Boundary Element Solution of
Inhomogeneous Modified Helmholtz Equation

M. Tezer-Sezgin' and S. Dost?

A boundary element method (BEM) formulation is presented to obtain the solution of the
inhomogeneous modified Helmholtz equation. The difficulty arising from the domain integral,
due to the source function, is eliminated by obtaining an approximate particular solution
to the equation. An approximate particular solution is obtained by a very simple special
procedure which approximates both the source function and the particular solution as linear
combinations of several radial basis functions simultaneously. BEM, with linear elements, has
then been used to cast the homogeneous equation into the form of an integral equation over
the boundary. Computations have been carried out for a two-dimensional scalar Helmholtz
problem for several values of parameter X in the equation. Selected graphs are given showing
the accuracy of the methods used and the agreement with the exact solution.

INTRODUCTION

The boundary element method (BEM) is an
alternative technique to domain methods, such
as finite difference and finite element methods,
for solving boundary value problems, since
it simplifies the problem from one involving
domain discretization and/or area integration
to one involving line integration omly. In
general, the number of equations derived from
such a formulation will be fewer than in the
case of an interior method. Contrary to the
sparse matrices encountered in other methods,
the boundary element generated matrices are
full. The main motivation behind the BEM
is the reduction of the dimensionality of the
problem. Unfortunately, this major advantage
is lost when the partial differential equation
is inhomogeneous, since the resulting integral
equation will include the domain integral term.

The domain must then be discretized to allow
numerical evaluation of this domain integral [1].
Although this discretization does not introduce
any further unknowns, the numerical integra-
tion process considerably increases the amount
of computational time.

One way of removing the domain integral
is to consider a particular solution to the inho-
mogeneous equation. The remainder will then
satisfy a homogeneous differential equation,
hence leading to a boundary integral equation
only. For general cases, a closed form of partic-
ular solution is difficult or impossible to find.
One can then proceed to find an approximate
particular solution. The approximate particu-
lar solutions for potential problems can be ob-
tained in several ways. Among others, Banerjee
et al. [2] approximated the inhomogeneity as
an infinite series, Tang [3] considered a Fourier
transform method for evaluating the particular
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solution and Coleman et al. [4] and Zheng et
al. [5,6] expressed the source function as a linear
combination of radial basis functions. The idea
in all these procedures is to represent the source
function in terms of simpler functions for which
the corresponding particular solution is known.
For the Helmholtz equation, these procedures
cannot be as easily applied as those applied to
potential problems. Even if the spurce function

is approximated in terms of simpler functions,

it is still difficult to find the
particular solution.
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FORMULATION OF THE PROBLEM

Consider the following inhomogeneous modified

Helmholtz equation

Viu - k*u = g(x,y),

(1)
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over a region  with boundary I, where u(z,y)
is the solution, g is an arbitrary source function
and k is a constant. The boundary conditions
are as follows

wu=%u on I, (2)
du
5 = g on T, (3)

where the bar denotes prescribed values and
n is the outward normal unit vector of the
boundary.

The fundamental motivation behind the
boundary element method [9,10] is the re-
duction of the dimensionality of the problem.
Thus, we simplify the problem from one in-
volving area integration (e.g., finite element
method) to one involving line integration. In
general, the number of equations derived from
such a formulation will be fewer than in the case
of an interior method.

Unfortunately, the major advantage is gen-
erally lost when the partial differential equation
is inhomogeneous as in Equation 1. The result-
ing integral equation will include the domain
integral term. This integral is usually computed
by numerical quadrature techniques which re-
quire a domain discretization [1]. Since these
domain cells are created only for the purpose of
numerical integration for the source function,
they do not add new unknowns to the problem,
however, the procedure is time-consuming and
is inconvenient from the numerical point of
view.

Thus, the first step in the formulation
involves the generation of an integral equation
over the boundary Q only. One way of removing
the domain integral is to find a particular so-
lution to the inhomogeneous partial differential
equation. Since a closed form of a particular
solution is difficult to find, the next step is to
proceed in finding an approximate particular
solution by using radial basis functions [4,5,6].
The remainder of the solution will then satisfy
the homogeneous modified Helmholtz equation
and hence lead to a boundary integral equation
only.
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Knowing the particular solution to Equa-

tion 1, that is, for some function u, obeying

Vu, ~ Kup, = g, (4)

but not necessarily satisfying the boundary

conditions, Equation 1 can be transformed into

Viug —k*ug =0 in Q, (5)
with
ug =y =% —u, on I, (6)
ou ou
8—7;1':—}1:@—8—; on F2. (7)
Thus, the  homogeneous modified

