Analytical Model for Shear
Critical Reinforced Concrete
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In this investigation a nonlinear finite element model is developed for predicting the complete
load-deflection response of shear critical reinforced concrete members. The nonlinear finite
element model employs a biaxial stress-strain constitutive relationship of concrete based on
equivalent uniaxial approach developed in this study and a simplified bilinear stress-strain
relationship of reinforcing steel. The main feature of the model is its ability to predict the
post-peak load-deflection response of shear critical reinforced concrete members failing under
a diagonal tension. The computational procedure developed employs the secant stiffness
method and a non-iterative algorithm. The predictions of the model are compared with the
available experimental data and the comparisons are Judged to be in good agreement.

INTRODUCTION

Shear (diagonal tension) failure of reinforced
concrete structures has been generally accepted
as a sudden and brittle failure because of the
lack of ductility, which can be broadly defined
as the ability to undergo large deformations
without loss of significant strength. However,
the appropriate placement of web reinforcement
can effectively prevent the sudden and brittle
failure under shear loads. With the develop-
ment of concrete with higher strengths, issues
regarding the shear behavior and associated
failures are becoming increasingly important.
Recent analytical research efforts for studying
the behavior of reinforced concrete structural
members has concentrated on development of
theories to predict the failure mechanisms un-
der shear loads. The notable theories pro-
posed for modeling the behavior of reinforced

concrete structural members include the Mod-
ified Compression Field Theory (MCFT) as
proposed by Vecchio and Collins [1], the Soft-
ened Truss Model as proposed by Hsu [2], the
Compressive Force Path Theory as proposed by
Kotsovos [3,4] and the Strut and Tie model by
COPPE and CEB [5].

Although there is substantial research ac-
tivity to address some of the concerns regarding
shear (diagonal tension) behavior of reinforced
concrete members, there is no generally ac-
cepted theory for predicting with sufficient reli-
ability the behavior and the associated failure.
Moreover, the analytical models do not exhibit
the ability to predict the post-peak displace-
ment softening behavior under diagonal tension
failure.

In this investigation, a nonlinear finite
element model is developed for predicting the
complete load-deflection response of reinforced

1. Dept. of Civil Engineering, North Carolina State University, NC, USA 27612.

Scientia Iranica, Vol. 1, No. 2, © Sharif University of Technology, July 1994.



144

concrete members. The deflection incremental
approach, based on the secant stiffness method,
is developed to predict the post-peak displace-
ment softening behavior for shear critical rein-
forced concrete members. The nonlinear finite
element model employs a biaxial stress-strain
constitutive relationship of concrete, based on
an equivalent uniaxial approacl developed in

main feature of the model is |its ability to
predict the post-peak load-deflection response
of reinforced concrete members failing under
diagonal tension. This post-peak behavior is a
relative measure of shear ductility. The model
is applicable only to short term loading and
utilizes a plane stress element| with sheared
stiffness approach for modeling the reinforced
concrete member. The predictions of the model
are compared with the available experimental
data.

ANALYTICAL MODEL

Constitutive Model for Concrete

A biaxial stress-strain law for concrete is used
which is based on an equivalent uniaxial ap-
proach (i.e.,the Poisson’s effect is ignored).
Effects of repeated loading and creep are not
included. A simplified strength and strain
criterion for biaxial stresses is |developed and
then use is made of the fractional equation
form proposed by Ahmad and Shah [6], for
uniaxial stress-strain relationship of concrete
in compression, to obtain the complete stress-
strain relationship under biaxial stresses.

The strength criterion |under biaxial
stresses for the compression-tension region of
the biaxial stress space [7] is given by

J9 o]

2
o1, =1+ 0.824 (2’1> ~109.4 (%> ,
(1)

where ,,, 09, are the stresses at peak and
oy is an uniaxial compressive strength of con-
crete. The strength criterion for compression-
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compression region is given by
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Comparison of the biaxial strength envelope
predicted by Equations 1 and 2 with the ex-
perimental data [8,9] is shown in Figure 1.

