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Research Note

Free Vibration Analysis of Rotating Laminated
Cylindrical Shells Under Di�erent Boundary

Conditions Using a Combination of the Layerwise
Theory and Wave Propagation Approach

S. Ramezani1 and M.T. Ahmadian1;�

Abstract. In this paper, vibration analysis of rotating laminated composite cylindrical shells using
a combination of the layerwise theory and wave propagation approach is investigated. This combination
enables us to study all the conventional boundary conditions in our analysis. Results obtained have been
compared with those available in the literature and a good agreement has been observed. In contrast
to the Equivalent Single Layer theories (ESL), the layerwise theory is constructed on the basis of C0-
continuity through the laminate thickness. For the surface of the shell, a displacement �eld based on
the wave propagation approach is proposed. The e�ect of Coriolis and centrifugal accelerations on the
circumferential and longitudinal modes is investigated. At high rotational speeds, the stationary frequency
is smaller than both the forward and backward frequencies and this di�erence increases with the increase
of rotational speed. The in
uence of boundary conditions on the frequencies is more signi�cant at lower
circumferential modes but at higher modes the e�ect of the boundary condition is in�nitesimal.
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INTRODUCTION

Rotating shells and shafts are the main parts of many
machines, such as gas turbines, locomotive engines and
electric motors. In many cases, a rotating shell may
be one of the main sources of vibration and noise.
In order to reduce the vibration, noise and increasing
strength, many shells and shafts are usually made of
laminated composite materials. It is, therefore, very
important for engineers to understand the vibration
of composite shells in order to design suitable shells
with low vibration and noise production characteris-
tics.

Many studies have been carried out on rotating
laminated cylindrical shells. Due to the mathematical
complexity of obtaining analytical values for natural
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frequencies of laminated composite cylindrical shells,
simple but reasonably accurate techniques are neces-
sary and would be welcomed by the scienti�c commu-
nity and industry.

Srinivasan and Lauterbach [1] obtained the nat-
ural frequency of a rotating cylinder by considering
the e�ects of Coriolis forces and traveling modes.
Zinberg and Symonds [2] experimentally obtained the
critical speed of rotating cylindrical shells. The results
also proved the advantages of using shells made of
orthotropic materials over aluminum alloy shells. A
�nite element approach was used by dos Reis et al. [3]
to obtain the critical speeds in the evaluation of
the experiments of Zinberg and Symonds [2]. Trav-
eling wave vibrations and the buckling of rotating
anisotropic shells using a quasi-analytical �nite element
method have been studied by Padovan et al. [4]. A
simpli�ed theory for analyzing the �rst critical speed
of a composite cylindrical shell was given by Kim and
Bert [5] and a comparison with various shell theories
was made. The free vibration analysis of a rotating
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isotropic cylindrical shell using a harmonic reproducing
kernel particle method is performed by Liew et al. [6].
Lam and Loy [7] extensively studied the vibrations
of thin rotating cylindrical shells using di�erent shell
theories. Lam and Li [8] investigated rotating conical
orthotropic shells based on Love's �rst approximation
theory. The vibrations of rotating cross-ply and general
laminated composite cylindrical shells based on Love's
equations of motion and using a wave propagation
approach have been investigated by Zhang [9-10]. A
free vibration analysis of rotating cylindrical shells,
using the layerwise laminate theory and only for simply
supported boundary conditions has been performed by
Kadivar and Samani [11].

In the present study, Reddy's layerwise the-
ory [12,13] is combined with a wave propagation ap-
proach. This combination enables us to study all the
conventional boundary conditions in our analysis. The
layerwise theory based on C0-continuity is constructed
through the laminate thickness and the surface of the
shell; a displacement �eld based on a wave propagation
approach [9] is proposed and, hence, a combination
of the layerwise theory and the wave propagation
approach is obtained. Hamilton's principle is also used
to derive the equations of motion.

