Decentralized Adaptive Control
of a Nuclear Reactor
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The adaptive decentralized control of large scale systems (LSS) using local state feedback is
investigated. The composite system is formed by the interconnection of linear time-invariant
multi-input subsystems with unknown parameters. A control approach using only local state
feedback is developed for the regulation and tracking problems. Sufficient conditions that guarantee
desired stability properties under certain structural perturbations are defined in the form of
algebraic criteria. The control scheme is applied to the reactor core and primary heat transport
loop of a nuclear reactor. Simulation results are presented.

INTRODUCTION

Many large scale systems (LSS) are characterized
by the multiplicity of inputs and states, as
well as by the fact that the overall system has
several control stations, each being responsible
for the operation of a portion of the system.
This situation arising in a control system design
is refered to as decentralization [1].

Due to the physical configuration and/or
high dimensionality of such systems, a central-
ized control is neither economically feasible nor
even necessary. Therefore, in many applications
of feedback control theory to LSS’s, some de-
gree of restriction is assumed to prevail on the
transfer of information. In some cases, a to-
tal decentralization is assumed, that is, every
local control input is obtained from the local
system variables and possibly external inputs.
In others, an intermediate restriction on the in-
formation is possible such that interconnecting
variables among subsystems are available to the
local controller.

Thus, the decentralized control approach
attempts to avoid difficulties in data gather-

ing, storage requirements, computer program
debuggings, and geographical separation of sys-
tem components. Decentralized state feedback
is also an effective way to handle uncertainty
in complex systems [2], in which, usually, high
feedback gains are set to meet the worst case
constraints.

A considerable improvement in the gain
allocation as well as in the performance of the
closed-loop system can be achieved using adap-
tive decentralized feedback. The local gains are
adaptively adjusted to the levels necessary to
neutralize the interconnections and, at the same
time, drive the subsystems with unknowu pa-
rameters to the relaxed operating point, in the
case of regulation, or toward the performance
of the locally chosen reference models.

In recent years, decentralized control ap-
proaches combined with adaptive schemes have
appeared,in the literature [3-5], especially on the
control of robot manipulators [6]. The adaptive
decentralized state feedback design used in [3]
deals with the case of single input subsystems
and the knowledge of the local control gain
vectors. On the other hand, the design approach
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proposed in [4] treats the multi-input subsys-
tem case but requires knowledge of the local
control gain matrices as well as the subsystem
interconnection matrices.

In this paper we use the results of the refer-
ence adaptive control (MRAC) of linear systems
via state feedback (7] to obtain an adaptive de-
centralized control for the case of subsystems
with multiple inputs and unknown parameters
and interconnections. Sufficient conditions for
decentralized adaptive regulation in the form of
algebraic criteria are established which guaran-
tee the asymptotic stability under certain struc-
tural perturbations. In the case of tracking, the
decentralized adaptive control scheme guaran-
tees boundedness of all the closed-loop system
signals and the convergence of the state error to
a residual set.

Finally, this control structure is applied to
the model of a liquid metal cooled nuclear reactor
[8] (LMR) operating as a baseline power plant.
The subsystems considered are the reactor core
and the primary heat transport loop. Simulation
results are also included.

LARGE SCALE SYSTEM

Consider a multivariable linear time-invariant
svstem which is described as an interconnection
of N subsystems and is represented by

=Ax +Bu +g/(x) 1=1,...,N, (1)
N

b =3 Az, @)
=1

which for the i-th subsystem x € R" is the

state vector, u, € Rt is the control vector, and
g,(x) € R™ is the interaction vector from the
other subsystems. The parameters A , B,, and
Ai]. are unknown constant matrices and all the
pairs (A, B) are completely controllable. The
composite system is described as

r=Ar+ Bu+ Hz, (3)
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wherex = [x]

...z LT is the overall system state
vector, u = [ul ... u%]T is the corresponding

control vector, the matrix

0 A, ... A,
b A:Zl 0 @
Ay 0

is the interconnection matrix, and A = diag(A,)
and B = diag(B,). ’

The decentralized adaptive control prob-
lem is to design a set of N local adaptive con-
trollers u, such that the states of the composite
system (Equation 3) are regulated to zero or
track the state trajectories of a given reference
model formed by the locally defined reference
system models. Each subsystem is controlled in-
dependently on the basis of its own performance
criterion and locally provided information, that
is, there is no sharing of information among the
local controllers.

