Mixed Galerkin Finite Element Analysis of
Nonaxisymmetrically Loaded Spherical Shells
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A thin spherical shell under nonaxistymmetric loading is considered. The shell governing
equations are reduced to four second order differential equations in terms of three displace-
ment components and the meridian moment, which are all functions of two principle angles
¢ and 6, in meridian and circumferential directions, respectively. Using the Fourier’s series
of expansion in the §-direction, the shell equations are further reduced to four second order
ordinary differential equations of the mth harmonic of dependent functions in terms of the
variable ¢. Two sets of linear and third order test functions are employed to formulate
the finite element model of the shell based on Galerkin approximation. While the mixed
formulation provides a more accurate implication of the boundary conditions, the results
reveal minor differences between the two sets of approximations.

INTRODUCTION

The weighted residual methods, such as
Galerkin, subdomain, collocation, and least
square are alternative approaches for finite
element modeling of engineering problems. The
finite element formulations based on these
methods are mathematically simple to apply
and result in very accurate solutions compared
to other numerical methods. The Galerkin
method, among the weighted residual methods,
is especially favorable because of its strong
rate of convergence, particularly when applied
to nonlinear problems. Complicated engineer-
ing problems are powerfﬁlly handled with the
Galerkin method.

Traditionally, this method has been fa-
vorably used in fluid flow problems [1]. The
importance of this method is magnified when
variational principles are either not developed

or are questionable. Eslami [2-5] has applied
it to coupled thermoelasticity problems where
the proper variational principles of the first
law of thermodynamics for solid materials are
controversial. However, shell structures are
seldom treated by this method in the liter-
ature. Sharma [6] has applied the weighted
residual method to axisymmetric shells, but his
treatment is rather general. Eslami [7] and
Eslami and Shakeri [8-11] have made extensive
use of the Galerkin method in detailed analysis
of cylindrical and spherical shells under static
and dynamic forces, including coupled ther-
moelasticity of cylindrical shells. The general
conclusion is that lower degrees approximation
polynomials to model the dependent fields pro-
vide more accurate results in comparison with
variational formulations. While a third order
approximation for lateral deflection provides
acceptable results for variational formulations
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of shell of revolution [12], the linear set offers
a precise solution when the Gale rkin method is
used [7, 8].
When variational formulations are em-
ployed for finite element analysis of structural
problems, the displacement versus equilibrium
models set up the upper and | lower bounds
of the solution. The displacement compatible
finite element model always underestimates the
strain energy function and results in a more
flexible element providing an upper boundary
to the solution, while the stress model results in
an upper bound for strain energy function and
produces a stiffer element, thus|setting up the
lower boundary of the solution [13]. While this
mathematical conclusion is drawn on the basis
of variational analysis, the Galerkin method
also exhibits identical properties [3]. Based on
this justification, the mixed models should con-
verge to a more exact solution compared to the
analytical treatment. Furthermore, the mixed
models provide better tools in handling both
kinematical and forced boundary conditions.
This paper employs the Galerkin finite
element method and, by means of mixed for-
mulation, presents the static ngnaxisymmetric
solution of spherical shells under general exter-
nal loadings. The field of dependent functions
includes three displacement components and
the meridian moment. The conclusion is that
simple mathematics and accuracy are the basic
criteria in selection of the Galerkin approach in
finite element analysis of the shell structures.

DERIVATIONS

Consider a spherical shell under non-axisym-
metric loadings. The general applied forces on
the surface of the shell are in the directions of
the meridian f,, tangential f,, and lateral f.,
and the applied moments in the meridian fge
and tangential fgo, as follows:

{f(¢79)}T =< fufvfwfﬁ¢f[36 > (1)

It is assumed that the force matrix is a
function of shell variables ¢ and 6, the angles
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measured along meridian and tangential direc-
tions. The displacement matrix caused by the
applied forces is a function of ¢ and 6 and is

(D(¢,0)}" =< uvwpBy B >. (2)
where u, v, and w are the components of
displacements in the meridian, tangential and
lateral directions, respectively, (3, and /3, are
the shell rotations about the meridian and
tangential directions. In this general case, the
strain matrix is