Helmholtz Equation 5 will be solved with the
boundary conditions, Equations 6 and 7, us-
ing the boundary element method. Then the
solution to Equation 1 can be obtained by
adding a particular solution to the solution of
the homogeneous Equation 5 as

u(:c,y) = u,,(x,y) + UH(xvy)' (8)

APPROXIMATE PARTICULAR
SOLUTION

Finding an approximate particular solution to
Equation 1 is not as easy as in the case of
Poisson’s equation. For Poisson’s equation,
the source function can be expressed as a
linear combination of radial basis functions for
which the corresponding particular solutions
are known [4,5,6], since corresponding particu-
lar solutions can be obtained by simply apply-
ing the inverse Laplace operator to those radial
basis functions. For the modified Helmholtz
operator, this procedure does not work. The
present study continues to use radial basis
functions, but starts with the assumption that
a particular solution is a radial function and
then expresses the source function as a linear
combination of several radial basis functions.
Let us start with a radial function

) =(147:) )

then
V2, — A, =
%[nwn_l — (7~ 1)¢uos] = M.
(10)
For n = 1/2,
V312 — Mpyjp =
%W,_w g = Bhp] (11

This means that, when the inhomogene-
ity is represented in terms of radial functions
Y_1/2, Y32 and ¥y, as in Equation 11, the
radial function (%)), satisfies the modified
Helmholtz equation with the inhomogeneity

Vo172 + Y32 — B2 APy 0 as

V2521/11/2 - /\527/)1/2 =
Y12+ o3z — ﬁQ/\wl/z- (12)

We can now approximate the source func-
tion in Equation 1 in terms of radial functions

¢—1/27 111—3/2, and 1!’1/23

N
g(r) = D"t 5(r)

=1

N . .

+ Z’Yﬂ/ﬂ_g/g(?") + Z Cabs (1),
=1 (13)
where

iy G=1:1: =)L (14)

The functions 9! are chosen to have the
form

uar) = (122)

:<1+1_7-—T;,-_|_2)", (15)

where r; and §; are suitable constants and ¢? is
a function of a single variable. Such functions
are known as radial basis functions [11].
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trices as occur on the left hand side of Equa-
tion 16, for arbitrary grids with points in
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ing [11].
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However, if a particular grid is considered,
it is enough to check for non-singularity nu-
merically. (In fact, for the regular rectangular
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solution u, will be given by
N .
up == 3, 0¥ o(r)

_§:1ﬂ<1+| - P)_

/2

17)

BOUNDARY ELEMENT SOLUTION
OF HOMOGENEOUS MODIFIED
HELMHOLTZ EQUATION

A weighted residual approach was used because
of its inherent simplicity for obtaining the
boundary integral equation for vy. Introducing
a weighting function W, which has continuous
first derivatives and which satisfies governing
Equation 5, the weighted residual statement
can be written as
/ (VZuy — FPug)WdS = 0, (18)
Q
Employing Green’s theorem in two steps
to yield

/Q (V2W — KW )updS +

a“H Ul wras — / H—dS
(19)

results in an integral over the boundary I'

8“H UH ras — / uH——dS 0, (20
since the weighting function W satisfies the
Differential Equation 5.

Following the procedure in [12,13], the
weighting function W = Ky(Kr) (modified
Bessel function of the second kind and of order
zero) may be selected as the singular solution
to the Helmholtz equation. The distance r
is measured from an arbitrary point P to a
point Q on the boundary. Substituting for W,
Equation 10 becomes

/r (aau—HKo(kr) - UH%(;—’E—LICL)) ds = 0.(21)
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The integrals in Equation 21 are readily
evaluated, except in the vicinity of the singular
point P. This point is excluded from the region
by a small circle of radius ro. The required
integrations may now be written as

(- 52

27
+/ (au_HKO k’f'o) - UH'?%>T0d@

(22)

where © increases counterclockwise when the
integral along I is taken in a clockwise direc-
tion. By examining Equation 22 in the limit as
rg — 0 it is found that the second term reduces
to

27
—/ uHa—'K—g'(-k—@Tod@ = —27T’LLH(P),
0

on (23)

since Ky(kro) behaves like-log(kry) for small
arguments and lim,, .., log(kr) = 0 implying

/ Ot g (kro)rod® = 0, (24)
0 Bn

The boundary integral equation is now

up(P) =
1 duy 8K0(kr))
| (G Kothn) =g 70 ) as

(25)

This equation provides a relationship be-
tween any point in the interior of £ and infor-
mation known only at the boundary. When a
relationship is required at the boundary, P is
located along the boundary I' and Equation 21
is written as (for a smooth boundary)

/ <8(;L;Ko(k ) — uHaKg—g")> ds

Ko(K
+/ (—a-“—HKO kro)—uHM>rod@

on
(26)

where ¢ is the semi-circle around the point
P with a radius ry which is colinear with the
normal.

