Dynamic Stability of a Force-Controlled Elastic
Robot Manipulator

Mo Shahinpoor and B.C.Chiou!

Presented is a simplified dynamic model for a tip force-controlled elastic robot manipulator.
Experimental work is then carried out on the dynamic stability of this elastic robot and
comparisons are made with the theoretical dynamic simulations. Results show that, during the
initial contact process, separation between the manipulator and the environment occurs due to
the link elastic motion. This nonlinear effect causes a delay of force actuation and the occurence
of impacts, which are significant and detrimental to the system dynamic stability.

INTRODUCTION

For applications such as assembly of mechani-
cal parts or performing machining processes, a
robot manipulator is required to interact com-
pliantly with the environment in a prescribed
manner [1]. This necessitates the force control
at the tip of the manipulator and is often ac-
complished by means of a wrist force sensor. It
is well known that the stability limitation is the
major obstacle to achieving a high performance
force controller [2-6). Several possible sources of
stability problems have been proposed, which
include the link or joint flexibility, actuator
bandwidth, drive train backlash, and digital
sampling rate.

The force control of robot manipulator us-
ing a wrist force sensor is often referred to as
a noncolocation control, i.e., the link or joint
flexibility exists between the tip force sensor and
joint actuator. During the control action, the
elastic motion can be excited through dynamic
coupling effect. The effect of flexibility on the dy-
namic stability of force-controlled manipulators
has been studied by Chiou and Shahinpoor [7,8].
Assuming the contact point is locked, the link
or joint flexibility is explicitly modeled and the

compliant equations of motion are derived. The
dynamic coupling and unstable behaviors using
several force control methods are demonstrated
through numerical simulations.

However, due to the assumption that no
separation occurs at the contact point, the non-
linear dynamics, such as delay and impact,
which occur during the initial contact are ex-
cluded. This may not be valid in reality. The
purpose of this investigation is to perform the
experimental work such that any relevant prob-
lems can be identified. For comparison pur-
poses, the discrete-time state-space model for
a one-link force-controlled manipulator is de-
rived and numerical simulation is carried out.
The experimental results are then presented and
comparisons are made with theoretical dynamic
simulations.

THEORETICAL MODEL

Figure 1 shows a one-link manipulator which
is making contact with the environment. A
moving reference frame {X,, Y, } is attached to
the rotating link. The X -axis is aligned with the
neutral axis of the uniform link. The actuator is
a DC motor with an inertia of I, . The direct-drive
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Figure 1. One-link force-controlled manipulator.

flexible link acts as a power transmission device.
¢ is the link length. mg and k_ are the mass and
the stiffness of the force sensor, respectively.
The slender beam is essentially subjected
to bemrding and therefore axial deformation is
neglected. The Bernoulli-Euler beam theory is
utilized to determine the link elastic deflection.
To reduce the degree of freedom of the sys-
tem, the assumed-mode method is employed to
represent the deflection function [9]. That is

w(et) = Y 9, 1), 0

where y () is mode shape function, v (t) is the
modal coordinate (generalized displacement),
and n is the number of mode shape functions.
The selection of the mode shape functions y,(x)
in Equation 1 requires that the appropriate
boundary conditions at the actuator end be
considered [10,11]. The pinned-free boundary
conditions,

w(0,t) =0,
ETw"(0,t) = —1,'(0,1), )
w"(€,t) = 0, @)

ETw"(4,t) = m (¢, 1),

are chosen here to solve the mode shape func-
tions. Knowing that the general solutign of the
eigenfunctionis y(z) = A, sin(8x)+A, cos(Bz)+
A, sinh(Bz) + A, cosh(Sz), where 8* = w?u/ET
and u is the mass per unit length. Here, the nor-
malized eigenfunctions are obtained such that
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fol 1y, (x)y,(x)dx = 1. Note that F is the Young’s

modulus, [ is the area moment of inertia,
() = 8()/at, and (') = 9()/0x in Equation
2.