The i-th stable local reference model is
given by
i=1,...,N, (5)

2

t =A zz +B r
m m m m

where T € R™ is the reference state vector,

I . . . e
r. € R is a piecewise continuous uniformly
bounded reference input vector, and A is a

i

stable matrix. It is furthur assumed that an
(1, x n,) matrix K} and an (I, x [;) matrix L}
exist, such that

A +BK;=A_, (6)
BL;=8B_, (7)
which are known as the matching conditions

between the plant and the reference model [7].
The composite reference system is described by

i =Ax +B 1 ®)
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r=[rT.. . rL]7,

A =diag(4, ), and

B, =diag(B,, ).

i

In the case of regulation, that is, = 0 and
z =0, the objective is to find local adaptive
control inputs u, to drive the states of the plant
to the origin. For the tracking problem, the
local controllers are determined such that the
error ¢ = x — x_ between the plant and the
reference model, as well as all the signals in
the closed-loop system remain bounded. Due
to the interconnections g (v), ¢ = 1,..., N, it
is not possible to ensure nangO e(t) = 0 for all

bounded reference input vectors r. However, we
can achieve convergence of the state error e to
some bounded residual set. The solution to the
regulation and tracking problems is covered in
the next section.

DECENTRALIZED ADAPTIVE
CONTROL

The problem of determining the local control
inputs u_, ¢ = 1,..., N, such that the state of
the plant is driven to zero or tracks some desired
trajectory, while the same stability of the closed-
loop system is maintained, is presented next.

Regulation

In the regulation problem, the reference input
r, as well as the state of the reference model
x_, are set to zero, and the local controllers are

chosen as

u(t) = L(HK (t)x,(t), (9)

where the feedback gain matrix K (¢) and the
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feedforward matrix L (t) are adjusted according
to the adaptive laws

K =—(BL Px)x!T (10)
L =-L(Bl Pa)(Kx)TLTAL, (11)
where

T.=T" >0,

A =AT >0,

P =Pl >0,

and P, satisfies the Lyapunov equation

Aa PiA7n = _Q

i

PRl

Q,=Q7 > 0. (12)

The closed-loop subsystems are described
by

N
i, =[A, +B(LK - LKz, +Y A x (13)

j=1

The closed-loop decoupled subsystems have
the property that if K (t) = K; and L () = L;,
then the plant together with the controller is
identical to the reference model, hence, the
closed loop system stability is guaranteed. As
shown below, the adaptive laws in Equations 10
and 11 assure boundedness of the parameters
and convergence of the state errors to zero for
the decoupled subsystems only when the initial
parameter values K (t ) and L (¢ ) lie in the
vicinity of the desired values K and L;.

The presence of interconnections among
subsystems can change the stability properties
of the decoupled subsystems, and thus, it is nec-
essary to obtain sufficient structural conditions
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to guarantee the stability of the overall system.
These conditions are given by the following
theorem.

Theorem 1:

Let
g, = min \Q,), (14)
0, =l PA, I (15)

where A(Q,) is the set of eigenvalues of Q..
These eigenvalues are all positive real from the
symmetric positiveness condition on Q. If there
exist constants 6, > 0, « = 1,..., N, such that
the N x N matrix S with elements

S = o4, =y (16)
kK ~(ba.+6ba.) 1#7,

1t} 7 gt

is positive definite, then the controller parame-
ters K (), L (t) are bounded and lim || z(¢) ||= 0
as ¢ — oo when the initial conditions of K (t)
and L (t) lie in some bounded neighborhood of
their matching condition values K} and L:.

Proof:

Consider the positive definite function

N

i=1 ! : ?
where
v, =+l Pz, (1%)
V, =trl(K, - K)OTH(K, - K2)T), (19)
V. = tr[¥ AT, (20)
with
vo=L7 - L7 (21)
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v, = —(BZ;_Pi:L‘i)(Kixi)TL?Ai' (22)

Using the properties of the trace operation

tr(A) = tr(AT),
tr(A+ B) =tr(A) + tr(B),
tr(AyzT) = 2T Ay, (23)

the matching conditions of Equations 6 and

7, and the Lyapunov Equation 12, the time

derivativesof V. , V., and V, along the solutions
1 2 3

of Equations 13, 10, and 22 respectively, are
given by

V., = —aTQu=, +22TPB(LK, - L} K})z,

N
T
+227P 3 Az,
=1 (24)
V, =-22TP,B (LK, - L}K})z,,

2

V, =-2aTP,B(L, - L)(Kx,).