{E(¢,0)}T =< €4 €0 €Ego k¢ ]Cg k¢9 >, (3)

where ¢, s are strains and k, s are curvatures in
the indicated directions. The associated matrix
of forces and moments per unit length of shell
loaded in general ¢ and 6 directions 1s

{N(¢,0)} =< N¢ Ny Nd,g M¢ My M¢0 > .
(4)

\

Since all the shell dependent parameters
are functions of the variables ¢ and 8, a Fourier
series expansion in the 6 direction will eliminate
the variable 8 from governing equations, leaving
the variable ¢ alone. The resulting governing
equations are the nth harmonic of Fourier
expansion of the shell parameters in terms of
Q.

Consider two harmonic expansions |O7]
and |©7] as follows:

|©7] = | cosnb,sinnb,cosnb,

cosnf,sinnd], (5)
|©3] = | cosnb, cosnb,sinnb,cosnf,
cosnf,sinnd]. (6)

It is easily verified that the variable 6 is
eliminated from the governing equations of the
shell and the nth harmonic of the parameters
will become a function of ¢, provided that the
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following Fourier series expansion is applied:

oo

{£} =Y 19:O{f(¢)},

n=0

(D} = L1610 (D"(8))

() = L1610 (9)),

{N} =) 19s(O1{N"(4)}- (7)

n=0

The equilibrium equations of shell can be
written in terms of the nth harmonic of the
three components of displacement u, v, w and
the meridian moment M ¢, as shown below [14].
The superscript n denoting the nth harmonic is
omitted for simplicity:

a1u" + au’ + agu + aqv’ + asv + agw’
+ aqw + agm’ + agm = C},
a0t + a11u + a1pv” + a130" + a14v
+ asw” + agw + arrw + aigm = Cy,
a191’ + AU + a21V" + Qg0 + ag3v
+ (12411]” + az5wl + QogW + a27m"
+ azsm’ + agem = Cj,
a3t + az1u + Az + azzw” + azqw’
+ agsw + azem = Cy, (8)

where m = M¢ and (') shows the derivative
with respect to ¢. The right hand side parame-
ters represent the applied lateral forces and are
C, = —pg, Co = —pg, C3 = —p,, and C4 = 0.
The coeflicients a; through az¢ are given in the
appendix and are functions of shell parameters,
material constants, and the variable ¢. Solution
of this set of governing equations is based on
application of the mixed formulation to the
kinematical and force fields. The finite element
modeling, based on mixed formulations, insures
the continuity of both displacement and stress
fields and provides better means for application
of both kinematical and forced boundary con-
ditions.
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Figure 1. Spherical shell element.

GALERKIN FINITE ELEMENT
MODELING

The field of approximation, as given by Equa-
tion 8, includes the four independent functions
u, v, w and m. However, the meridian moment
m is related to the displacement components
through the kinematical relations and the con-
stitutive law as follows:

M¢=—-w"—pcotpw + pw/sin2¢
+u' + pcotpu+ pv/sing. (9)

Selection of independent shape functions for
u, v and w provides a definite expression for
M, from Equation 9. However, to test the
convergence of the Galerkin finite element anal-
ysis, two independent sets of shape functions
are examined. The first set constitutes four
distinct linear shape functions approximating
u, v, w and m, regardless of the relationship
between the displacements and moment as
given by Equation 9. Considering a spherical
shell element as shown by Figure 1; the four
nodal degrees of freedom at nodes ¢ and j
are (ui,'vi,wi,mi) and (uj,'uj,wj,mj) and a
simplex shape function in terms of the variable
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¢ approximates the field as:

u=<N1>{u},

v=< N; > {v},
w=<N1 > {’U)},
m =< N; > {m}. (10)

In this type of formulation the relationship of
m and u, v and w is ignored.