The system kinetic energy can be derived
as [12]

T=(a+ Z i ViujCij)9'2 + 29(§: v.E)
1==1

i=1 j=1

O . ‘
+ Z Z vy.C.+ §msy§, (3)

1=1 53=1

where

a =

/ z2dm,

1
E = 5/ xy.dm,

DO | =

1
c%zgﬁm%mu

w, = ith modal frequency of the link,

# = joint velocity.

Assuming the contact point is locked, the
potential energy is given as

| . 1 .
P= Z —v2w? + iksysz, (4)
=1

where w, is the ith modal frequency.

Given the expressions for kinetic and po-
tential energy and the displacement constraint
at the tip

y, =40+ vy,(0),

i=1

—
ot
Nl

the equations of motion are derived using the
Lagrange’s principle in conjunction with the
Lagrange multipliers. It may be shown that

Mi+Kz=F, (6)



Shahinpoor and Chiou on Dynamic Stability

where

2a+1, +m * 2E +m bty 2E +m fy,
M=| 2E +m by, 20 +myi 2C,+myuy,
2E2 + ms£y2 2021 +myy, 2()22 + msyg
k2 kty, k ty,
K=|kty kyi+wi kyy, |,
kly, kyy kst w

z=(0,v,,v)T,

’ Y 2
F:(T’O’O)T7
y, = y,({),

7 = joint torque.

Note that the higher-order nonlinear terms are
ignored and only the first two mode shape func-
tions (n = 2) are considered. Also, the assump-
tion that the contact point is locked is employed
to simplify the model. In other words, any pos-
sible occurrence of the separation, and thus the
impact, during the compliant motion is excluded
and ignored. Therefore, Equation 6 is valid only
under the constraint that the continuous con-
tact between the sensor and the environment is
always present.

Since digital control is used for the experi-
ment, a discrete-time state-space representation
of Equation 6 is required. To achieve this, Equa-
tion 6 is converted to its state-space form first
such that

T = Fz+ Gu,
y=Hz, (7)
where

o )y o 5 \T
v=(0,v,v,,0,v,7,)

e 0o I
T -MK 0|

U =T,
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G =(0,0,0, M3, My, Mi;")T,
H=(k{ky,k.y,00,0),

y = the contact force.

Having written Equation 7, the discrete-time
state-space equations can be derived accordingly
[13],

Ty = ¢z, +T'u,,

y, = Hzx,, (8)
where
® = eFTdt,

T
Tr :/ ef1dnG,
0

T = sampling period.

The purpose of this investigation is to
explore the stability limitation due to the link
flexibility. Therefore, a simple explicit force
control is selected to suit this purpose [Whitney,
1979], namely,

T=K,(f —f)-KJ0+1{f, 9)

where K P is the proportional gain, f_is measured
contact force, f, is the desired contact force, K
is the derivative gain, and £f is the feedforward
torque. Note that, if the link is rigid, the servo
damping term, —Kvé, can be thought of as a

damping to the contact force since fc = k:sfé.

A slender aluminum beam is selected for
the numerical simulation and experimentation.
The physical parameters and modal analysis
data are shown in Tables 1 and 2. The computed
numerical values for ®, I', and H are listed
in appendix B. Given the control gains, the
simulation results obtained by using Equations
8 and 9 are shown in Figure 2. The force
trajectories with different values of Kf and fixed
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Figure 2. Numerical simulation results.

values of K and f, are plotted. With Kf =
0.08, the growing pattern of the force trajectory
indicates an unstable behavior due to the link
flexibility [7]. Note that the initial negative
(tension) force is due to the assumption that
the contact point is locked. This implies that
separation between the link and sensor might
occur in real situations.

Table 1. Physical Parameters

link length=0.454 m

cross section: 3.17 mmx 12.7 mm

link mass=0.0484 kg

motor inertia=1.2 x 107% kg-m?

m_=8.29x107* kg

k =7.12 N/mm
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EXPERIMENTAL APPARATUS

A schematic of the experimental setup for the
one-link flexible manipulator is shown in Figure
3. The major components include a DC motor,
a pulse-width modulation amplifier, a slender
aluminum beam, and a force sensor. The motor
is a high-torque DC motor with peak stall torque
of 7.5 Nm and an inertia of 1.2 x 1073kg—m?.
The controller consists of an IBM-AT personal
computer and two interface boards (timer, A/D
and D/A converters). Figure 4 shows the control
block diagram.
The setup was as follows:

K, =244E — 3 V/count,
K, =2.807A/V,

K, =0.23 Nm/A,

K, = 02787 V)N,

K. =0.091 V-sec/rad,

T

K, = 409.6 count/V,

T = sampling period = 1 ms.

