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Micro Resonator Nonlinear Dynamics
Considering Intrinsic Properties

H. Sayyaadi1;�, M.A. Tadayon1 and A.A. Eftekharian1

Abstract. One of the most important phenomena to a�ect the motion behaviour of Micro Resonators
is their thermal dependency. This has recently received the attention of researchers widely. A thermal
phenomenon has two main e�ects, the �rst is damping, due to internal friction, and the second is
softening, due to Young's modulus-temperature relationship. In this research work, some theoretical and
experimental reported results are used to make a proper model, including thermal phenomena. Two
Lorentzian functions are used to describe the restoring and damping forces caused by thermal phenomena.
In order to emphasize the thermal e�ects, a nonlinear model of the MEMS, considering capacitor
nonlinearity and mid-plane stretching, has been used. The responses of the system are developed by
employing a multiple time scale perturbation method on a non-dimensionalized form of the equations.
Frequency response, resonance frequency and peak amplitude are examined by varying the dynamic
parameters of the modelled system. Finally, Fuzzy Generalized Cell Mapping (FGCM) is introduced
and applied to the Micro Resonator's dynamical system behaviour. It is then concluded as to how the
model uncertainties and di�erent initial conditions can a�ect the working domain of the system and/or
make it pull in instabilities. At the end, it can be seen that FGCM is a useful method for monitoring the
working regions of Micro Resonators, while varying system parameters.
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INTRODUCTION

A Micro Electro Mechanical System (MEMS) is the
integration of mechanical elements, sensors, actuators
and electronics on a common silicon substrate through
micro fabrication technology. While the electronics
are fabricated using Integrated Circuit (IC) process
sequences, the micromechanical components are fab-
ricated using compatible \micromachining" processes
that selectively etch away parts of the silicon wafer
or add new structural layers to form the mechanical
and electromechanical devices. MEMS is an enabling
technology allowing the development of smart prod-
ucts, augmenting the computational ability of micro-
electronics, with the perception and control capabilities
of microsensors and microactuators, and expanding the
space of possible designs and applications.

In recent years, MEMS [1] has created a startling
revolution in today's technology. It is now possible to
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produce micro accelerometers [2], micro gyroscopes [3],
RF-MEMS �lters [4] and resonant sensors [5], which are
dimensionally less than a millimeter on each side. They
also have high sensitivity and resolution characteristics
and low power consumption capabilities in providing
digital output data characteristics. However, the
manufacturing of mechanical parts in micro scales is
di�cult; the understanding, identi�cation and control
of these physical systems are essential [1,6]. Such
e�ects as uidity [7] and electromagnetic thermal [8,9]
and mechanical systems are also an essential problem.
Some of these physical systems are directed to energy
dissipation in the system. There are many dissipation
mechanisms that contribute to lowering the quality
factor. Di�culties have arisen in the process of creating
high quality factor (Q) MEMS or NEMS, where the
Qs are found to be less than expected in MEMS scales
and which need more investigation on fundamental loss
expected mechanisms [3]. There are many research ex-
planations of the observed behavior, including support
losses [10], bulk defects, losses associated with electrical
contacts, surface e�ects, squeeze �lm e�ects [7] and
thermal e�ects. Temperature dependent properties
of the microbeam materials play a signi�cant role in
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the design and application of microsystems, utilizing
a microbeam or a micro cantilever resonator [8,9,11].
Most of the micro resonators must work at resonance
frequencies, like sensors or actuators. A typical micro
resonator is built by attaching a microplate to the
tip of a long micro cantilever, or to the middle of a
microbeam. The microplate is in use as the moving
electrode of a variable capacitor, whose other electrode
is �xed to the frame of the MEMS device. The
approach of this paper is to investigate the mathe-
matical modeling of thermal e�ects and nonlinearities
caused by capacitor and midplane stretching in the
dynamic behavior and sensitivity analysis of micro
resonators. The e�ects of thermal phenomena are
modeled as an increase in damping [12] and a decrease
in sti�ness rates [13], both as Lorentzian functions of
excitation frequency [14]. The steady state response
frequency-amplitude dependency of such system will
be derived using the multiple time scale perturbation
method by considering the nonlinearity of the actuated
force [15,16] and midplane stretching [5,17,18]. The
developed analytical equations de�ne the frequency
response of the system close to resonance frequency,
which can be utilized to explain the dynamics of
the system, as well as resonant frequency and peak
amplitude. Finally, Fuzzy Generalized Cell Map-
ping [16,19,20] will be used, and it will be shown how an
alteration in the damping factor and initial condition
can inuence the pull-in instabilities.