The equations for the concrete strain crite-
rion under biaxial stresses were obtained by us-
ing the experimental data of Kupfer et al. [10].
The equation for predicting the strains (e,,) at
maximum stress are given by

£1p = €o — 0.00447 ("—"”i>

O1p

2
—0.0841 <f'—23> c.c. ~ 0.99, (3)

O1p

for compression-tension, where c.c. is a correla-
tion coeficient, the ratio gs,/01, is considered
to be negative and ¢ = 0.001648 + 0.0001140,
(0o is in ksi units), and

e1p = €9 — 0.00278 <9£>

O'lp

o 2
~0.00235 <ﬂ> cc.~0.99, (4)

J1p

for compression-compression, where c.c. is a
correlation coefficient and the ratio o,,/01, is
considered to be positive.

Once the stresses and strains at the maxi-
mum peak stress under biaxial stresses state are
computed, the fractional equation [6] is used
to express the stress-strain relationship under
biaxial stresses. The compressive stress-strain
relation is given by

_ Az + (B - 1)x*
fc_01p1+(A—2)m+Bm2’ (5)
where
z = €e/ery,

f. = compressive stress in concrete,
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Figure 1. Comparison of analytical and experimental biaxial strength envelope.
01, = peak strength of concrete under for compression-tension and € > ¢y,
biaxial stresses,
A, B = calibrating parameters, Ay, 26(2-74—0~683°0+0-0227°3)’
¢ = concrete strain 0.094 < Ay, < 2.0,
€1, = strain at the maximum stress o o\ 2
under biaxial stresses. By =By [1 —4.617 <ﬁ> — 54.17 <—2—”> ] ,
Jg Og
X 7
The constants for ascending and descend- (7)
ing portions of the compressive stress-strain
.. . where
curves under biaxial stresses were calibrated
from the 1ifmite}<li e;cperinllental data [7,101]. The By = 0.6 + 0.0700,
constants for the biaxial stress-strain relation- .
.n 1 . . oo < 5 ksi (34.5 MPa),
ship are as follows for compression-tension and ,
e < ey B = 0.729 + 0.07260; — 0.00670;
+2.1*10 %0y,
A1, =2.2 — 02110y + 0.01707 — 0.00450;, oo > 5 ksi,
A > 1.321, B,, <1.0,
B,,=1.869 — 0.4430, + 0.03952% — 0.00119053, 0¢ = uniaxial strength of concrete (ksi)

By, > 0.187, (6) 04, = tensile stress at peak.
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Plain

concrete in tension is modeled by the uniaxial
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stress-strain relationship as follows:

Ji _ gueeured,
[t

where f, = tensile stress, f, = maximum tensile
stress, e; = tensile strain, and ¢, = tensile strain
at the maximum tensile stress (peak tensile
strain).

It is assumed that a modulus of elasticity
E, under a tension stress is the same as that
under a compression stress E, before cracking.
For a given f! value, the ¢, value is computed
by dividing f; by E.. The value of E. for a
given concrete strength o, is computed by E, =
27.5 w /oy as recommended by Ahmad and
Shah [6]. The comparison of Equation 10 and
the experimental result of Gopalaratnam and
Shah [11] is shown in Figure 4.

For biaxial stresses, the presence of com-
pressive stresses has an effect on the tensile
stress-strain relationship of concrete. Due to
the lack of experimental verification of this
effect, it has been ignored and, hence, the
uniaxial tensile stress-strain relationship, Equa-
tion 10, has been used for biaxial stress states.

The effect of reinforcement amount on the
tensile stress-strain of concrete was modelled as
per the suggestion of Stevens et al. |[12] and the

(10)
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Figure 3. Stress-strain curves for different stress
ratios under compression-compression stresses as
predicted by Equation 5 (1 ksi = 6.895 MPa).
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following equation has been suggested:

It_:
fi

where f, = maximum tensile stress, =75 (in
b

(1 — a)e™ (=) 4 o (11)

mm), p, = steel ratio , p, = jf, dy, = diameter
of bar (in mm), A. = distributed across area (in
mm?), A, = steel area (in mm?), ¢, = tensile
strain in concrete and e, = maximum tensile
strain in concrete.

The rate of decay parameter ), is

270
ﬁa
Note that Equation 11 is not applicable for
plain concrete.

Figure 5 shows the effect of reinforcement
amount on the tensile stress-strain curve of
concrete as predicted by Equation 11. Also
shown in this figure is the prediction as per
MCFT model 1] which is independent of the
amount of reinforcement and is applicable when
a large amount of well distributed reinforce-
ment is present.

A = A: < 1000.

