Substructuring and Ordering:
Graph—Theoretical Methods

A. Kaveh! and G.R. Roosta?

In this paper an efficient algorithm is designed for substructuring, for use in parallel
computing, employing simple concepts of graph theory. This algorithm partitions the graph
model of a structure into subgraphs with an equal or nearly equal number of internal nodes,
while keeping the interface nodes to the smallest possible number. Further refinement of the
selected substructures are also made by recursive application of the algorithm. A simplified
method is also presented and a nodal ordering algorithm is provided.

INTRODUCTION

Substructuring has been attractive to engineers
for various reasons. At early stages of its
development, limitation of storage in computers
compelled its use for the analysis of large
scale problems. Later, its efficiency in analysis
encouraged its development. Recently its suit-
ability for parallel processing has been studied.
Soon it may become an important tool for
topology optimization of structures. -
Substructuring has been developed un-
der different names, such as the tearing
and  interconnecting of  Kron’s  [1]
K-partitioning, factored-form technique, dou-
bling technique, elimination-backsubstitution,
divide-and-conquer, divide-and-decomposition,
dissection, nested dissection, multi-level dis-
section and subdomaining. Although these
methods have some differences, the underlying
basic idea does not differ much from the tearing
of the main structure into substructures and
interconnecting them for a solution. Such
an idea dates back to developments made by

Whitehead [2] in topology known as “an ex-
pansion process” for studying the properties
of topological spaces. The generalization of
such an expansion process [3] made feasible the
study of many topological properties of general
skeletal structures.

In many engineering applications, particu-
larly in the analysis and design of large systems,
it is convenient to allocate the design of cer-
tain components (substructures) to individual
design groups. The study of each substructure
is carried out more or less independently and
the dependencies between the substructures
resolved after the study of individual substruc-
tures is completed. The dependencies among
the components may, of course, require redesign
of some of the substructures, so the above
procedure may be iterated several times.

In order to make these remarks specific,
suppose for a structural model S we choose
a set of nodes I and their incident members
which, if removed from S, disconnect it into two
substructures. If the variables associated with
each substructure are numbered consecutively,
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DEFINITIONS AND CONCEPTS
FROM GRAPH THEORY

A simple graph S is defined as a set N(S) of
nodes and a set M(S) of members together
with a relation of incidence which associates
two distinct nodes with each member, known as
its ends. A member is incident with a node if
it is an end node of that member. The valency
of a node is the number of members incident
with that node. A node n; is called adjacent to
a subgraph S;, if it is adjacent to a node of S;.

A tree T of S is a subgraph of S which has
no cycle, a cycle being a closed path. A shortest
route tree (SRT) rooted from a specified node
(starting node) is a tree T containing all the
nodes of S and the distance between any node
of T and its root is minimum [12].

Let S be decomposed into ¢ subgraphs
S1,82,83,---S,. A set of nodes of S con-
taining one distinct node from each subgraph
S:(1 =1,---,q) is called the transversal of the
subgraphs.

The distance d(n;,n;) between nodes n;
and n; is defined to be the length of the shortest
path between these nodes. The following algo-
rithm is used for finding the distance between
each pair of the nodes of S. One can, however,
employ any other available approach for this
purpose.

A matrix NA is considered, which is the
same as the node adjacency matrix of S at the
beginning of the processes, and its typical entry
NA(i,7) denotes the distance between nodes ¢
and j at the end of the processes, where 1 <
i,j < N(S). Due to the symmetry of NA, i.e.
NA(i,j) = NA(j,1), the domains of variations
of 7 and j in the program are restricted to
1<i<NS)-1land:i+1 < j < N(S).
In an adjacency matrix for two nodes ¢ and
j of S, if NA(3,7) = 1 (or NA(Z,j) = 0),
it means that these nodes are adjacent (or
disjointed), but here, NA(7,j) = 1 means that
the distance between ¢ and j is equal to unity,
and NA(i,j) = 0 means that the distance
between 7 and j has not yet been calculated.

In Step 1 of the following algorithm, each
pair of nodes of S with distance equal to 2 are
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determined, in Step 2, those pairs of nodes with
distance equal to 3 are obtained. Subsequently,
in Step k, the pair of nodes with distance equal
to k + 1 are detected.

Step p (p =1 to 6§ — 1), should be carried
out as follows, with § being the diameter of S.
In step p, for each pair of nodes ¢ and j with
NA(i,j) = 0, find a node k for which NA(3, k)+
NA(j, k) = p+ 1 such that NA(i,k) # 0 and
NA(j, k) # 0. If such a node is found, then let
NA(,j)=p+1.

The eccentricity of a node n; is taken as:

e(n;) = Maxd(n;,n;) |
for j=1,2,---,N(S).

Further graph theoretical definitions and
concepts used in this paper, may be found
in [11].

ALGORITHM FOR
SUBSTRUCTURING

Let S be the graph model of a structure. The
following algorithm is designed to decompose
S into ¢ subgraphs with an equal or nearly
equal number of nodes (support nodes are not
counted) with the least number of interface
nodes.

Step 1. Delete all the support nodes
with their incident members and denote the
remaining subgraph as S.

Step 2. Determine the distance between
each pair of nodes of S, and evaluate the
eccentricities of its nodes.

Step 3. Sort the remaining nodes (RN) in
ascending order of their eccentricities.

Step 4. Select the first node of RN as
the representative node of the subgraph S
to be determined and find a second node as
the representative node of subgraph S, with a
maximum distance from .5;.

Step 5. Find the third representative node
with the maximum least distance from S; and
S,, and denote it by S;.