On the other hand, the second set of shape
functions consists of linear approximations for
u and v and a third order polynomial for w.
The meridian moment is then obtained from w
asm = —w'", which is the first term of Equation
9. The third order approximation for w yields
a linear shape function for m as follows:

u =< N; > {u},

v=< Ny > {v},
w =< N3 > {w},
m =< N; > {m}. (11)

In terms of the variable ¢, the members of
matrix < N; > are N; = (1 — ¢)/1 and N, =
#/1, where 1 = ¢; — ¢; and ¢ = ¢ — ¢.

On the basis of these two|sets of shape
functions, the finite element madel of shell is
derived using the Galerkin method. Applying
the formal Galerkin method, the equilibrium
equations of shell as given by Equation 8 are
orthogonalized on the selected shape functions.
In this process, the first equation is minimized
with respect to the shape function governing
the meridian displacement, that is, w, the
second equation with respect to v, the third
equation with respect to w and |the last equa-
tion with respect to m. As the second derivative
of dependent functions appear in equilibrium

equations and the shape functi

ns are linear,

the integration by part of the second derivatives

is necessary. Through weak for

mulations, the

natural boundary conditions appear on the

nodal boundaries, which cancel
between any two adjacent eleme
the first and last elements.
natural boundary conditions on
of the solution domain should
the given boundary conditions.

put each other
nts, except for
The resulting
real boundary
be fitted with
To clarify the
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statement, the following term, which appears in
the Galerkin approximation, will be examined:

1 1
/ Npu'dp = Nyu'ly — / N, u'd¢.
0 0 (12)

While the second term on the right hand side
is transformed into the stiffness matrix, the
first term should be evaluated at the nodal
boundaries. Due to continuity, the nodal values
of this term are eliminated between any two
adjacent elements except for its value on the
boundary of the solution domain.

The finite element equilibrium equation
obtained upon application of the Galerkin
method based on the linear set of shape func-
tions, Equation 10, and weak formulations of
the governing Equation 8, result in the follow-
ing:

[Al{u} + [B{v} + [C{w} + [D{m} = {T1} +{R},
[E){u} + [Fl{v} + [G{w} + [H|{m} = {To} +{X},
[11{u} + [J{v}+ [K{w} + [L}{m} = {T3} +{V},
[Nl{u} + [Ol{v}+ [PH{w} + [@Q{m} = {Z}, 13)

where the matrices {11}, {T:} and {T3} are the
resulting external forces acting on the shell and
the matrices {R}, {X}, {Y} and {Z} are the
force matrices resulting from weak formulations
and boundary conditions. The matrices [A]
through [Q] for the base element e are each a
2 x 2 matrix, where their members for the base
element in local coordinate are defined as:

1
(4] =/ (~(Nia1)' N}, + a3 N N,,,
0
1=1,j
+asMiNpbdp ZJ]
1
[B] =/ (a4N1N,In+(15N1Nm)d¢
0
1
[C] =/ (ag NN, + a; Ny N,,)d¢
0

1
(D] =/ (ag N1 N,, + agN1 N, )do
0

1
[E] = /0 (a10N1N,, + a1 N1 N, )dé
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_ 1
[F] = /0 [_(012N1)’N,/n +a;sN N,
+a14N1Nm]d¢
1
[G] :/0 [‘(a15N1)"N7In +a16N1N,In
+ar17N1Nde¢
1
[H] :/o ((118N1Nm)d¢
1
] = / (@191 N, + a30N1 N,,,)do
0
1
U= [ -eaNY N, + o,
0
+023N1Nm]d¢
1
[I(] =/ [—(0/24N1)’ern +a25N1N,,In
0
+ a6 N1 N, |do
1
L] = / [~ (ag7N:)' N, + ars N\ N'.
0
+a29N1Nm]dq§

1
[N] ———/ (aggNlN,:n +031N1Nm)d¢
0
1
[O] :/ a32N1de¢
0

1
[P] = / [—(aggNl)lN,{n +a34N1N,'n
0
+ ags N1 N,y |do

Q] = /0 1 a36 Ny N, dob. (14)

The force matrices resulting from application of
external forces in local coordinates are:

_ 1
{Tl} - A ClNldqt) l: ’L,]
1
(T} = / CyNydg
_ 1
{R}zA CoNidd, (15)

and the force matrices resulting from weak
formulations and application of boundary con-
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ditions in local coordinates are:

{R} = {alu,¢}¢:0&L

{X}= {120, + @150, } =0k

{Y} = {a2lv,¢ + @240, + a27m,¢}¢:O&L

{Z} = {as3uw,, }o—oeL, (16)

where ¢ = 0 and ¢ = L are located at the prob-
lem solution domain. The force matrices result-
ing from boundary conditions must be specified
on the boundary of the solution domain where
kinematical conditions are specified. However,
some of the functions specified in matrices,
Equation 16, are not directly specified on the
boundary, or they do not have kinematical
meaning. In the event of this situation, the
ordinary differentiations of the dependent func-
tions with respect to ¢ are expanded by forward
finite difference at node 1 and by backward.
finite difference at node N, where the range
on nodes is from 1 to V. While the values of
the dependent functions on the boundary are
kept in the matrix of boundary conditions, the
coefficients of neighboring values of dependent
functions are transformed into the stiffness
matrix and added to the appropriate term of
the existing member of stiffness matrix. For
example, assuming that the values of u,v,w
and m are known at node 1 on the boundary,
the matrix of boundary conditions is expanded
by forward finite difference between nodes 1
and 2 and the coefficients of uy, vy, wy and me
are transformed into the stiffness matrix. The
resulting modified stiffness matrix for element 1
is:

K|, =Ky +a,/l
Kis = K5 —a;/1
K}y = Koy —ag /1
Ko = Kos — ags/!
K}y = Koz — a5/l
K} = Kor — a5/l
K3 = K3y — a9/l

K = K3 — aa1/1
K33 = K33 — ag4/!
K3, = K37 — a4/
K§4 = K34 — 027/1
K, = K3g — a7 /1
Kig = K43 — a3/l
K, = K47 — a33/1

(17)

where | = ¢ — ¢, and the coeflicient a’s are
evaluated at node 1.
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It 'is to be noted that the

general finite

element equilibrium Equation 13 is written in
the global coordinate system, where the proper
rotation matrix is applied for transformation

from the local to the global coor
Calling the rotation matrix [®]

dinate system.
, for the base

element e of nodes 7 and j reduces this to

(18)

(19)

_|ied
2=l (@)
where
sin ¢i 0 COS; ¢z‘ 0
0 1 0 0
[ = —cos¢; 0 sing; Of
0 0 0 1
The rotation matrix practically applies to U
and W.
RESULTS

Consider a spherical arc under uniform external

pressure.

The half angle of the cone is 39°,

inside radius 563 in, shell thickness 23.6 in, the

modules of elasticity is 30%10° p
The pressure is 284 psi. Due
load, the resulting stresses are g
respect to the axis of cap and
must vanish. The total membra
stresses on the outer surface in
circumferential directions are
~ures 2 and 3. The solid line curv:
analytical solution given by Ti
and the finite element solution i
Close agreement is observed be
solutions.
Now consider a hemispher;j
same material with an inside rad
a thickness of 1 in exposed to wir
boundary of the shell at great
is assumed to be clamped. The
and meridian stresses at ¢ =
versus ¢ in Figure 4. These
compared with the membrane
spherical shell under wind log
Timoshenko. It can be verified
the shear force Ny, = 0 and Ny
at ¢ =0. At ¢ =90, Ny, =0 bu

51, and = 0.2.
to the uniform
ymmetric with
shear stresses
ne and bending
meridian and
shown in Fig-
es are the exact
moshenko [15],
s shown by (z).
»tween the two

cal shell of the
ius of 50 in and
1d loading. The
circle, ¢ = 90°,
circumferential
0 are plotted
results may be
solution of the
\ding given by
that for ¢ = 0,
and NN, are zero
t Ny #0.
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Figure 2. Spherical arc under uniform pressure;
comparison of Timoshenko and finite element
solution.
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Figure 3. Spherical arc under uniform pressure;
comparison of Timoshenko and finite element
solution.
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Figure 4. Circumferential and meridian stresses
for a hemispherical shell exposed to wind loading.