Constitutive Model for Reinforcing Steel

The stress-strain curve of reinforcing steel is
modeled by a bilinear curve in tension and com-
pression (Figure 6). Steel stress is computed as

Tension stress (ksi)

0.6
0.5
. o Gopalaratnam and Shah [1]
— Present study
0.4 — , )
f. = 6.36 ksi
0.3 — f, = 0.525 ksi
- gauge length = 3.25"
0.2 — specimen size = 3" x 3/4'' x 12"
0.1 —
0-0 _-ﬁ' T ‘ T I T ‘ T 1 L) I ¥ I ¥ I T
0 1 2 3 4 5 6 7 8
(x10—4%)
Strain

Figure 4. Comparison of Equation 10 and the
experimental result of [11](1 ksi = 6.895 MPa).
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Figure 5. Effect of reinforcement amount tensile
stress-strain curve of concrete.

follows:
fs = E.eq, for e, <eyy, (12)

where

E, = modulus of steel,
€, = strain in steel,

€sy = yleld strain in steel,

fs = f, = Ele,, for e, > ¢y,
fy = yield of steel, (13)

where E! = secant modulus of steel.

Finite Element Approach

Various development approaches of Nonlinear
Finite Element Method for reinforced concrete
structures have been utilized, differing in such
aspects as constitutive modeling of concrete
and reinforcing steel, stiffness formulation (tan-
gent stiffness versus secant stiffness) and dif-
ferent element preference. To avoid difficul-
ties associated with predicting the complete
behavior of reinforced concrete members, finite
element approaches have ignored the modelling
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of softening portions of the compressive and
tensile stress-strain relationships of concrete.
However, some recent works [13,14] have ac-
counted for the softening portion through rel-

atively complicated algorithms

for example,

Pramono [14] uses the Pseudo-Force algorithm.
There are basically two methods employed

in the finite element analyses,

the load incre-

ment method and the displacement increment

method. Both methods can
cant stiffness formulation whic
adaptation to a nonlinear ana
with stable solutions. It sh
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utilize the se-
h allows easier
ysis capability
buld be noted
ess formulation
ry incremental

step, it has computational difficulties in the
displacement softening portion of the load-

displacement response.
employing the load increment

Although the model

method gives

good results [15], it is not capable of predicting

the post-peak deformation soft
the load-deflection response of
crete structural members.

In the development of
ment method model, a displacer
method using a secant stiffne
used. The smeared cracking

ening region of
reinforced con-

the finite ele-
ment increment

ss approach is
model [13] for

a crack representation was used, in which a
strength criterion is used for crack initiation. In

the development of the model in

this study, the

crack rotation concept is applied and Poisson’s

effect of the cracked element hal

s been ignored.

Therefore, a reinforced concrete element can

be modeled as a combination

of the stiffness
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of concrete element and steel element. The
inclusion of stirrup with reinforcement ratio,
pi is done by superimposing the steel stiffness
to the concrete element stiffness or reinforced
concrete stiffness, as the case may be. In the
model, perfect bond between steel and concrete
is assumed and dowel action is ignored. Since
the nonlinear finite element program developed
is based on the secant stiffness approach, it
utilizes linear elastic algorithms. Development
of linear elastic procedures is well documented
in literature [16,17]

For predicting the post-peak deformation
portion of the load-deflection response of rein-
forced concrete structural members, the com-
putational procedure based on the displacement
increment approach is developed [18]. The algo-
rithm of the displacement increment procedure
of the nonlinear finite element method using the
secant stiffness approach is shown in Figure 7.

In the conventional procedure, a residual
stress do for every iteration is used so that
convergence is reached when the residual stress
approaches zero. Therefore, the computational
procedure using the residual stress approach
needs several iterations for every incremental
step. Since the computational procedure devel-
oped employs the secant stiffness method and

Load
5 ()!K}i—} /[I_{]i
Pl g — & —=> — /
Pi P—_ - —6i-< ,— —_ :
Pi z(é_i’)Pi / | l
Pl_lw)-— D f] ‘ '
1 | |
/ |
s : | Y7
/ {
41
7 9V |
4 ! ! |
74 | |
4 I | :
|
L3 o)
6. 6 &

Deflection (6)

-
[

M

-
N

Figure 7. Algorithm of displacement increment
procedure for finite element method using the
secant stiffness approach.
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a non-iterative algorithm, it reduces computing
time and also simplifies the computations.