THERMAL EFFECTS

The thermoelastic behavior of a micromechanism, such
as a microbeam, will be identi�ed in two di�erent
parts; the �rst one being thermal damping, which
is the energy dissipation mechanism [12,15], and the
second one being thermal relaxation, which a�ects
the rigidity of the material [13,15]. Thermoelastic
damping is proportional to exiting frequencies; hence,
when the principal natural frequency increases while
the size of the devices decreases, the thermoelastic
damping e�ects become more signi�cant. Thermal
energy dissipation is caused by irreversible heat ow
across the thickness of the micro cantilever as it oscil-
lates. For simulating the damping force corresponding
to thermal damping, Jazar et al. [12] introduce a
frequency dependent force:
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where cT de�nes the thermal damping per unit length
of the microbeam, which depends on the geometries
and material properties of the microbeam and must be
determined experimentally, !i is the natural frequency,
! is frequency of excitation, _z is the velocity in the

system of one degree of freedom and L is the Lorentzian
function, as de�ned. Since the warming up of the
microbeam material is Lorentzian frequency depen-
dent, the e�ect of sti�ness softening of the microbeam
is also a frequency dependent characteristic. So, in
this work, a negative softening function to de�ne this
behavior is proposed. More speci�cally, a negative
restoring force with sti�ness, as a Lorentzian function
of excitation frequency [13], determines the drop in the
linear rigidity sti�ness force, EI(@4w=@x4).

fTs = �kT !=!i
1 + (!=!i)2w = �kTL

�
!2

!2
i

�
w: (2)

The breaking frequency of thermal sti�ness softening
is also at the fundamental resonance frequency. The
softening sti�ness coe�cient per unit length, kT , which
depends on the geometrical parameters and material
properties of the microbeam, must be determined
experimentally.

MICRO RESONATOR REDUCED ORDER
MODEL CONSIDERING INTRINSIC
EFFECTS

The micro resonator, cantilever or clamped-clamped,
as depicted in Figure 1, is composed of a beam
resonator, a plate underneath in contact with the beam
and one (or more) capacitive transducer electrode(s).
The unidirectional electrostatic force, fe, between two
electrodes is:

fe =
"0A(v � vp)2

2(d� wp)2 ; (3)

where "0 = 8:85 � 10�12As=V m is the permittivity
in the vacuum, A is the area of the microplate and
wp is the moving plate variable, which is a function

Figure 1. A micro cantilever and a clamped-clamped
microbeam model of a MEMS and its voltage connections.
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of electrode length and time, identifying the lateral
motion of the capacitor free plate attached to the
microbeam. But, w is the beam deection, which
is also a function as: w = w(x; t). It is said that,
at the connecting point between the microbeam and
electrode capacitor: w = wp. The exiting voltage
sources are composed of a DC polarization voltage,
vp, and an AC actuating voltage, v = vi sin(!t) [16].
The governing equation describing lateral vibrations of
the microbeam, using the Euler-Bernoulli approach in
elastic beams, can be summarized and simpli�ed to the
following equation, assuming uniform geometry for the
beam.
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where the �rst term on the left hand side is the inertia
force per unit length (� is the mass per unit length),
the second term on the left side is the damping term,
the third term on the left side is the restoring force,
due to the elasticity of the microbeam (E is Young's
modulus, if the beam isn't narrow, Young's modulus
(E) must be replaced by E=(1 � v2), where v is the
Poisson ratio), and I is the moment of inertia of
the beam cross section. The fourth and �fth terms
on the same side are concluded from Equations 1
and 2, the �rst term on the right hand side is a
nonlinearly, wp, dependent electro capacitor force, due
to Equation 3, and the �nal term on the right side of
the above equation is the restoring force, due to the
internal tensional force of the microbeam (A0 is the
area of the cross section and L is length of the beam),
which generates additional nonlinearity, called intrinsic
nonlinearity, in the system. For changing this highly
nonlinear equation to a dimensionless form, in order
to make it simply solvable, �rst, the electrostatic force
is diminished and, then, this diminished electrostatic
force is replaced by the aid of the other dimensionless
factors of the resulting equation, as introduced in [12-
15]. To make the equation of motion dimensionless, the
following variables are identi�ed.
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Parameter n is a constant, depending on the mode
shape of the microbeam. Using these variables, the
equation of motion changes to the following dimension-
less equation (note that y represents a dimensionless
variable, regarding microbeam motion, while Y repre-
sents a dimensionless variable, regarding the electrode
capacitor):
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If Equation 6 is considered for the �rst mode shape,
which means the mode number must be n = 1, and
�1 must be �1 = A0d2=2I, then, the axial load is
considered as a function of the initial axial condition
and the axial excitation, as follows:

N̂ =
EA0

L
� =

EA0

L
(x0 + xd cos(!xt)); (7)

where �, x0 and xd are axial deection, initial stretch
and axial excitation amplitude, respectively, and !x
is the axial excitation frequency. Equation 6 is
non-dimensionalized and the following parameters are
found:

a8 =
A0Lx0

nI
; a9 =

A0Lxd
nI

; rx =
!x
!1
: (8)

Separation of the variables solution, y = Y (�):'(z),
is applied here, where the spatial function, '(z), is
called the mode shape function, and must satisfy the
boundary conditions. Y (�) is the time function and
by choosing the �rst harmonic shape function, this
function, Y (�), would then represent the maximum
deection of the microbeam, which is the middle
deection for a clamped-clamped end beam and/or a
simply supported beam, and also represents the free
end deection for a cantilever beam. A micro cantilever
is a microbeam with the following boundary conditions:

y(0; �) = 0;
@
@z
y(0; �) = 0;

@2

@z2 y(1; �) = 0;
@3

@z3 y(1; �) = 0: (9)

The �rst harmonic mode shape satisfying the required
boundary conditions is '(x) = cos(�x=2) and the
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mode shape parameter is n = �2=4. At the same
time, if a sinusoidal function is used, it can be seen
that for a clamped-clamped and a simply supported
beam, the mode shape constant (n) equals 4�2 and
�2, respectively [15]. Then, the required di�erential
equation for the time separated part, Y (�), related to
a micro cantilever, would be:
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p
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i . The third order expansion (Taylor series)
will be used to model the electrostatic force on the
micro resonator. Applying the multiple time scales
method [21] makes Y = a(�) cos(r� + (�)), and
the following coupled equations yield the following
(considering rx � 2):
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where � = r � 1, �� = (rx�2)
2 . Assuming a0 and

0 � � remain zero in the steady state response and
�� = � (the  � �� is an argument of the sinusoidal
term and must be invariant in time, when � ! 1).
Eliminating (�) and assuming 0 � a � 1 provides a
relationship between the parameters of the system to
have a periodic steady state response with frequency r,
which gives an equation that shows a as a function of
�, �, r, h, a6, a7, a8, a9, �1. From nonlinear modeling,
the amplitude coupled equation is:
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which is coupled to the phase angle. The decoupled
equation of amplitude is addressed in the Appendix (if
the system has no excitation in an axial direction, a9
can be replaced by zero).

RESULTS OF PARAMETRIC MODEL

Equations 12a and 12b describe the frequency behavior
of the micro resonator, indicating that its dynamics
are governed by polarization voltage parameter �,
alternative excitation voltage parameters �, damping
parameter h and the excitation frequency ratio r, as
well as the thermal damping and sti�ness parameters,
a6 and a7. The nominal values of a sample micro
cantilever, in order to analyze the dynamic behavior
of the MEMS, are [12-15]:

m = 1� 10�11 kg; � = 0:0000553125 vp2;

A = 200 �m� 50 �m; � = 0:00002765625 v2
i ;

k = 1 N/m; d = 2:0 �m;

c = 1� 10�8 Ns/m:

Figures 2a and 2b depict the e�ect of a variation
of the DC and AC voltage for a set of parameters.
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Figure 2. E�ect of variation of (a) DC voltage, (b) AC
voltage, (c) axial load, and (d) axial vibration on
frequency response. (Arrows show increasing of the
parameter.)