3

Thus, the time derivative of V can be expressed
as

N
V=36 |-2TQaz +22TPY Az |. (25

i=1 j=1

For the symmetric positive definite matrix Q,
we have

g, |z, I’ z{ Qz, < maxA(Q) | z, I,  (26)

with ¢, as defined in Equation 14. Clearly, in
the absence of interconnections, the existence
of the Lyapunov function V in Equation 17
assures global stability in the {z, K, ¥} space,
with K = diag(K,),V = diag(¥,). However,

since our interest is in the parameter errors

L,=L,~L} and not ¥, = L:™ — L7, then
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only uniform stability is implied in the {z, K, Z}
space. The function ¥V in Equation 17 is not
radially unbounded in this latter space.

Considering now the interconnectionsamong
subsystems, let us use Equations 14, 15, and 26
to obtain the following inequality for V:

. N N
VS—Z(Si q1”$,||2_”x1” 2a1‘]‘ ”‘T.l”
=1 J=1
= —z78§ 7, (27)
where
z=[lz Il ey )T (28)
6,9, =260, ... =260,y
S = _262%1 62‘]2
3 (20)
—26ay, ... 6y ly
Since
ST +5S
'S 1 = ETL‘27“)E =z75z,
then, Equation 27 can be expressed as
V < -275z, (30)
where
0.q. i=3
S = i ) ’] , (31)
(b0, +b,a,) i#]

If S is positive definite, then V is negative semi-
definite. Again, the solutions xi(t), Ki(t), and
L (t) to Equations 13, 10, and 11 respectively,
are bounded when K (¢)) and L (t ) are suf-
ficiently close to their desired values K and
L.

29

Using Barbalat’s lemma [11] we know from
Equation 30 and the boundedness of z(t) that
V (t) is bounded. Hence V (t) is uniformly contin-
uous. Since V(t) is a nonincreasing function of
time and is bounded from below, it converges to
a finite value V. Thus, lim [y Vdt =V_-V, <

oo and hence, lim V() = 0 as t — oo, that is,
lim || z(¢) ||= 0 as time progresses.

Tracking

For the tracking problem, the local control inputs
are determined by

w,(t) = L (K (H)z,(t) + L,(t)r (¢), (32)

with the adaptive laws for the feedback and
feedforward gain matrices K, and L, given by

K,=—(B], Pe)x]T, ~ 0, KT, (33)
L =-L(BL Pe)Kaz +7r,)TLTAL,,

' (34)
where
e, =T, -z, (35)

and o, is a design positive scalar parameter.

Using the matching conditions in Equa-
tions 6 and 7, the state error dynamics are
obtained as

e.=A e +B(LK — LK)z,

N
+B,(L, - L})r, + ; Az, (36)
A persistent input due to the intercon-
nections acts as a disturbance in the overall
error equation and therefore the solution e(#)
may not converge to, or may not even possess,
an equilibrium. The following theorem estab-
lishes sufficient conditions for boundedness and

convergence of the state error to a residual set.
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Theorem 2:

If the matrix § defined by Equation 16 is pos-
itive definite and the initial parameter values
K. (t)) and L (t ) are sufficiently close to their
desired values K} and L} respectively, then the
solution to Equations 33, 34, and 36 is ulti-
mately bounded. Furthermore, there exist finite
non-negative constants T and c_ such that for
all t > T the solution e (t) is inside the set

A al
D, = {E‘Ki : [——23 |l ell? +;6io’i

15, - K2 ) < (e, ), (37)
where
b2 N
4= 5o o, 2+ Y60, K I (38)
s =1

A, = min A(S), and b_ is a positive constant.
Proof:

Consider the positive definite function

V= i 6V, +V. +V 1, (39)
per AR SRR

where

V21 =elPe,, (40)

V, =trl(K, = KOTTH(K, = KT, (41)

Vo= tr[U AT, (42)

with matrix ¥ and its dynamic equation given
by
V=L L (43)
U, = —(BL Pe)(Kx, +71,)"LTA,, (44)
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with P satisfying Equation 12.

Using the trace operation properties in
Equation 23, the matching conditions in Equa-
tions 16 and 17, and the Lyapunov Equation
12, the time derivatives of Vl V1 , and Vl ,

1 P 3

along the solutions of Equations 36, 33, and 44
respectively, are given by

V. =—elQe, +2eTPB (LK, — L1K})z,
a . T _ *\,. 5, T .
+2efPB(L —L})r, +2P Y A x,

V. =—2eTPB(LIK, — LIK})x,
= 2trlo (K, = K})K],

Vl = —2¢]/PB(L, — L7)(Kx, +r).