Before starting the first displacement step
61, a unit total load is applied to the structure
and an initial global structural matrix [K];p;, a
displacement vector {d}n;, and a load vector
{p}ini, are calculated by conventional linear
procedure. The matrix and vectors are used
for the first displacement step 6,. After that,
previous known values are used to a current
displacement step, In the ¢-th displacement
step 6;, the previous global stiffness matrix
[KTi—1, the previous load vector { P};_;, and the
previous displacement vector {d},_;, are known
values. Because the secant stiffness approach is
being used, the step factor (SF); with respect
to the ¢-th displacement step can be obtained
by

bi

(SF)l = 51'__1,

(14)

where 6;_; = a previous displacement step at
the assigned node and §; = a current displace-
ment step at the assigned node.

As the structural stiffness is a linear, total
external load in current iteration, P/, it can be
written as
P} = P,_4(SF),, (15)

k3

where P,_, is a previous total external load.
Thus, new deflection vector, {d};, and
load vector, {p'},, can be calculated by simply
multiplying the step factor (SF);, with the
previous deflection and load vectors, i.e., use
of the proportionality rule. The new deflection
vector {d}; and load vector {p'}, are given by

{d}s = {d}i1 (SF);, (16)

{p'}i = {p}ima(SF);, (17)

where {d}; = the deflection vector in i-th step
and {p'}; = the load vector in first iteration of
i-th step.

The concrete and steel material stiffness
matrices, [D]. and [D],, based on the con-
stitutive models of this study, are evaluated

149

with respect to the principal axes using a
new displacement vector, {d},. The detailed
procedure for obtaining the material stiffness
matrix, element stiffness matrix and the global
structure stiffness matrix [K],, has been de-
scribed in the literature [15,16,17]. The new
nodal point displacement vector {d'}; is found
by use of the governing equation

{d'}: = [K]7H{p'}s. (18)

While in the conventional procedure, the
total load for the i-th displacement step is
obtained by the sum of the internal load of each
element, here it is determined by multiplying
the P’ with the ratio of the displacement at -
th step to the current displacement. The total
load for the ¢-th displacement step is given by

R:pﬁ

where 6, = current displacement at assigned
node and §; = i-th displacement step at as-
signed node.

The flow chart of the algorithm of displace-
ment increment procedure of the finite element
method is shown in Figure 8. The displacement
increment procedure using the secant stiffness
approach exhibits fast convergency and is stable
even if the deflections are at and beyond the
peak load. It converges in only one iteration for
every additional deflection step in the pre- and
post-peak regions of the load deflection curve
as opposed to the load increment procedure,
where the number of iterations to converge
increase as the load step is increased. The
computing time of the deflection increment
method is hundreds of times faster than that of
the load increment method for ten comparable
increment steps [18].

RESULTS

A deep beam 100 x 1600 x 1600 mm (4 x 63 x 63
in) was tested by Leonhardt and Walther [19].
The beam was simply supported and was sub-
jected to a uniformly distributed load along the
top (Figure 9). The vertical reinforcement was
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Structure data and material properties
Calculate initial stiffness matrix of element [k]
Assemble initial global stiffness matrix [K]

Solve displacement of nodes due to unit load vector [d]o

———» Set deflection increment 6i and
compute (SF)_‘

Reset deflection of nodes for assigned deflection step

Print new displacement
of nodes

Calculate external load vector

Compute stress and strain of elgments

— Print stress and strain
of elements

Estimate new secant material matrix [D]new

(constitutive model for concrete and reinforcing steel)

Calculate new stiffness matrix of element [k] _

Assemble global stiffness matrix [ K]

Solve new displ.vector of nodes with factored

load vector {d}new

Calculate total external load

Next deflection step

Stop

Figure 8. Flowchart of displacement increment
procedure for finite element method

uniform throughout the span (p, = 0.00175).
The horizontal reinforcement was| heavier in the
lower regions (p, = 0.01787) and lighter in the
upper regions (p, = 0.00175). The compressive
strength of concrete (f!) was [4.3 ksi (29.6
MPa). This specimen represented a mem-
brane structure with the smeared|reinforcement
whose behavior would be dependent on the
nonuniform nature of the stress and strain fields
generated within the beam. Due to symmetry,
only half of the beam was modeled by using
128 four node rectangular plane stress elements
for concrete and reinforced concrete elements.
The reinforced concrete elements| were modeled

Scientia Iranica, Vol. 1, No. 2

by using the smeared reinforcement approach,
i.e. the reinforcement was smeared in the el-
ements. The tensile strength of concrete (f/)
was estimated to be 4,/0; as recommended by
Vecchio [15].