Using this method, the e�ect of shell parameters
on natural frequencies under various boundary condi-
tions is investigated. One of the major advantages
of the layerwise theory is the possibility it provides
for analyzing thick laminates and, also, interlamina
stresses (in forced vibrations) with high accuracy.

FORMULATION

Consider a laminated cylindrical shell with mean radius
R, length L and thickness h. Let the shell be composed
of several physical layers. Each physical layer is divided
into arbitrary numerical layers. Assume that the

total number of numerical layers is N , then, there
would be (N + 1) numerical surfaces in the laminate.
The shell is rotating about its horizontal axis at a
constant angular speed, 
. The reference surface of
the shell is assumed to be at its middle surface where
an orthogonal curvilinear coordinate system, (x; y; z),
is �xed on this surface, as shown in Figure 1a. The
displacement components of shell at time t are denoted
by u, v and w, which are in the x-, y- and z-directions,
respectively. As shown in Figure 1b, surface number 1
is located at z1 = �h=2, while surface number (N + 1)
is located at zN+1 = h=2. The k'th numerical layer lies
between zk and zk+1.

Let Uk(x; y), Vk(x; y) and Wk(x; y) be the dis-
placement components of the kth surface in the x-, y-
and z-directions, respectively. The displacement �eld
may be approximated in the following form:

u(x; y; z; t) = Uk(x; y; t)�k(z);

v(x; y; z; t) = Vk(x; y; t)�k(z);

w(x; y; z; t) = Wk(x; y; t)�k(z): (1)

Repeated indices indicate a summation from 1 to N+1
all through this paper. Furthermore, �k(z) are global
interpolation functions through the thickness of the
laminate. Note that only C0-continuity is required
and, so Lagrangian interpolation functions may be
used. Various degrees of Lagrangian interpolation
functions of minimum order may be applied. The
linear interpolation function can be constructed in the
following form:

�k(z) =

8>>><>>>:
0 for z � zk�1

(zk � z)=tk�1 for zk�1 � z � zk
(z � zk)=tk for zk � z � zk+1

0 for z � zk+1

(2)

Figure 1. (a) Coordinate system; (b) Numerical layers and surfaces.
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It is noted that �k(z) takes the values between 0
and 1. Strain components in terms of displacement
components may be written as:
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The terms in the bracket of "y denote the nonlinear
terms of a Green-Saint Venat strain tensor. A di�erent
point of view on this subject is given in Liew et al. [6].
Hamilton's principle may be used for derivation of the
equations of motion in the following form:

t2Z
t1

(�T � ��)dt = 0; (4)

where T is the kinetic energy and � = U � W is
the total potential energy function, with U as strain
energy and W as the work done by external forces.
The velocity vector at each point of the shell may be
written as:

~V = ~Vrel + ~
� ~r = _uê1 + [ _v � 
(R+ w)]ê2

+ ( _w + 
v)ê3; (5)

where (:) denotes di�erentiation, with respect to time t,
and ê are unit vectors. Variation of the kinetic energy,
strain energy and the work of external forces may be
written as:
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Z
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Z
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Z
l

(�x�"x + �y�"y + �y�"y + �xy�
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�~V :�~V dV; (6b)

�W = �
ZZ

top surface

Pz(x; y)�WN+1(x; y)dAexternal; (6c)

where Pz(x; y) is the distributed load on the external
surface. The volume and external area elements
are dV = (1 + z=R)dxdydz and dAexternal = (1 +
h=2R)dxdy, respectively. Next, let us introduce the
following generalized stress resultants:
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where the prime symbol (0) denotes di�erentiation,
with respect to z. From Equations 1 to 3, 6 and 7,
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we have:
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where the generalized inertia components, Ijk, are
de�ned as:

Ijk =
Z h=2

�h=2
�(1 + z=R)�j�kdz: (9)

Now, assuming Pz(x; y) = 0 and applying the funda-
mental lemma of calculus of variations, the equations of
motion may be found from Equation 4 in the following
form:
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In order to express the generalized stress resultants in
terms of displacement components from 3-D Hooke's
law we have:
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where upper index (i) denotes the i'th numerical layer.
From Equations 1, 2, 7 and 11 we obtain:

Mk
x = Dkj

11Uj;x +Dkj
12

�
Vj;y +

Wj

R

�
+Bkj13Wj

+Dkj
16Vj;x +Dkj

16Uj;y; (12a)

Mk
y = Dkj

12Uj;x + ~Dkj
22

�
Vj;y +

Wj

R

�
+Bkj23Wj

+Dkj
16Vj;x + ~Dkj

16Uj;y; (12b)

Nk
z = Bjk13Uj;x +Bjk23

�
Vj;y +

Wj

R

�
+Akj33Wj

+Bjk36Vj;x +Bjk36Uj;y; (12c)

Rkx = Djk
45

�
Wj;y � Vj

R

�
+Bkj45Vj +Dkj

55Wj;x

+Bkj55Uj ; (12d)

Rky = ~Dkj
44

�
Wj;y � Vj

R

�
+Bkj44Wj;x +Dkj

45Wj;x

+Bkj45Uj ; (12e)

Qkx=Bjk45

�
Wj;y� VjR

�
+Ajk55Uj+A

kj
45Vj+B

jk
55Wj;x;

(12f)

Qky=Bjk44

�
Wj;y� VjR

�
+Akj44Vj+B

jk
45Wj;x +Ajk45Uj ;

(12g)

Mk
xy = Dkj

66Vj;x +Dkj
66Uj;y; (12h)



172 S. Ramezani and M.T. Ahmadian
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It is noted that the integration is performed between
numerical layers. By calculating Equation 13 and sub-
stituting Equations 12 into Equation 9, the governing
equations of motion may be obtained.

In the next step, using a wave propagation ap-
proach, we introduce the proper displacement �eld for
the problem.

WAVE PROPAGATION APPROACH

The displacements of the shell may also be expressed in
the format of wave propagation, associated with axial
wave number Km (m represents axial wave number)
and circumferential modal parameter n, denoted by:8><>:Uk(x; y; t) = Uke(i!t�iKmx�iny=R)

Vk(x; y; t) = V ke(i!t�iKmx�iny=R)

Wk(x; y; t) = W ke(i!t�iKmx�iny=R)
(14)

where Uk, V k and W k are amplitudes of vibration in
(m;n) mode. Substituting Equations 14 into Equa-
tions 10 gives the following system of equations:

[S(!)]3(N+1)�3(N+1)

fU1V 1W 1 � � �UN+1V N+1WN+1gt3(N+1)�1 = f0g: (15)

For nontrivial solutions, the determinant of the charac-
teristic matrix, [S(!)], must be zero, which results in
3(N + 1) frequencies of the system for each given pair
of (m;n) values.

The appropriate axial wave number, Km, should
be chosen, so that Equations 14 satis�es the required
boundary conditions at both ends of the cylindri-
cal shell. In the wave propagation approach, the
wave traveling in the axial direction of the shell can
be approximated as the wave traveling in a similar
beam [9]. This notion enables us to simply estimate the

exural vibration of the cylindrical shell. The values
of KmL in the 
exural vibration of beam for various
boundary conditions are summarized in Table 1. These
results may be easily obtained by solving the eigenvalue
problem of the vibration of an Euler-Bernoulli beam
with corresponding boundary conditions. In Table 1,
some abbreviations are used for di�erent boundary
conditions. For example, F/F denotes both end free
boundary conditions.

For the beam under di�erent boundary condi-
tions, in lower modes of vibration, the values of KmL
given in Table 1 are slightly di�erent from the exact
values. But the error is negligible except for the case of
SS/SS beams, the wave number for which is exactly the
same as analytical values. However, in higher modes of
vibration, all values of KmL may be regarded as exact
values. Wave numbers given in this table are used in
our analysis.

Table 1. Approximate values of wave numbers for di�erent BC's [9].

