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The E�ect of Wake Flow and Skew Angle
on the Ship Propeller Performance

H. Ghassemi1

Abstract. This paper provides an investigation into the inuence of wake and skew on a ship propeller
performance, based on the potential Boundary Element Method (BEM). Two types of inow wake from a
ship (i.e. Seiun-Maru and MS689) have been investigated for two propeller types; a Conventional Propeller
(CP) and a Highly Skewed Propeller (HSP). The computed results include pressure distribution, open
water characteristics and thrust uctuation for one blade and for all blades of the propeller. Calculations
of the unsteady pressure distributions, thrust and torque are in good agreement with experimental data.
In addition, the e�ect of propeller skew angle on the performance of thrust and torque, is investigated.

Keywords: Skewed propeller; Inow wake; Hydrodynamic performance.

INTRODUCTION

Propellers usually operate in the ship's stern, where
the inow wake generates periodic and uctuating
pressure, due to which, as a result, vibratory forces can
occur. The induced forces may transfer to the ship's
hull directly via the shaft-line or indirectly through
the uid. Therefore, conditions for the crew and
passengers become unpleasant and uncomfortable. The
inow wake is strongly dependent on the shape of the
ship hull and, so, each ship may have a unique wake
�eld. It is a great challenge for naval architects and
hydro-dynamicists to predict the performance of ship
propellers working at the stern of the ship hull.

Modern research in computational hydrodynam-
ics is related to the development of the computer and to
many numerical methods developed during the second
half of the twentieth century. Among numerical tools,
the potential-based Boundary Element Method (BEM)
is strongly suitable for the analysis of any complex
propeller con�guration, because it has good accuracy
combined with low computational time [1]. There are
varieties of potential-based element methods, which
employ di�erent types of surface element, singularity
distributions and boundary conditions. Most element
methods are based on the Douglas Newmann constant
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source method, developed by Hess and Smith [2], in
which the major unknown was the source strength,
which is determined from the boundary condition
of zero normal velocity at a control point on each
element. Another formula has arisen from the ap-
plication of Green's identity to determine unknown
potential strength. Morino [3] �rst introduced it for
the general lifting of bodies in the �eld of wing theory,
using the hyperboloidal element. In past years, many
researchers, such as Lee and Kinnas [4], Hoshino [5],
Lee [6], Koyama [7], Ghassemi et al. [8-9] and Hsin [10],
have applied this method to ship propeller problems
in steady and unsteady ow, without the e�ect of the
ship wake. Recently, the e�ect of a number of blades
on wake evolution, for three propellers having the same
blade geometry but a di�erent number of blades, as well
as the e�ect of wake ow were investigated [11,12].

In this paper, the author has tackled an ac-
curate interpolated inow wake, using a potential-
based boundary element method applied to the hy-
drodynamic analysis of ship propellers operating in
the inow wake. Hyperboloidal quadrilateral elements,
with constant source and dipole distributions, are also
used to approximate the surface of the propeller. Fur-
thermore, an Iterative Pressure Kutta (IPK) condition
(with special numerical techniques) has been applied
to satisfy pressure equality at the trailing edge, at each
time step.

In this work, two di�erent types of inow wake,
behind the ship hull (Seiun Maru, MS689), encountered
two propeller types. The numerical results include
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pressure distribution, the open water characteristics of
the propeller and the oscillating thrust and torque of
the propellers (one blade and all blades) in one cycle.
Most importantly, the results of the e�ect of skew angle
on the hydrodynamic performance of two propeller
types against the wake ow, are also investigated. A
comparison of the present method with experimental
data and Hoshino's computed method shows a good
agreement [5,13,14].

MATHEMATICAL FORMULATIONS

Wake Flow onto the Propeller

In order to proceed with the Boundary Element
Method (BEM), the total unsteady velocity potential,
�(x; y; z; t), and the perturbation velocity potential,
�(x; y; z; t), are related as follows:

�(x; y; z; t) = �I(x; y; z; t) + �(x; y; z; t); (1)

where �I(x; y; z; t) is the local unsteady potential ow
onto the propeller, which is expressed as:

�I(x; y; z; t) = ~VI(x; y; z; t): ~XP (t); (2)

where ~VI(x; y; z; t) and ~X(x; y; z; t)P are the unsteady
inow velocity and position vector of the propeller,
respectively. The propeller behind the ship hull is
assumed to rotate with a constant rotating speed,
n, around the X-axis, in a negative direction, �, as
depicted in Figure 1.