The comparisons of the analytically pre-
dicted results with those obtained experimen-
tally is shown in Figure 9. Furthermore, it can
be seen that analytical results obtained by using
the concrete constitutive model developed in
this study and the MCFT are in good agree-
ment with the experimental results. The figure
shows that the displacement increment finite
element model based on the secant approach
exhibits the capability of predicting the post-

3 p = 0.00175
S -
@ - |p =000175
0 = y
- =l
n p,=0.01787
© p. = 0.00175

o 5@10.2" T

) 63" 7

Specimen Finite element mesh

Load (kips)

400
-
300 :
/;;vc‘f Analytical model with Y
constitutive model of
present study
200 —
/EI/I
/F. // Analytical model with
100 d/j/ MCFT constitutive model
7
o
- /}// —-a--. Experiment
4
0 —(r T I T ' T T T T T T T

I
0.00 0.02 0.05 0.07 0.09 0.12 0.14

Deflection (in )

Figure 9. Comparison of load-midspan deflection
response for Leonhardt and Walther [19] deep
beam specimen with the predictions of the
analytical model developed in this study.
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peak deformation softening portion of the load-
deflection response.

It should be pointed out that the constitu-
tive model of Vecchio and Collins [1] in MCFT,
when used with the displacement increment
finite element method model developed in this
study, shows reasonably good predictive capa-
bility for this particular case, because the test
specimen is very heavily reinforced (o = 0.026).

A series of beams were tested by Bresler
and Scordelis [20]. One of the beams, BSI,
described in Figure 10, was heavily reinforced
with stirrups. The beam was designed to
experience a concrete shear failure when simply
supported and subjected to a concentrated load
at the midspan.

The beam was modeled using 120 rectan-

P 8.3" space
> K=
22’/ I
[N P-S
2.7,,,’\ 791 - ol ,'57;’
12//
v 91 f' =35 ksi
2 #4 )|
. + — #2@83" a/d=42
22
4494 L 24"
T 7F 2.6"
a) Beam details
0.5P
— i . a
5l =0[0
22//
pL = 011
¥
AT
ket {
8.7 72

b) Finite element mesh

Figure 10. Beam details and finite element model
of Bresler and Scordelis beam [20] BS1 (1 in = 254
mm, 1 ksi = 6.895 MPa).
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(using MCFT const. model)

l T ‘ T
0.0 0.5 1.0 1.5
Deflection {in )

Figure 11. Comparison of analytically predicted
and experimentally observed load deflection
response of beam with web reinforcement (1 in =
25.4 mm, 1 kip = 4.448 kN).

gular elements and 40 bar elements. The longi-
tudinal reinforcement was modeled in a discrete
manner using the bar elements, while the shear
reinforcement was included in the properties of
the rectangular elements and thus modeled as a
smeared element. The web reinforcement ratio
(py = 0.1) was used in the smeared element to
reflect the effect of reinforcement. The values
of the concrete tensile strength (f/) and the
shear retention factor (1) used in the model
were 4,/0; and 0.05, respectively. The shear
retention factor is a multiplier to the shear
modulus (G.) in the material matrix and the
product of the shear retention factor and the
shear modulus represents the shear stiffness
of cracked concrete. Since the shear span-
depth ratio a/d is 4.2, a flexural behavior was
predominant for the load-deflection response
and overall behavior of the beam.

The predicted and observed load deflection
response curves for the beam are shown in
Figure 11. From this figure it can be seen
that the analytical model developed in this
study seems to accurately predict the experi-
mentally observed response of the beam with
web reinforcement. Note that predictions by
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Figure 12. Beam details and finite

using the MCFT constitutive mo

del are in good

agreement with experimental resgults, since the
web reinforcement ratio is relatively large (p, =
0.1) and the section is heavily reinforced.

A number of shear criti
concrete beams utilizing high

cal reinforced
strength con-

crete were tested at North (arolina State

University [21] to obtain the p
displacement response.

ost-peak load-

These beams were

tested by using an energy absorbing “stiff”
testing facility developed at North Carolina

State University to test shear
The details of the test facility a1

critical beams.
re presented in

a research report [21]. The beam details of two
test beams are described in Figure 12.