The force sensor is made of a 2 in can-
tilever beam with two strain gauges mounted

Table 2. Modal Analysis Data

w? =2.213 x 10* rad?/sec?

wi = 2.684 x 10° rad?/sec?

y,(¢) = -11.011m

y,(£) = 9.168 m

a = 0.1663 x 107 % kg-m?

~2.367 x 1072 kg-m?

E =
E, = —4.798 x 107° kg-m®

_ 2
C,,=05kgm

— — 2
C,= C21 = —0.188 kg-m

_ 2
C,, =0.5kg-m
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Figure 3. Experimental setup.

on each side (see Figure 5). For each gauge,
w = 1/16n (1.587 mm) and h = 1/2 in (12.7
mm). The contact between the flexible link and
the force sensor in achieved by using a small
set screw which is tightly mounted at the tip of
the link. The diameter of the contact area is 2
mm. The strain signal from the force sensor is
amplified 15 times and sent to a low-pass filter
with a cutoff frequency of 1600 Hz.

EXPERIMENTAL RESULTS

The selection of the appropriate boundary condi-
tions for a rotating flexible link with an actuator
inertia at its end has long been a controversial
issue [10,11]. The result of a random excitation

DAC  PWM TORQUE
+5
_—T/ (£5v) AMP. CONST. MoTor L2
Kp Ka K, + | te
COMPUTER LINK
SYASNTgM T ADC FORCE SENSOR
CONTROL " Kq Ke
PROGRAM
T
-
C T

ADC TACHOMETER
(t5v)

Figure 4. Control block diagram.

test for the free motion case is presented here
to clarify this ambiguity [12]. (Although this in-
vestigation is focused on the compliant motion
of a flexible link, the same boundary conditions
with the free motion case are applied at the
actuator end). The experimental beam is made
of a 24-inch aluminum beam with 1/2" x 1/16"”
cross section, which is a different set up from
what is described in Table 1. The strain gauges
are mounted on the link near the actuator end.
The actuator is a Galil 50/1000 DC motor with
inertia of 2.6 x 1075 kg-m2. The random ex-
citation is performed by sending a white-noise
torque command with 100—Hz flat range to the
motor and the the strain signal is recorded. Fig-
ure 6 shows the power spectral density (PSD)
function of the strain signal. The spikes denote
the natural frequencies which closely match with
the computed values using Equation 2.

As regards the compliant motion tests,
the physical parameters for the motor and link
assembly are listed in Table 1. Note that a
lumped-mass model considering only the first
mode of a cantilever beam is used to represent
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the sensor dynamics. The computed values of
mass and stiffness are m_and k_, respectively.

Figure 7 shows the open-loop test results
with a step torque command 7 =1 Nm. Note
that the link is manually moved to make an
initial contact with the force sensor to minimize
the impact effect. Then, the torque command
is triggered. The initial slow variation of the
force trajectory is due to the rigid body motion
of the motor, which is evidenced by the similar,
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Figure 7. Open-loop step response.

pattern of joint angle trajectory. Due to the link
flexibility, the force trajectory exhibits some
oscillations on top of the slow variation, which
gradually die out because of the structural
damping and the joint static friction, which is
above 0.07 Nm.

As shown in Figure 7, the force trajectory
also indicates a ‘time delay’ between the motor
torque and the output of the force sensor, i.e.,
f.=0and 6 # 0 for t =0 to 0.012 second. To
examine this time lag phenomenon, a numerical
simulation of the tip position due to a unit step
torque is carried out. Note that the equations
of free motion (shown in Appendix A) are used
for this purpose since no compliant force is in
action yet. Figure 8 shows the result. The tip
position appears to be quasi-stationary during
the first 10 ms. This is because of the fact that
while the link is moving in the motor torque
direction, the tip is moving in the opposite
direction due to the link elastic motion [10].
Considering that the contact force results from
the overall tip displacement, this explains the
time delay behavior.