The inow velocity, ~VI(x; y; z; t), represents the
components of the inow velocity �eld, towards the
propeller, in Cartesian coordinates, de�ned by:

~VI(x; y; z; t) = ~VW (x; y; z; t) + ~! � ~r(x; y; z; t);
where:

~! = 2�~n: (3)

The assumption at this point is that the ow is
incompressible and non-viscous. In addition, the

wake velocity, VW (x; y; z; t), is assumed to be the
e�ective wake, which includes interactions between
the vorticities of the inow wake, with and without
the propeller. The measured wake ow should be
employed, in order to obtain the propeller performance.
Having the measured wake ow, w(x; y; z; t), and ship
speed, VS , the ow velocities onto the propeller, due to
the wake, are expressed as follows:
VW (x; y; z; t) = VS(1� w(x; y; z; t)): (4)

The wake �eld is strongly dependent on the shape of
the ship's stern and on environmental conditions. It is
very di�cult to predict the wake of a ship numerically,
which is a challenge for many researchers today.

Basic Formula

By applying Green's theorem, the perturbation velocity
potential, �(x; y; z; t), at any point, can be expressed
by a distribution of the source and doublet on the
boundary surface, SB , as in:

2��(p; t) =
Z
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�
�(q; t)

@
@nq

�
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�
@�(q; t)
@nq

�
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@
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�
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�
ds; (5)

where R(p; q) is the distance from the �eld point, p, to
the singularity point, q. This equation may be regarded
as a representation of the velocity potential, in terms
of a normal dipole distribution of strength, �(p; t), on
the body surface, SB , a source distribution of strength,
@�=@n, on SB , and a normal dipole distribution of
strength, ��(q; t), on the trailing sheet surface, SW .

Boundary Conditions

The strength of the source distribution in Equation 5
is known from the Kinematic Boundary Condition

Figure 1. Coordinate system of propeller behind the ship hull.
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(KBC), as follows:

@�
@n

= �~VI(x; y; z; t):~n
= �[VS(1� w(x; y; z; t)) + ~! � ~r(x; y; z; t)]~n; (6)

where ~n denotes the outward normal unit vector.
The strength of dipole distribution is unknown and is
equal to the perturbation potential on the propeller
or to the potential jump in the trailing sheet vortex.
On the wake surface, SW , the velocity is considered
continuous, while the potential has a jump across the
wake. The boundary condition on the surface SW can
be written as:

�
�
@�(r; t)
@n

�
SW

=
�
@�(r; t)
@n

�B
�
�
@�(r; t)
@n

�F
=0; (7)

and:

(��(r; t))SW = �B(r; t)� �F (r; t) = �(r; t); (8)

where indices B and F refer to the back and face sides
of the propeller, respectively.

In the steady ow problem, the potential jump,
��(q), is constant across the wake surface along an
arbitrary streamline in the wake and its value is also
constant with time, but when the unsteady ow is
streamed along the trailing sheet, the value of the
potential varies with time.

Another important physical boundary condition
is the Kutta condition and its implementation. In
lifting ows, the circulation distribution on the lift-
ing portions drives the entire solution. Accordingly,
accurate determination of this circulation is crucial.
The values of the circulation are determined mainly
from the Kutta condition along the trailing edges
and, thus, speci�cations of the Kutta condition are
more important than any other detail of the numerical
implementation.