The beams were simply 3

upported and

subjected to a concentrated load at the mid
span. For both of the beams, the compressive

strength of the concrete (og)

from 150x300

mm. (6x12 in) companion cylinder tests was

14.1 ksi (97.2 MPa). The shear
ratio (a/d) of two beams was 1

span to depth
.0. The beam

NHNT1 had no stirrups in the shear span and was

singly reinforced, while the bea

m NHW1 had

stirrups (no. 2 smooth bar) in the shear span
(py = 3.79 x 107%) and the longitudinal steel
reinforcement consisted of no. 6|bars as tension

reinforcement and no.
reinforcement.

2 bars as compression

element model of NCSU beams (1 in = 25.4 mm, 1 ksi = 6.895 MPa).

Due to symmetry, half the beam was
modelled using 114 rectangular elements. The
longitudinal reinforcement was modelled in a
discrete manner using the bar elements, while
the shear reinforcement was modelled as a
smeared element. The tensile strength (f/) used
in the model was taken as 4,/0y.

The predicted results using the consti-
tutive model developed in this study are in
good agreement with the experimental data,
Figures 13 and 14.  The predictions of the
MCFT constitutive model are not in agreement
with the experimental results, since the MCFT
constitutive model was developed with experi-
mental data utilizing normal strength concretes
and sections which were heavily reinforced. The
relatively stiffer predictions in the initial por-
tion of the load-displacement response indicate
that the MCFT constitutive model applicabil-
ity to high strength concrete is questionable.
These results furthur indicate that the MCFT is
applicable only for heavily reinforced members
and it appears that it is not applicable to lightly
reinforced or unreinforced concrete members. It
should also be recognized that there is a very
limited amount of experimental data regarding
the complete load-deflection response of shear
critical beams of the normal as well as high
strength concrete and, as more data becomes



Chung and Ahmad on Analytical Model

Load (kips)

Experiment

Analytical model

- Analy. model

(using MCFT const. model)

[—

100

50 | !

0.0 0.1 0.2 0.3

Deflection (in )
Figure 13. Comparison of analytically predicted
and experimentally observed load deflection

response of beam without web reinforcement (1 in
= 25.4 mm, 1 kip = 4.448 kN).
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Figure 14. Comparison of analytically predicted
and experimentally observed load deflection

response of beam with web reinforcement (1 in =
25.4 mm, 1 kip = 4.448 kN).
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available, the validity of the model developed
in this study can be more throughly evaluated.

SUMMARY AND CONCLUSION

In this investigation, a nonlinear finite ele-
ment model was developed for predicting the
complete load-deflection response of reinforced
concrete members. The finite element model
is applicable to a short term loading and uti-
lizes plan stress elements with smeared stiffness
approach for modeling of the reinforcement.
The constitutive model for concrete employs a
biaxial stress-strain law which is also applicable
to higher strength concretes.

The main feature of the finite element
model is its ability to predict the post-peak
load deflection response of reinforced concrete
members failing under diagonal tension. The
model employs the secant displacement ircre-
ment method and the non-iterative algorithm,
which is very efficient in computational time.
The predictions of the finite element model are
compared with the available experimental data
and the comparisons are judged to be in good
agreement.

NOMENCLATURE

A B ascending and descending
parameters

A, area of concrete

A, steel area

a/d shear span-depth ratio

dy diameter of bar

E. concrete modulus

E, secant modulus of steel

fe compressive stress in concrete
fs steel stress

fi concrete tensile stress

maximum tensile stress

fy steel yield stress

G, shear modulus

MCFT Modified Compression Field Theory
SF step factor
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concrete weight

& ps/db (11’1 mm)

b; a current displacement step at the
assigned node

€ strain at maximum uniaxial stress

€1p strain at maximum str¢ss under
biaxial stresses

€s strain in steel

sy steel yield strain

€t concrete tensile strain

€, maximum tensile strain in concrete

At rate of decay parameter

U shear retention factor, 0 < p <1

Ps A,/A. = longitudinal tensile steel
ratio

Do shear reinforcement ratio

09 uniaxial compressive strength

01,&  peak strength in axis 1|and 2

O'gp
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