vorticity vector and is given .

by:
w=V30 . (1.12)

Equation 1.4, after being written in non-
dimensional form and implementing the change
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of variables, produces the following three com-
ponents:

rr-component:

[1- 8—“ (2A1 = po)]Trr + /\1[82; +“a§f
) e,
2(Xg — /\1){% + u—g—jg
A
r orof or a0
GlaGrmah
00-component:
1+ a—"(% Ho)[Too + Maél” * “85:9
+ gaggool -2 (-g2 - —)Tee #OT"gu =
2(Ag — A)r? %(%(u + %))
2O w2y, (114
rf-component:
T,0+/\1[a;;'9 +ua;;f" + gaggo] - %%ng
N NS TC %
(D + o+ 22
(53 + 550~ oo (2)
L e
<%>Zif B GO+ g

For the Newtonian case, A, A, and g are zero
and Equations 1.13-1.15 are trivially satisfied.
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APPENDIX I1I
Numerical Solution

In order to discretize the equations, some finite
difference grids need to be adapted. A cylindri-
cal polar grid did not give a very satisfactory
distribution of grid points. Since it is desirable
to have a finer mesh near the cylinder surface,
the following transformation of the independent
variables was made:

r=e"* 6*=06/m . (IL.1)

It should be noted that only one-half of
the cylinder needs to be considered because of
the symmetry and the * notation is dropped for
the sake of convenience. In terms of (s, 8) coor-
dinates, the modified vorticity, stream function
and the equation of state become:

Ow 1 0¥Oow 0IY0ow 1
S E 005 0500 Reb?
Pw w1 PT,
(367 + 952 = ReeB= 3508
ﬂ,aTro *Trg _ ﬂ_aToo _ 02Ty
50 ' o0 50 _ 9506
6Tr9 82T1'0
-2 95~ e (I1.2)

For the stream function we get:

bk

2
£ 4+ — 502 = F*w , - (IL.3)
where:
E = ne™* (I1.4)

Similarly, for the constitutive equations we
get:

10 aT.,
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U BTM gaT,,] 2\ auT
*E s TEo0' E ae 0
o Ou ( A1)
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(11.6)

——IT,,(—— — )

+ ——(TT,. + Tao)(
()\2 8’1)
7 {E nE
%u ov
808t+u( Y 3r e + 2un?
0%u ou o%v 8%u
2n55) + 95555 *+ 992
L 5nlty U0 udu o
Jds O0s0s 0Os08 000s
Ov Ou (IL7)

2E vt ) T
8t8 ot
+F s
* 8065 ~ “" 0
oudu Ovadv
" o620
The modified boundary conditions be-

come:

stream function:

U =9¥/0r=0 r=a

¥ =7rsinf r= Ry

=0 0,n,
vorticity:

w=20 r = Ry

w = (8‘11.,'2 - \111-3)/2[.\1"2 r=a

w=20 6=0,m,
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stresses:

TTT:TGG:TTG:O T=Roo
T..=0 T=q
Trt? =0 8= 0, ™. (118)

The vorticity boundary condition on the
surface is obtained from the values of stream
function near the wall in terms of the Taylor
expansion. The “” in the vorticity equation is
the number of nodes in the 8 direction.

Making use of the velocity boundary condi-
tion, the continuity equation and the definition
of vorticity, the boundary conditions for the
stress components are given as follows:

u=v=0v/00 =0u/df =Ou/ds =0
Trr :0
Bng 2 ov
Toe + A; ot = ﬁ(/\Q - )\1){“(5;)2}
2A1TT0@
E 08s’

Scientia Iranica, Vol. 1, No. 3

O Ao=M . 0%
Tot+h 5 = = B

Mo Ov
5F B Ty - (11.9)

Boundary conditions on the symmetry line:
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