The theoretical and physical form of the Kutta
condition states that the velocity shall remain �nite
all along the sharp trailing edges. An equivalent
alternative form may be imposed on the numerical
solution, such that equal pressure occurs on the back
and front surfaces of the trailing edge. This equal
pressure Kutta condition is applied to determine the
unknown ��TE of the dipole strength on the wake
surface. In the numerical calculation, the pressure
Kutta condition is expressed as:

�pTE(r; t) = pBTE(r; t)� pFTE(r; t) = 0: (9)

A direct solution of the resulting system of equations
obtained from the discretized Green's formula for the
perturbation velocity potential (Equation 5), along
with Kutta condition (Equation 9), is di�cult, due to

the nonlinear character of Equation 5. Therefore, an
iterative solution algorithm is employed to solve the
problem [11]. We focus on the numerical implementa-
tion in the following section.

NUMERICAL IMPLEMENTATION

The body surface is discretized by quadrilateral hyper-
boloidal elements represented by four vortices, which
may not constitute a plane but which are still con-
nected with straight lines. At the centroid of each
element, a local coordinate system is de�ned choosing
two tangential vectors, with respect to chordwise and
spanwise. The third axis is the local normal vector ob-
tained as a vector product of the two tangential vectors.
The centroid is also chosen as the collocation point,
where one should compute the inuence coe�cients
and satisfy the boundary conditions. The trailing sheet
vortex surface may be treated by a di�erent approach,
but we may assume, for simplicity, that hyperboloidal
elements also cover it.

To solve Equation 5 numerically, the discretiza-
tion of the propeller and its trailing sheet vortex
surfaces are detailed into quadrilateral elements. The
time domain is also discretized into equal intervals, �t.
The trailing sheet vortex starts from the blade trailing
edge and ows downstream of the propeller along the
prescribed helical surface, by interval ��W , as follows:

��W = !�t: (10)

On each of the quadrilateral elements, the dipole
and source distributions are approximated by constant
strength distributions. Discretization of Equation 5
leads to a linear system of algebraic equations for the
unknown � at each time step, L = t=�t, as:
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where Dk
ij , W k

ijl (dipole distributions on body and
wake surfaces) and Skij (source distribution on body)
are inuence coe�cients on the element, j, acting on
the control point of element, i. These coe�cients
are analytically evaluated by Morino [4]. The use
of quadrilateral surface elements, instead of planar
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elements, has been found to be important for the
convergence of the present potential based boundary
element method. It is discovered, particularly, when
the method is applied to a highly skewed propeller and
a twisted shape.

The systems of Equation 11 is solved, at each time
step, L, with respect to the potentials on all blades.
Nevertheless, the inuence coe�cients are determined
on the key blade and re-arranged for all blades in the
full matrix form.

It was found that 60 time steps per revolution
of the propeller, ��W = 6 degrees, was enough and
the results were accurate, although the results could be
improved if the number of time steps was increased to
120 (i.e. ��W = 3 degrees). However, the e�ect of the
angular interval, ��W , on the calculation of the thrust
of one blade was not great. Therefore, the angular
interval of 6 degrees is commonly used in the present
calculations.

Hydrodynamic Forces Due to Inow Wake

Once the perturbation potential is found, the pertur-
bation tangential velocity, ~vt(t), can be determined by
a derivative of the potential. Then, unsteady pressure
distribution on the propeller blade is calculated by the
unsteady Bernoulli equation, expressed as:

p(t)=p1+0:5�(2Vl(t):~vt(t)�~vt(t):~vt(t))��@�(t)
@t

;
(12)

where p1 is the upstream hydrostatic pressure, VI(t)
is the inow velocity into the propeller found from
Equation 3. The time derivative of the potential,
@�=@t, in Equation 12, is inherent in the unsteady
ow and can be obtained by a second order backward
di�erence scheme as [1]:

��
�t

=
4�(L)� 3�(L� 1) + �(L� 2)

2�t
: (13)

The pressure coe�cient is determined as follows:

Cp =
p(t)� p1
1=2�n2D2 ; (14)

where n is the propeller rotating speed and D is the
propeller diameter.