The amplitude of the steady state oscillation increases
monotonically by increasing the voltage. Figure 2c
shows that the axial load (initial tension) has no e�ect
on the amplitude, but its e�ects on the resonance fre-
quency are great and the resonance frequency increases
smoothly by increasing this load. It can be seen that
axial vibration (by considering frequency) increases the
amplitude in Figure 2d. In Figure 2, the horizontal
axis is frequency, and the vertical axis is amplitude.
Increasing the damping ratio diminishes the amplitude
of the oscillation, as can be expected. Figure 2 shows
that the peak amplitude is not an increasing function
of the DC voltage and it increases by increasing �
to somewhere, then, it reduces. (Because of that,
the intersection can be seen in Figure 3.) Also, Ap
(peak value) is a nonlinear increasing function of both
polarization and excitation voltages.

Figures 4a and 4b illustrate the thermal e�ects.
Thermal damping diminishes the peak amplitude (Fig-
ure 4a) and its e�ect on the resonance frequency is
not so great, but thermal relaxation decreases the
resonance frequency and does not a�ect the system
amplitude. In Figure 4c, it is shown that the non-
linearity parameter (�1) clearly a�ects the resonance
frequency and its increase, but its e�ect on resonance
amplitude is little. It is evident that damping reduces
amplitude (Figure 4d), but its e�ect on resonance
frequency is dependent upon other parameters, such as
the nonlinearity parameter. For example, if the nonlin-
earity parameters vanish, then, the damping e�ect on
resonance frequency is dispensable, but if nonlinearity
increases, all the parameters that a�ect amplitude can
have an e�ect on the resonance frequency.

As illustrated in Figures 5a and 5b, the resonance
frequency is a monotonically decreasing function of
increasing both polarization and excitation voltages.
The behavior of resonance shifting looks linear, with
a variation of both voltages. Figure 5c shows the

Figure 3. E�ect of variation of Ac voltage on peak
amplitude.
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Figure 4. E�ects of variation in (a) thermal damping, (b)
thermal relaxation, (c) nonlinearity, and (d) damping on
frequency response. (Arrows show parameters reduction.)

Figure 5. E�ects of variation in (a) DC voltage, (b) AC
voltage, (c) nonlinearity, and (d) damping on resonance
frequency.
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e�ects of a nonlinearity parameter on the resonance
frequency. It can be seen that this parameter linearly
increases the resonance frequency. The behavior of
the resonance frequency is not linear non-monotonic
when damping is varied. As shown in Figure 5d, the
resonance frequency is ultimately unchanged with a
variation of system damping and, as mentioned, the
damping e�ects on the resonance frequency are coupled
to the other parameters of the system.

CONSIDERING FUZZINESS OF SYSTEM
PARAMETERS

There are some kinds of uncertainties in mechanical
systems which are associated with the lack of precise
knowledge of the system's parameters and operating
conditions. For example, these are originated from
the variables in the manufacturing processes. These
uncertainties can have signi�cant inuence on dynamic
responses and the reliability of the system.

The Fuzzy Generalized Cell Mapping (FGCM)
is introduced by Hong and Sun [19,20] and, for
considering and investigating these uncertainties in
multi parameter systems, the FGCM has been ex-
panded in [17] for these systems. In this method,
for each uncertain parameter, one probability function
is considered, then, the FGCM is applied and the
probability of each point in the state space of the
system is achieved. The micro resonators quality
factor (dissipation parameter) is varied with variation
in the system environment and the system's working
condition. The FGCM is used for calculating the e�ects
of this variation. The FGCM has been applied to
Equation 10 for determining the domain of absorption
of the chaotic vibration absorber in the phase plane.
The uncertainties from system damping have been
considered and the triangular membership function was
considered for this analysis (the desired region was
divided into 75 � 75 cells and one point was sampled
from each cell; the membership functions were divided
to 12 segments). Proper identi�cation of the working
domain of the system is so important, because it can be
shown that loads can be applied to uncertain systems,
under which the system is not able to work within the
desired domain. Figure 6 shows how and where the
pull-in occurs in the system uncertainties.