3

The time derivative of V' can then be expressed
as

N N
o T T )
V= z; 61{ e; Q.e, +2e/ P };: A (e + :vmj)
1= ]:
- 2tr[o (K, — Ki*)KiT]] . (45)

Let us now define the following vectors

ey 17 (46)

T =M, I Ty N, (47)

now, proceeding as in the regulation problem to
obtain the structural condition on the composite
system, and using the inequality

—2tr|(K, - K;)KT)

the following inequality is obtained for V
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N
v<-eTSe+b |lellle, |- 60,l|K —K; |?

v =1
N
+2 80, LKL, (49)
where b_is a finite constant which depends on

the norms of P, Al.j, and ¢, i=1, ..., N.
Noting that

—erSe+b, ez, |
<=AdlellP+o, el |

N |I

}2
2)\

A
=-Flel+

I, I1%, (50)

where A = min A(S), we can now express Equa-
tion 49 as

: A N
VS _? “6H2 —Z;(Sio'i ” Ki_Ki ”2
||2+Z50 (i (51)
i=1

In view of Equations 39 and 51, the so-
lutions e(t), K (t), L.(t) are uniformly ulti-
mately bounded [9] for all initial conditions
I(i(t0)7
hood about their matching condition values IF,
L:. Further, since V < e(c)) < 0 for e, K,
outside D with ¢ > 0, then for some finite
constants 1" and c_, the solution c(t), K (f)
remains inside D_ for all £ > T

L (t ) lying in some bounded neighbor-

The use of o, is found to be useful in
obtaining sufficient conditions for boundedness
in the presence of unmodeled interactions. In the
absence of such interactions, that is, when each
subsystem is decoupled, the design parameters
o, > 0 cause nonzero state ecrrors. This is a
trade-off between boundedness of all signals in
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the presence of subsystem’s interactions and the
loss of exact convergence of the errors to the
origin in their absence.

DECENTRALIZED ADAPTIVE
CONTROL OF A NUCLEAR
REACTOR

The control design approach developed in the
previous section is now applied to the system
formed by the reactor core and primary heat
transport loop models of one module of a mul-
timodular nuclear power plant [8] with liquid
metal as the primary coolant (LMR).

LMR Reactor System

The LMR reactor is considered a large scale
system formed by the interconnection of two
subsystems, one being the reactor core, and
the other, the primary heat transport loop.
The system module is shown in Figure 1. Each
module also comprises a recirculating steam
generator and a steam drum. All modules are
connected to a common steam heater that feeds

To SG

T2,
U1
Ill
Reactor T,
Core
T,
X2y,

From SG and
Steam Drum

Figure 1. Liquid metal cooled reactor.



the turbine.

During long periods of time, a nuclear
power plant is devised as a baseline system
providing constant electrical power to the grid.
Thus, the reactor is maintained at near full
neutron power level which can be achieved with
the control rods half-way inserted.

Under these conditions, the dynamic be-
havior of the plant can be considered linear
around the equilibrium and the plant manage-
ment goal is to regulate the system at the
specified operating point.

In our case, the two interconnected subsys-
tems [10] are described by the following equa-
tions:

T, =Az +Bu + AT, (52)
T, = Az, + B,u, + Ama:l,

where the nominal parameter values are given
by

A =] 001 -—001 0
(014371 0

[6666.6
B=| 0 |,
0

r470.54 0 0 0
0 000},
000

0.49477

[—952.38 952.38 —1008.3}

~0.49477| '

e
I

12

[—0.66661 0 0 0.27889
0.022401 —-0.022401 0 0

2 0 0.069336 —0.17961 0

0 0 0.022401 —-0.022401

[—0.12512

0
2 0.031108 | °
0

r

0
0
21 0
0

oo OO

0.38772
0
0
0

A

The state variable and control inputs give
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the deviations from their equilibrium values and
represent the following physical variables:

x, : Normalized neutron power.
1
r, : Normalized neutron precursor
2 .
concentration.
x, : Fuel to reference temperature ratio.
3
x, : Core coolant outlet to reference

temperature ratio.

x, : IHX primary inlet to reference
temperature ratio.

x, : IHX primary outlet to reference
temperature ratio.

x, : Core inlet to reference temperature
* ratio.
u,: Normalized control rod position.

Primary pump fractional flow.