Boundary Conditions Wave Numbers (KmL)

Free/Free (F/F) (2m+ 1)�=2

Free/Sliding (F/S) (4m� 1)�=4

Clamped/Free (C/F) (2m� 1)�=2

Free/Simply Supported (F/SS) (4m+ 1)�=4

Simply Supported/Simply Supported (SS/SS) m�

Clamped/Simply Supported (C/SS) (4m+ 1)�=4

Clamped/Clamped (C/C) (2m+ 1)�=2

Clamped/Sliding (C/SL) (4m� 1)�=4

Sliding/Sliding (SL/SL) m�

Sliding/Simply Supported (SL/SS) (2m� 1)�=2
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NUMERICAL RESULTS AND DISCUSSION

To check the accuracy of the present analysis, the
results obtained are compared with those in the lit-
erature. The cylindrical shells considered are three-
layered, cross-ply, laminated cylindrical shells with
symmetric lamination about the middle surface and
a [90/0/90] stacking sequence. Through all analyses,
by dividing each physical layer into two numerical
layers su�cient accuracy in convergence is obtained.
The thickness of all layers is equal, being one-third of
the shell thickness. Mechanical properties of the shell
material are given in Table 2.

The non-dimensional frequency parameter is de-
�ned as !� = R!

p
�0=E22 where �0 is the density

per unit volume and E22 is the Young's modulus
of elasticity in the second principal direction. The
non-dimensional natural frequencies obtained in this
analysis are compared with those by Lam and Loy [7]
and Zhang [9]. In Table 3, the e�ect of the rotational
speed, 
, for the cylindrical shell with SS/SS boundary

conditions and h=R = 0:002, L = R = 1 is presented.
Comparing the �ndings in this paper with the results
in the literature indicates a good agreement with
an accuracy of 1 to 2 percent. The fordward and
backward frequencies are investigated with a change
in the rotating angular velocity, 
, in Figure 2 with
h=R = 0:002, L = 1, L=R = 10 and (m;n =
(1; 1). As the angular velocity, 
, increases, the
forward frequency reduces, but the backward frequency
increases monotonically. The di�erence between the
forward and backward frequencies increases with the
increase of angular velocity, 
. It is interesting to note
that the intersection of the forward frequency curve
with the 
-axis is the so called critical speed of rotor
corresponding to a (m;n) = (1; 1) mode, in which
the rotating speed and the speed of the forward whirl
coincide.

Variations of the backward, forward and station-
ary non-dimensional frequency, !�, with the circumfer-
ential mode, n, under C/C-boundary conditions and
h=R = 0:002, L = 1, L=R = 10, m = 1 and

Table 2. Mechanical properties of the shell material.

E11 19 GPa E22 7.6 GPa E33 7.6 GPa

G12 4.1 Gpa G13 4.1 Gpa G23 1.4 Gpa

v12 0.26 v13 0.26 v23 0.37

�0 1643 kg/m3

Table 3. Comparison of the non-dimensional frequency !� for [90/0/90] arrangement with SSSS boundary conditions in
di�erent rotating speeds (h=r = 0:002, m = 1 and L = R = 1).


 n Zhang [1] Lam & Loy [3] Present Method
!�b !�f !�b !�f !�b !�f

1 1.061428 1.016139 1.061429 1.061140 1.088543 1.078262
2 0.804213 0.803892 0.804214 0.803894 0.779242 0.779147

0.1 3 0.598473 0.598185 0.598476 0.598187 0.563771 0.563712
4 0.450266 0.450017 0.450270 0.450021 0.416606 0.416506
5 0.345358 0.345144 0.345363 0.345149 0.318704 0.318678
6 0.270845 0.270660 0.270852 0.270667 0.249507 0.249459

1 1.061861 1.060705 1.061862 1.060706 1.084906 1.078309
2 0.804695 0.803414 0.804696 0.803415 0.779217 0.779210