In Figure 6, the parameters are as follows:

� = 10�3; � = 10�3; r = 0:9999;

10�4 � h � 2� 10�1; a8 = 0:001;

�1 = 1; a6 = a7 = a9 = 0;

has the Global phase portrait of the micro res-
onator equation with a fuzzy parameter, with �(h; 2�

Figure 6. System uncertainties due to pull-in e�ect.

10�4; 10�1; 10�1) as the membership function (the tri-
angular membership function, in which the probability
in h = 2 � 10�4 is zero and in h = 10�1 is one). The
membership distribution of fuzzy attractors is depicted
as: black dotted points = 1:0, 0:8 < centered zone
< 1:0, 0:6 < �rst inner ring zone < 0:8, 0:4 < second
inner ring zone < 0:6, 0:2 < third inner ring zone < 0:4,
and 0:0 < outer ring zone < 0:2. Symbol + represents
the trajectories, which go out of the interesting domain
(pull-in) and symbol � shows a stable cell (x1 = Y; x2 =
_Y ).

CONCLUSION

The thermal phenomenon in a micro resonator is
modeled by considering the nonlinearities from ac-
tuated force and mid-plane stretching in the non-
dimensionalized equation. The thermal phenomena
have been changed to e�ective forces per unit length
of a vibrating microbeam. The thermal properties
of a microbeam contribute to the damping system,
due to warming up and heat energy dissipation called
\thermal damping", and to the restoring system, due
to material heat softening called \temperature relax-
ation".

The highly nonlinear equation governing the sys-
tem was solved in the �rst resonance frequency by
utilizing the multiple time scales perturbation method.
This equation is reduced to two di�erential equations
that can be solved for amplitude, with respect to time,
response. The di�erential equations were solved in a
steady state and, then, the frequency responses of the
system, while varying the e�ective dynamic parame-
ters, were plotted and their e�ects were discussed.

Nonlinearity due to mid-plane stretching a�ects
the system resonance frequency and its increase is
because of the variation of damping. It also a�ects the
system resonance frequenc; when it is not considerable
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or its order is small, then, damping doesn't a�ect
resonance frequency. Temperature relaxation reduces
the peak amplitude slightly, while thermal damping has
a reduction e�ect on peak amplitude with a dominant
e�ect. In addition, temperature relaxation shows
a signi�cant e�ect on the shifting of the resonance
frequency to lower values. Resonance shifting is a very
important phenomenon, especially in resonator-based
sensors. It seems to be the most e�ective source of error
in resonance-sensors, which are designed, based on a
constant sti�ness assumption. Finally, the behavior of
the system is investigated by considering the uncertain
damping parameters and by showing how and where
the pull-in occurs.
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APPENDIX

The decoupled equation of amplitude is:

�2�2(�512(1 + r2)8X3�4�4a2
9(�2� + a9)2

(2� + 3a9)2(�8a2�3 � 2�(�+ 2a2�)a9)

+ 2a2�a2
9 + a2a3

9)2 + a4(2� + a9)8

(8a4hr(1+r2)a6(2�+a9)4+4a4r2a2
6(2�+a9)4

+ (1 + r2)2(4�2(X2 � 2X�(�+ 4a2�)

+ �2(16a4h2+�2�8a2��))�4�(X2+2X��

+ �2(�32a4h2 � 3�2 + 32a2��))a9

+ (X2 + 2X�(11�+ 8�a2)

+ �2(96a4h2 + 9�2 � 176��a2))a2
9

+ 32a2�(a2h2 � 3��)a3
9

+ 2a2(2a2h2 �X � 9��)a4
9))2) = 0; (A1)

where X is:
X = (�2ra7a2(2� + a9) + (1 + r2)(a2a2

9

+ 2a8(2� + a9)a2 + 2a2a9(�2(�1 + r + �)

+ 3�1a2))=(1 + r2) + (�(�� 4a2(�2 + 2r

+ 2�+ �) + 12a4�1)))=(1 + r2):