The unsteady forces, (Fx; Fy; Fz), and moments,
(Mx;My;Mz), acting on a propeller can be obtained
by integrating the unsteady pressures over the blade
and hub surfaces. They are expressed on the �xed
coordinate system, (x; y; z), as:

Fx(t) = �T (t) =
Z
S

(p(t)� p1)nxds;

Fy(t) =
Z
S

(p(t)� p1)(ny cos(!t)� nz sin(!t))ds;

Fz(t) =
Z
S

(p(t)� p1)(nz cos(!t)� ny sin(!t))ds;

Mx(t) = Q(t) =
Z
S

(p(t)� p1)(nyz � nzy)ds;

My(t) =
Z
S

(p(t)� p1)[(nzx� nxz) cos(!t)

+ (nxy � nyx) sin(!t))]ds;

Mz(t) =
Z
S

(p(t)� p1)[(nxy � nyx) cos(!t)

+ (nxz � nzx) sin(!t))]ds; (15)

where ~n(nx; ny; nz) is the outward normal vector on
the propeller. T (t) and Q(t) are the thrust and torque
of the propeller.

By adding the viscous components to the above
forces and moments given by Prandtl-Schlichting for-
mulas [5], we �nally obtain the total unsteady propeller
forces and moments. Then, the non-dimensional coef-
�cients of the unsteady propellers, forces and moments
are expressed as follows:

Kt(t) =
T (t)
�n2D4 ; Kq(t) =

Q(t)
�n2D5 ;

KFy (t) =
Fy(t)
�n2D4 ; KMy (t) =

My(t)
�n2D5 ;

KFz (t) =
Fz(t)
�n2D4 ; KMz (t) =

Mz(t)
�n2D5 : (16)

In the steady calculations, the hydrodynamic charac-
teristics of the propeller are obtained as given below:

J =
VW (x)
nD

; Kt =
T

�n2D4 ; Kq =
Q

�n2D5 ; (17)

where VW (x) is the axial ow velocity into the pro-
peller, which is called advance velocity, (VA).

NUMERICAL RESULTS AND DISCUSSION

Propeller Type

In order to evaluate the accuracy and applicability
of the present method, two di�erent propeller types
are examined. For both propellers, very precise mea-
surements of the blade surface pressure are conducted.
Both propellers have �ve blades. One is a conventional
design with MAU sections and the other is a highly
skewed propeller with modi�ed SRI-b sections. Princi-
pal particulars of the propellers are shown in Table 1.
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Table 1. Main dimensions of the propellers.

Propeller Type Conventional Prop. (CP) Highly Skewed Prop. (HSP)
Diameter (full scale) (m) 3.6 3.6
Exp. area ratio 0.65 0.70
Pitch ratio at 0.7R 0.95 0.944
Boss ratio 0.1972 0.1972
No. of blades 5 5
Blade thickness ratio 0.0442 0.0496
Rake angle (deg) 6.0 -3.03
Skew angle (deg) 10.5 45.0
Blade section MAU Modi�ed SRI-B

Each blade of the propeller was discretized with
(M = 12) in a radial and (N = 14) in a chordwise
direction, so that the total number of elements was 336,
plus a hub with (4�28 = 112) elements per segment.
The total number of elements for the steady calculation
was 448 on the key blade. Hoshino [5] also selected the
same element number in his research and he reached
the conclusion that it is enough to get reasonable
results. Although larger numbers of elements may be
better, due to limited computer memory, the usage
of high numbers of elements is not possible. The
potential and pressure distributions on the other blades
are taken as equal to the key blade. Figure 2 shows
the element arrangements of the two propellers. In
addition, the element arrangement for a HSP propeller
and its trailing sheet vortex are shown in Figure 3.

For unsteady ow, each blade is subject to a
di�erent inow wake velocity; the potential and pres-
sure distributions are calculated at each time step.
The system of equations is K times larger than the
steady ow. Nevertheless, the element patterns kept
the same as for the steady condition, which gave the
total number of elements for all blades and hubs to be
2240. The CPU time for these element calculations
(at one operating condition) was about 8 hours, using
a PC Pentium 3.2 GHz processor for 180 time steps
(three revolutions of the propeller). Because, at the
same time, each propeller blade encountered the ship's
wake ow, the Kutta condition should be applied to all
blades at each time step. Therefore, most of the CPU
time was for the convergence of the Kutta condition at
the trailing edge. It was noted that, at each iterative
Kutta condition, the system of equations should be
solved K�M(5�12 = 60) times at each time step.
It is expected that the Kutta condition will be very
time consuming in the unsteady ow. In the following
sub-section, the numerical results for the steady and
unsteady ows are discussed.