Taking the limit as ry — 0 results in
uy(P) =

% /F (%“’il(o(k ) - L{gi’") ) dS.(27)

This integral equation may be rewritten
for the unknowns uy and ¢y as

1
Uy = ;(/I:l qHI(O(ICT)dS
+/ G Ko (kr)dS
Iy

T, aTL

- /FZ u,,—al((gikr)ds), (28)

where Gy and 4y are known, therefore second
and third integrals can be taken to the right-
hand side of the equation as known values.

DEVELOPMENT OF A SET OF
SIMULTANEOUS EQUATIONS

The boundary I' is discretized into M elements
and the values of uy and its normal derivative
are assumed to vary linearly within each ele-
ment as

ug(€) = Ni(§upy + No(Eup o, (29)
ougy _ Oup Oug
on (&) = M(&) on N on ’ (30)

where ¢ is the dimensionless coordinate £ =

2X/l (Figure 1), 1 is the length of the element

and N;, N, are shape functions given by
1-¢ 1+¢

N =—> Ny =

31
— ; (31)

Thus, Equation 27 becomes in discretized
form

M
WH:_Z / _—_g(n )(NfuJHquLNZJui,Q)dS

BLHI

o]
7 V] fl? dS
+Z/KO (kr; (N o 5 )(

32)
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Figure 1. Linear elements.

where 7; is the distance from node 7 to element
j and can be written in the following form

M

_ j j
muly =Y (hijatlyy + oty

2)

7=1 (33)
where
-8K0(k7'1‘)

= JZ- 2V dS 34
hl]vl /I‘] Nl 8n d ’ ( )

0K (krs)

g = — N} ——+dS 35
hz],2 /I‘] 2 an ) ( )
giji = “/F Nf[(o(k?"l)ds, (36)
gij,2 - —/ NQJKo(kT,)dS (37)

T;

Substituting Equations 3437 into Equa-
tion 33 for all j elements, one obtains the

following equation for node i:

o .
ouly

M
1 _§ ' J § :
MUy = HijuH+ Gij%_ y
j=1 J

1

i=1,...,M,

(38)

where H,; is equal to the h;;; term of element

J plus hy; o term of element j —
for G,;. Hence Equation 38
assembled equation for node <.
can be written as
auH
Hluyg + [Gl— =0,
Huw + (6]

1 and similarly
represents the
This equation

(39)
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and the elements of the matrices [H] and [G] are
the assembled form of h,;; and hyj9, gi;1 and
gij2 from Equations 34-37. Recall, however,
that some of the values of uy and %& are
given from boundary conditions. Thus, this
information can be transferred to the right-
hand side of the system, Equation 39, and the
remaining equations are re-ordered to make it
a square system of algebraic equations,

[A{U} = {F}, (40)
where the vector {U} contains unknown uy and
81 yalues at the nodes and {F'} is known from
the boundary information. One can now solve
{U} using direct methods. Note that when uy
and 24 are known at each point (node) along
the boundary, one can compute uy anywhere
in the interior. This is achieved by discretizing
the general expression, Equation 25:

, M ) M a'U/j
27T'UJ}.I = ZH,']'U/}_I + ZGU—%‘H—

i=1 i=1

(41)

r; is now measured from the interior point P.

The integrals in the coeflicients H,; and
G,; will be evaluated numerically. The inte-
grals in H,; and G;; contain the singularities,
therefore, if the integral contains the point P,
a different algorithm is required than when the
integral does not contain P. The integrals
H,; and G;; can be evaluated using an 8-point
Gauss Legendre quadrature [14] for all elements
except the one including the node under consid-
eration. When the element contains the node
under consideration, the diagonal entries H;
are calculated from

(42)

and G,; terms can be computed analytically as
follows.