Decentralized Adaptive Controller

The stable linear decoupled reference subsys-
tems are described by

r =A = +B 1.,
m1 'm1 Tn1 ‘m1 1
(54)
r =A x +B r,
m m_ 2
2 2 2 2
where

—6734.4 —2579.4 —1086.4
A =| 001 —001 0 , (55)
v (014371 0 —0.49477

r—1.0868 —0.16777 0.32498 0.40762
0.022401 —0.22401 0 0

m 0.10446 0.11105 —0.26041 ~0.032005]"
0 0 0.22401 —0.22401

1—0.13138
0
m, | 0.032664
07
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The pairs (4,, B,), (Am‘,Bm ),7=1,2, are

completely controllable’and the subsystems sat-
isfy the matching conditions given in Equations
6 and 7. Furthermore, the structural conditions
on the subsystem’s interconnections, established
in Theorem 1, are met, thus assuring that all
the closed-loop system signals are bounded and
that lim || z(¢) ||= 0 as t — oo.

The two local controllers u,, are given by

u(t) = L()K (). (%), (56)

with K () and L (t) being adjusted according
to the adaptive laws in Equations 10 and 11,
respectively.

Identity matrices of proper dimensions for
I'.and A, were used in the adaptive law equations
of the state feedback and control feedforward
gain matrices for each subsystem.

The symmetric positive definite matrices
P, 1=1,2, which are also used in the adaptive
laws, Equations 10 and 11, were obtained after
solving the corresponding Lyapunov Equation
12. Likewise, the two positive definite matrices
Q,, required by these Lyapunov equations, were
set equal to the identity matrices.

The simulation of the closed-loop system
was performed assuming a perturbation on the
neutron power of 10% above the specified oper-
ating value, which results in a deviation of +0.1
for all the plant state variables.

The initial values of the feedback adaptive
gain matrices K (t), i = 1,2, were set to zero,
and those of the adaptive input matrices L (t)
were set to 80% of their matching condition
values.

The results of the simulation are shown in
Figures 2 to 6. The neutron power and the core
coolant outlet temperature are brought back to
their nominal values in about 500 seconds. The
adaptive feedback and input gain matrices ap-
proach steady state values asymptotically. Like-
wise, the control inputs converge to the origin
as expected.
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0.08 r:: __ Neutron power

* # xx Core coolant outlet temp.

0.06
0.04 }
0.02
| =
-0.02
0 100 200 300 400 500 600 700 800

sec

Figure 2. Neutron power and core coolant outlet
temperature.
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4

;

_____Control rod position

* * % Core coolant flow

2 - NS )
x@

-8
0 100 200 300 400 500 600 700 800

sec

Figure 3. Control rod and core coolant flow
inputs.
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0.01 ——Ki-1
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Figure 4. Adaptive feedback gains for subsystem 1.
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X x xx K2 —4
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Figure 5. Adaptive feedback gains for subsystem 2.

CONCLUSIONS

A decentralized adaptive control scheme is pre-
sented for a class of large scale systems. The
system is composed of interconnected linear sub-
systems with multiple inputs, in which their
state and control input matrices as well as the
strength of the interconnections are unknown.

The control law for each subsystem, based
on local adaptive state feedback, and the adap-
tive laws of the feedback and feedforward gain
matrices, are developed for the stabilization and
tracking problems. Sufficient conditions in the
form of algebraic constraints are obtained which
guarantee asymptotic regulation of the plant
states. Moreover, in the case of reference tra-
jectory tracking, the proposed control structure
achieves boundedness of all closed loop system
signals, as well as convergence of the plant
states to a residual set, under certain structural
perturbations.

The decentralized adaptive control scheme
reduced the number of parameters to be dy-
namically adjusted through the adaptive laws,
compared to the centralized case. In the latter,
this number is given by the product of the total
number of the system inputs and the sum of the
number of the system’s states and inputs. For
the decentralized case, this figure is computed
as the sum over the number of subsystems of
the above product applied separately to each
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0.843
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Figure 6. Adaptive gains L1-1 and L2-1.

subsystem.

Furthermore, the gains of the adaptive con-
troller parameters are generally of lower mag-
nitude than those required in the nonadaptive
decentralized control design. The gains are ad-
justed to the levels necessary to bring the state
errors to the origin.

A decentralized adaptive control design is
applied to the reactor core and primary heat
transport loop subsystems of a liquid metal
cooled nuclear reactor. The results of computer
simulations for the regulation case are presented.
The time responses of the closed loop signals
show the stability characteristics of the control
scheme and the asymptotic convergence of the
state variables to the origin.
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