Inow Wake

Data for the same propellers (but in full-scale) of CP
and HSP were obtained in full-scale condition at the

Figure 2. Element arrangement of CP (up) and HSP
(down) propellers.

rear of the ship's hull, which was carried out by Ukon et
al. [13] at the Ship Research Institute (presently named
the National Maritime Research Center, in Japan). All
principal particulars of both propellers are the same as
the model, except the diameter, as given in Table 1.
The measured e�ective wake ow contours indicate the
axial speed of water, in fractions of the ship speed
and the arrows indicate the transverse velocity �eld
in front of the propeller, in full scale, as shown in
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Figure 3. Element arrangement for a HSP propeller and
its trailing sheet vortex.

Figure 4. In the present calculations, not only the
axial ow component, but also the tangential and radial
ow components, are taken into consideration. In
our numerical code, the Spline interpolation method
has been implemented to calculate the wake ow on
each element of the propeller blades and hub, which
measured the wake ow given by Ukon et al. [13].
Therefore, Figure 5 shows the interpolation wake ow
behind the ship hull. Additionally, to show more on
the wake and its interpolation, another wake is shown
in Figure 6. This �gure shows the inow velocity (cross
velocity is shown by the vector and the axial is shown
by the counter forms) distribution behind the ship
(MS689). In addition, another form of inow velocity
is shown in Figure 7 for each component of Vx, Vy,
and Vz. The e�ects of two inow ship wakes on each
propeller (CP and HSP) have been investigated.

The element arrangement of the HSP propeller
and its trailing sheet vortex is shown in Figure 3.
In this case, the blade element calculations are also
performed on both propellers (HSP and CP), with 14

Figure 4. Contour and vector inow wake velocity
distribution for Seiun-Maru ship.

Figure 5. Interpolation of the inow wake velocity for
Seiun-Maru ship.

Figure 6. Contour and vector inow wake velocity
distribution behind the MS689 ship.
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Figure 7. Interpolation of the inow wake velocity for
MS689 Ship.

elements in the chordwise and 12 elements in the radial.
The hub is also divided by the total element (20�28),
of which, 28 elements are in the axial and 20 elements
are in the circumferential direction.

The surface of the blade pressure distribution
is compared with the measured data at 0.7R and
0.9R spanwise locations on the pressure and suction
sides. For the present calculation, the procedure used
a Kt identity, based on ship speed, to determine the
operating conditions in the calculations. The ship
speed is changed until the required thrust coe�cient
value, Kt = 0:172, was achieved.

The chordwise pressure distributions, at two an-
gular positions of 0 and 180 degrees and at 0.7R and
0.9R radial sections of the CP propeller, are compared
to the experimental data, as shown in Figure 8. The
present results shown in that �gure indicate good
agreement with experimental ones.

In Figures 9 and 10, the pressure at certain points,

0.7R and 0.9R, is plotted as a function of the blade
angular position, (0 � 360). The pressure results from
the present method show quite pronounced uctuation,
but the measure values are smooth in every case. The
reason for this discrepancy is not known, as one might
see that the correct measured wake ow is not the
same as the interpolation wake ow in front of the
propeller.

For the Kt = 0:172 condition, the calculated one
blade thrust and torque is given in Figure 11, with
Hoshino's results, as a function of the blade angular
position (0-360 degrees) for one cycle. The angle is
zero at an upright position and runs clockwise if one
looks from behind. Figure 12 also shows the results
for CP with the same tendency as that of the HSP, in
which small humps, appearing in both Kt and Kq with
the present method, may be caused by tangential inow
components, which show pronounced jumps at angular
positions equal to 0 and 180 degrees. Generally, thrust
and torque values of the present method are bigger
at some angular positions and smaller at some others.
This discrepancy is maybe due to the error in pressure
distribution.