Since Ky(z) behaves like —(log(z/2) + )
for small arguments,

Ko(kr) =~ log (3) - —log(r),

. (43)
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after the assembly of ¢;;; and g;;» produces

Gii=1 (log (%) - 7) +1 (g - log(l)> ,

(44)
or

Gy=1 <g -7+ log(%)) . (45)
Thus, when the system in Equation 40 is solved
for the unknown vector {U}, which contains
unknown homogeneous solution uy and ani
values on the boundary, one can easily compute
uy anywhere inside the region through Equa-
tion 41. To find the solution u to Equation 1
with the boundary conditions of Equations
2 and 3, the particular solution u, obtained
from Equation 17 is added to uy (solution to
homogeneous modified Helmholtz equation) as

w(z,y) = ug(z,y) +uy(z,y). (46)
NUMERICAL RESULTS AND
DISCUSSION

Consider the following scalar Helmholtz equa-
tion [1,15]:

Viu—du=f in (47)
?—%:0 on T, (48)
an
where

2 .2 3.3

(49)

N=0<2<1U0 <y <1isa square region
and I' is the boundary of €). The exact solution
is independent of A and is given by

- Y —x
u(e,y) = I - T (50)

This problem was solved by Tsuchimoto
et al. [1] by using the BEM with constant
elements. The authors treated the Helmholtz
equation as the Laplace equation with an in-
homogeneous term and used the fundamental

solution of the Laplace equation. By doing
so, they were restricted to small values of A,
since the fundamental solution of the modified
Helmbholtz equation Ky (kr) behaves like log(kr)
(fundamental solution of Laplace equation)
only for small values of &, which is v/ in this
case. Furthermore, results for A = 107% were
produced in the computations. The domain was
also divided into cells and numerical integration
was performed for the domain integral, which
requires enormous computational time.

In the present study, the same problem,
Equation 47-49, was solved by using BEM
with linear elements, taking the inhomogeneous
modified Helmholtz equation as it is in Equa-
tion 47 and using its fundamental solution
Ko(kr) in the formulation. This allows for
consideration of a wide range of values for
A(107% to 10). On the other hand, by removing
the domain integral with the help of radial basis
functions and solving a discretized boundary
integral equation only, a considerable amount
of computational time is saved.

For the approximation of the source
function g¢(z,y) in terms of radial functions
Y_1/2,%_3/2 and 95, the collocation method
was used on a regular grid with step size
h = 0I1(N = 121) on both directions z
and y. The best value for parameters S;’s,
is found to be h/6. For solving the system
of Equation 16, the Gauss elimination with
complete pivoting (L2ARG matrix solver from
IMSL library) was used. The absolute error
on the agreement with g(z,y) inside the region
was 1078, Then, with those coefficients a;’s, an
approximate particular solution was obtained
from Equation 17 with the use of radial function
¥1/2. The normal derivative of the particular
solution, which is required in the solution of
the homogeneous Helmholtz equation by the
BEM, was also obtained from Equation 17 by
differentiation with respect to the normal.

The boundary of the region 2 was divided
into 40 linear elements (M = 40) which resulted
in a 40 x 40 system of algebraic equations for
{U}. Throughout the computations, double
precision was used and the Bessel functions Ky
and K, were computed by using the subroutines



164

from IMSL library in double precision.

For

solving this 40 x 40 system of equations also,
the solver L2ZARG was used. All the curves have
been drawn using the MATLAB package, which

uses linear interpolation.

Figures 2, 3, 4 and 5 show the solution

vaty =050 <z <1

), for several

values of parameter A and the agreement with
exact solution. One can easily notice that the
fundamental solution Ky(kr) is not a problem

for both small and large valy

es of A. In

Figures 6 and 7, similar behaviors are shown for

vatx =105 (0 <y <1)and ag
values of . Finally, the effect of

ain for several
parameters [3;

is tested and is shown in Figure 8. The best

value is found to be h/6 as ment

ioned above.
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-0.08 + S

-0.1 X
0 01 0.2 03 04 05 06 07 08 09 1
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Figure 2. Solution at y = 0.5,0 <|zx < 1, for

A=0.01and A =0.1.
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Figure 3. Solution at y == 0.5,0 <z < 1, for

A=02and A=0.5
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Figure 4. Solution at y =0.5,0<z <1, forA =1
and A = 2.
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Figure 5. Solution at y =0.5,0<z < 1. forA=5
and A = 10.
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Figure 6. Solution at x = 0.5,0 <y < 1, for
A=0.1and A =0.2.
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0.08 — exact soln.
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"0 01 0.2 03 04 05 06 07 08 09 1
SOLUTION AT X=0.5,0 < Y < 1

Figure 7. Solution at £ = 0.5,0< y < 1, for
A=1A=2and A =5.
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Figure 8. Solution at y =0.5,0 <z < 1, for
B=h/6,0=h/4and 3 =h/8.
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