Step 6. Subsequently select a represen-
tative node of subgraph & for which the least
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distance from S;,S5,,---,S5,_; is maximum.
Repeat this process until ¢ representative nodes
of the subgraphs to be selected are found.

Step 7. For each subgraph Si(j=1,--,q)
add an unselected node n; of RN, if it is
adjacent only to S; and its least distance from
all nodes of other subgraphs is maximum.

Step 8. Continue the process of Step
7, without the restriction of transforming one
node to each subgraph S;, until no further node
can be transferred. The remaining nodes in RN
are interface nodes.

Step 9. Transfer the support nodes to the
nearest subgraphs.

Once the nodes for each subgraph S; are
found, the incident members can easily be
specified.

This algorithm is recursively applied to
the selected substructures, decomposing each
substructure into smaller ones, resulting in a
further refinement.

A SIMPLIFIED ALGORITHM

In the following, a simplified algorithm is pre-
sented which requires less storage and computer
time than the main algorithm, in the expense
of selecting subgraphs with a slightly higher
number of interface nodes for some structural
models. In this approach, the number of
distances to be considered and compared for
finding the nodes of substructures is far less
than the main algorithm, where the distances
between each pair of nodes of § had been re-
quired. This algorithm consists of the following
steps:

Step 1. Form an SRT, rooted from an
arbitrary node, in order to find a representative
node of S; with maximum distance from the
root. The selected node is also denoted by S;.

Step 2. Form an SRT, rooted from S, to
calculate the distance between each node of S
and S), and find the representative node S, in
a maximum distance from S;.

Step 3. Form an SRT, rooted from S,
to calculate the distance between each node of
S and S, and find the representative node S
in a maximum least distance from the selected
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nodes. Repeat this process until ¢ representa-
tive nodes Si, Sz, - , 9, forming a transversal,

are selected.
Step 4.

For each subgraph S;, find a

node adjacent to S; only, with maximum least
distance from other representative nodes in

turn.
Step 5.

Continue the process of Step

4, without the restriction of trapsforming one
node to each subgraph S;, until no further node

can be transferred.

In this algorithm, support nodes are dealt

with in a similar way to Steps
main algorithm.

EXAMPLES

Example 1.

1 and 9 of the

A cross-shaped single layer grid, as shown in
Figure 1, is considered and partitioned into

q = 2,4,6 and 8 substructures.
obtained and the corresponding

The partitions
node adjacency

matrices are presented in Figure 2a-h. The se-

lected interface nodes are shown

by solid circles.

For the case ¢ = 2, the selected substructures

are further refined with ¢’ =

2 and 3 and

the corresponding matrices are illustrated in

Figure 3a-b.

3

Y

Figure 1. A cross-shaped single layer grid S.
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Figure 2a. Partitioned model for ¢ = 2.
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Figure 2b. Adjacency matrix for ¢ = 2.

Figure 2c. Partitioned model for ¢ = 4.
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Figure 2f. Adjacency matrix for ¢ = 6.

Figure 3a. Adjacency matrix for ¢ = 2 and

qd =2

[
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Example 2. ¥
A double layer grid, supported jat four corner b .
nodes, as shown in Figure 4, is considered and P R
partitioned into ¢ = 2 and 4 |substructures. f E R
The corresponding node adjacency matrices are + v
presented in Figure 5a-b. For the case of LB WYY 22
g = 2, the selected substructures are further :yi :%‘ A A f‘;.“
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Figure 6a. Adjacency matrix for ¢ = 2 and
Figure 4. A double layer grid. q =2.
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Figure 6b. Adjacency matrix for ¢ = 2 and Figure 8a. Adjacency matrix for ¢ = 2.
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Figure 7. A space structure S. Figure 8c. Adjacency matrix for g = 4.
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ORDERING FOR BANDWIDTH
REDUCTION

Once the substructures and the interface nodes
are specified, the following algorithm can be
used for the nodal numbering.

Step 1. Select a good starting node O for §
and order the substructures according to their
distance from O. The distance of a substructure
is taken to be the length of the shortest path
between the nearest node of the substructure
and O.

Step 2. Find a good starting node of 5;
and use any nodal ordering routine available
(e.g., the algorithm of [13]) for numbering the
internal nodes of S; .

Step 3. Repeat Steps similar to that of
Step 1 for all the other substructures, in turn.

Step 4. Select a node of minimal valency
from interface node-set adjacent to S; and
order the interface nodes using a nodal ordering
algorithm. In the process of numbering, when
possible, priority is given to the nodes adjacent
to lower numbered substructures. For this
numbering, the underlying topology of S is
used.

Step 5. Support nodes are numbered after
the numbering of the internal and interface
nodes is completed.

In this algorithm, one can also order the
representative nodes of the selected transversal
for ordering the substructures.

CONCLUDING REMARKS

The algorithms developed in this paper are
simple and can be used for partitioning the
graph model of systems. The application can
easily be extended to finite element models. For
this purpose an associate graph A(S), of the
model S can easily be constructed, as defined
in [12]. The algorithm can then be applied
to A(S), and the interface nodes specify the
elements corresponding to separators of the FE
model. Ordering the nodes of each subgraph
will specify the order of the corresponding sub-
domain. Once the order of elements is known,
an ordering within each element can easily be
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performed by specifying certain priority for the
nodes.

The proposed -method is extended to
multi-level substructuring, by applying the
same process to each selected substructure,
resulting in a more refined substructuring.

The application of the presented method
is by no means restricted to the analysis and
design of structures. It can be used for the
analysis of any other system, such as electrical
and hydraulic networks, and also the study of
those sparse matrices for which a graph model
can be associated.
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