The following sections present the closed-
loop test results using the explicit force control
law, Equation 9. Figure 9 shows the effect of
the proportional gain and Kf = 0.04 1s approxi-
mately the critical gain. The time delay behavior
shows up in each of the force trajectories. The
limit cycle behavior is exhibited with Kf = 0.04.
Several observations can be made by compar-
isons to the similar cases shown in Figure 2. The
major difference here is that the contact point



Shahinpoor and Chiou on Dynamic Stability

20

16

12 e

, Tip Position, mm

—
L+l

—_
<

'
N
(=)

0 2 4 6 8 10 12 14 16 18 20
Time, sec

Figure 8. Step response of tip position.

is free rather than locked to the sensor. Right
after the motor torque is triggered, the loss of
contact occurs due to the link elastic motion.
The transient part of force response does not
appear. Instead, the force trajectory is charac-
terized by a delay and then an oscillation with
impact-like response. In other words, due to
the nonlinear effects of delay and impacts, the
system actually becomes more unstable. Figure
10 shows the results with different values of
reference commands. Although the proportional
gain is less than the critical value, the system is
unstable when the force command is small (see
Figure 10a). This indicates another effect of im-
pact and it will dominate the system dynamics
if the reference command is small [14,15].

To avoid the loss of contact, an open-and-
then-closed-loop control is devised. The experi-
ment is conducted by first commanding a static
torque of 0.5 Nm for 2 seconds and then switch-
ing to the closed-loop control. Figure 11a shows
the test result corresponding to the closed-loop
control. The sharp drop of the contact force is
compensated by the initial nonzero force such
that the continuous contact (f, > 0) is retained.
The result of numerical simulation using nonzero
initial conditions is shown in Figure 11b. Com-
parison indicates that a reasonable agreement
is obtained, although the analytical model is
somewhat more stiff than the real system. This
suggests that the open-loop control can mini-
mize the impact effect and improve the system
stability.
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Figure 9. Effect of proportional gain.

CONCLUSIONS

The governing equation of a one-link flexible
manipulator is dynamically simulated assuming
no separation at the contact point for force con-
trol. This model shows that the elastic modes
can be excited by force control action, which can
in turn make the system unstable. However, ex-
perimental results indicate other significant and
detrimental effects due to the link flexibility,
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Figure 10. Effect of different reference force
commands.
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Figure 11. Results of open-and-closed-loop control.

namely, delay and impact. These highly non-
linear phenomena are experimentally evidenced
by the dependence of system stability on the
reference input and the initial conditions. The
open-and-closed-loop test indicates that these
nonlinear effects can be minimized by preload-
ing an initial contact force through open-loop
control.
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Appendix A

Equations of motion moving in free space:

2a+1, 28, 2B, 7( 9] [oo o ](¢ T
2E, 2C,, 2C,, vop+|0wi0 vip =403, (A-1)
2
2E2 2C21 2022 DZ 00 w3 1/2 0
Tip displacement:
d,, (1) = 00(t) +y, (v, (1) + y,()r,(t) (A-2)

Appendix B

19.178 —1 1.535e +0 —4.472e+0 9.710e—4 5.494e—4 -1.545¢—3 1
6.826e—3 7.953e—1 -9.57912 2.297e—6 9.310e—4 -3.268¢—5
$ = | -1.406e +2 2.518¢ +3 -8.136e+3 9.178¢—1 1.535e +0 —4.472¢+0 |, (B-1)
1.332¢ +1 -3.990e +2 —1.804e+2 6.826e—3 7.953e—1 -9.57% —2
| —1.757e + 1 3.892¢ +2 —7.916e+2 —1.006e—2 2.247e—1 5.644e—1

I' = (3.448¢—4 2.063e—5 1.048¢—~5 6.740e—1 4.027e—2 1.973-2)7, (B-2)

IT = (3.232¢+3 —7.83% +4 6.527¢e +4 0 0 0) (B-3)