Total thrust and torque uctuations for CP
and HSP propellers are shown in Figure 13. It is
clearly observed that the uctuations of conventional
propellers give signi�cantly bigger uctuation than
highly skewed propellers under the same operating
conditions. Therefore, the HSP propeller may help
to avoid noise and vibration rather than the CP
propeller.

E�ect of Inow Wake on the Propeller

The e�ect of unsteady inow to the propeller blade,
while passing through the inow wake, causes dynam-
ical changes in the blade pressure distribution. A
decrease in pressure to a level below vapor pressure
causes the water to boil locally on the propeller blade,
e.g. intermittent cavitation occurs.

Due to these e�ects, the unsteady inow varia-
tions are investigated on the two propellers to deter-
mine the thrust and torque during one cycle. Because
of the ow, the variations of two wakes (MS689
and Seiun-Maru) are di�erent. Therefore, in order
to specify the propeller characteristics, ship speed is
changed until the required thrust coe�cient value, Kt,
is equal for both wakes. For this reason, when the
MS689 wake ow is considered for the propeller, the
ship speed reaches 17.5 knots. Therefore, we operated
two ship speeds (i.e. 10.7 and 17.5 knots) for both wake
ows.

These two wakes ow into the CP and HSP
propellers at two speeds of 10.7 and 17.5 knots. The
thrust and torque uctuating in one cycle are shown in
Figures 14 and 15. It is observed that the MS689 wake
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Figure 8. Comparison of chordwise pressure distribution for CP at various rotation angle, J = 0:851.

Figure 9. Fluctuating pressure for HSP on 0.7R;
Kt = 0:172.

ow gives more uctuating thrust and torque, relative
to both propellers (CP and HSP), although it is less
for the HSP propeller.

E�ect of Skew Angle on the Thrust and the
Torque

The numerical calculation results were extended to
examine the e�ects of skew angle on the propeller.
Figure 16 shows the propeller (the main data is the
same as the HSP propeller from Table 1) with four
various skew angles. The Seiun-Maru inow wake
ow is considered for the propeller and its e�ect is
shown in Figures 17 and 18 for the thrust and torque

Figure 10. Fluctuating pressure for HSP on 0.9R;
Kt = 0:172.

coe�cients. It is concluded that, when the propeller
skew angle is increased, the domain uctuation is
decreased.

CONCLUSIONS

A potential-based BEM has been employed to analyze
the hydrodynamic performance of ship propellers sub-
ject to an inow wake. An e�cient algorithm of the
explicit Kutta condition (at the blade trailing edge)
has been implemented, in order to ensure faster con-
vergence at each time step. From the above numerical
analysis, the following conclusions are drawn:
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Figure 11. One blade thrust and torque uctuations for
HSP; Kt = 0:1723:

Figure 12. One blade thrust and torque uctuations for
CP; Kt = 0:172.

Figure 13. Total thrust and torque uctuations for CP
and HSP; Kt = 0:172.

Figure 14. Comparison of total thrust and torque
uctuations for CP with two types of inow wake.

Figure 15. Comparison of total thrust and torque
uctuations for HSP with two types of inow wake.

Figure 16. Element arrangement of the propellers with
di�erent skew angles.
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Figure 17. E�ect of skew angle on thrust in one cycle.

Figure 18. E�ect of skew angle on torque in one cycle.

� This method may predict well, with reasonable accu-
racy, the e�ect of an inow wake on the complicated
propeller blade and obtains pressure distribution,
thrust and torque uctuation;

� The e�ect of skew angle is important on the hydro-
dynamic characteristics. It is shown that the total
thrust and torque of the lower skew, like the Con-
ventional Propeller (CP), give slightly larger uc-
tuations than the Highly Skewed Propeller (HSP).
Therefore, the use of skew is much more important
on the reduction of propeller-excited vibrations on
the full-body;

� Two types of inow wake have been introduced to
conventional and highly skewed propellers. The
results show large e�ects on propeller hydrodynamic
performance by the wake ow;

� Extension research work should be considered for
cavitation problems on ship propellers in unsteady
conditions behind the ship hull. It is my wish to
design a new propeller system for excellent operating
performance.
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