Comparing these results with Figure 4,
the condition at ¢ = 0 is identical to the
membrane solution, however at ¢ = 90, N, F0.
This difference with the membrane solution is
justified if one notices that the Timoshenko
solution at this boundary is equivalent to a
free edge, while the boundary condition at ¢ =
90 is assumed to be clamped, and obviously
Ny = 0, due to the mechanical balance of
the applied force and reactions. Figures 5
and 6 show the distribution of the meridian
and circumferential bending stresses versus ¢
at 6 = 0. The results are shown for two series
of shape functions, Equations 9 and 10. Close
agreement is observed between the two sets of
shape functions. The distribution of moments
show that they are around zero from ¢ = 0 to
about 70°, justifying the membrane solution in
this region. Between ¢ = 70 to 90, the bending
stresses change due to clamped conditions at
¢ = 90°. This result can be checked by noticing
that ¢4 = 0 at ¢ = 90. From the stress-
strain relations at this boundary Ny = pNy.
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Figure 5. Distribution of circumferential bending
stresses versus ¢ at § = 0.
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Figure 6. Distribution of meridian bending
stresses versus ¢ at 8 = 0.
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Also, due to clamped conditions at ¢ = 90,
ko = 0 or My = uM,. Noticing that p = 0.2,
Figures 5 and 6 prove this theoretical result

at ¢ = 90°.

NOMENCLATURE

E modules of elasticity

h shell thickness

fi distributed lateral forces

F; concentrated lateral forces

ki curvatures

N; forces per unit length of shell
M, moments per unit length of shell
R shell radius

U,V w displacement components

Oij stress tensor

€ij strain tensor

I Poisson’s ratio

(@] rotation matrix

¢ meridian angle

e circumferential angle
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APPENDIX

The coeflicients of the system in Equation 8 are
in terms of the shell variable ¢, and the matrial
constants as follows:

a; =k
as = kcoto
a3 = —kp— (k+M?/2)cot’ ¢
— (1 4+ X2/12)n% csc? ¢/12(1 + p)
as = [1/(1 — p?) + \?/12]ncsc ¢/2(1 + u)
a5 = —[k(3 - n)/2
+ (1.5 4+ p)A?/12(1 + p)]ncsc p cot ¢
as = k(1 + p) + A?cot? ¢/12
+ An2csc? ¢/12(1 + p)
ar = — (24 p)A*n’cot desc® ¢/12(1 + )
ag = A2
ag = (1 - p)Xcot ¢
d10 = — a4
@11 =0as

ayz =(1 + A%/12)/2(1 + p)
a3 =aip cot ¢
a1 =(1 + X?/12) cot® ¢/2(1 + p)

+ (14 22/12)/2(1 + )
— (k4 X2/12)n% csc? ¢
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a1s =X’ncscd/12(1 + p)

a1s =A’ncscdcot ¢/12

ar7 =[=1/(1 + p®) + N /12]ncsc ¢/ (1 + p)
— A?ndcsc® ¢/12

a1s = — uA’ncsc o

Q19 = — Qg

azo =[1/(1 — p) — A*/12] cot ¢
+ A*(1 — n?) cot pcsc? ¢/12

Q21 =015

aze = — Ancsc g cot ¢/12

azs = — [1/(1 — p®) = A*/12]ncsc ¢/ (1 + )
+ A*n(1 — n?)csc® ¢/12

aze =2X%n% csc® $/12(1 + u) + A2 cot? ¢/12

azs = — A?(2cot ¢ + cot® ¢)/12
— Mn?cot pcsc? ¢/6(1 + p)

az6 = — 2k(1 4+ p) + A*n?[(1 + p)(1 — n?) + 2
csc? ¢/12(1 + p) + A%n? csc? ¢ cot? ¢/12

Gy =2

azs =(2 — u)A\*cot ¢

aze = — (1 — p)A% — uX®n?csc? ¢

azy =D

az =D, cot ¢

aze =Dy, csc ¢

azz=—D

azs =D, cot ¢

ags =Dun® csc? ¢

az = —1,

where ) is the Lame constant and

k= 1/(1-4%
D = 1/12(1 — p?).