0.4 3 0.598913 0.597759 0.598915 0.597762 0.563706 0.563704
4 0.450658 0.449663 0.450662 0.449667 0.416648 0.416626
5 0.345719 0.344865 0.345724 0.344870 0.318580 0.318657
6 0.271200 0.270461 0.271207 0.270468 0.249600 0.249600

1 1.062727 1.059835 1.062728 1.059836 1.086192 1.077931
2 0.805665 0.802462 0.805667 0.802464 0.778677 0.778993

1.0 3 0.599817 0.596934 0.599820 0.596937 0.563061 0.563398
4 0.451509 0.449023 0.451513 0.449027 0.416339 0.416593
5 0.346588 0.344453 0.346593 0.344459 0.316836 0.317099
6 0.272190 0.270343 0.272197 0.270349 0.252652 0.252880
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Figure 2. Variation of !� with the angular speed 
 (rps)
and CC boundary conditions (h=r = 0:002, L = 1,
L=R = 10 and (m;n) = (1; 1)).


 = 200 rps are shown in Figure 3. For small values
of 
, the di�erences between the forward, backward
and stationary frequencies are very small for all values
of n, while as 
 increases, the di�erences between the
frequencies increase.

The backward frequency is investigated with dif-
ferent boundary conditions in Figure 4 with h=R =
0:002, L = 1, L=R = 10, m = 1 and 
 = 5 rps
varying with the circumferential mode, n, for four
di�erent boundary conditions. A similar diagram may
be obtained for the corresponding forward frequencies.
The boundary conditions considered are C/C, C/SS,
SS/SS and C/SL. The e�ect of boundary conditions are

Figure 3. Variation of the backward, forward and
stationary non-dimensional frequency !� with the
circumferential mode number n and CC boundary
conditions, (h=r = 0:002, L = 1, L=R = 10, m = 1 and

 = 200 rad/s).

Figure 4. Variation of the backward non-dimensional
frequency !�b with the circumferential mode n and various
boundary conditions (h=r = 0:002, L = 1, L=R = 10,
m = 1 and 
 = 5).

observed to be more signi�cant at lower circumferential
mode numbers, while at high circumferential mode
numbers, n, this e�ect is not important. In fact,
there is hardly any in
uence of boundary conditions
at high circumferential modes. In Figure 4, the C/C
boundary conditions have the highest forward and
backward natural frequencies at lower circumferential
modes, followed by C/SS, SS/SS and C/SL boundary
conditions.

Figure 5 shows the forward frequencies versus
thickness parameter h=R with the C/C boundary
conditions and L=R = 10, m = 1 and 
 = 100 rps.
The frequencies for n = 1; 2 and 3 are presented. Value
of h=R varies between 0.005 and 0.05. For the case
where n = 3, the frequencies increase monotonically

Figure 5. Variation of !� with the h=R ratio and CC
boundary conditions, (L = 1, L=R = 10, m = 1 and

 = 100).
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as h=R increases. As the circumferential mode number
decreases to n = 2, the frequency growth rate decreases
dramatically, while for n = 1 the frequencies remain
nearly unchanged. It should be noted that at h=R =
0:018, the third and second circumferential modes of
vibration are superimposed. It is interesting to note
that in harmonic excitation, as frequency of excitation
increases for h=R < 0:018, the third mode of the
circumferential vibration will be excited prior to the
second modes while for h=R > 0:018, the excitation
will be in reverse order.

The forward, stationary and backward frequencies
are plotted versus L=R ratios for R = 1, h=R = 0:005,

 = 100 rps, (m;n) = (1; 1) and CC boundary
conditions in Figure 6. It is observed that as length
parameter L=R increases the frequencies decrease.
However, the rate of the frequency reduction is much
higher at larger values of L=R. As L=R increases,
the forward and backward frequencies diverge from one
another, while the stationary frequency remains within
the limits of the forward and backward frequencies.

CONCLUSIONS

The vibration analysis of laminated composite cylin-
drical shells using a method based on a combination
of the layerwise theory and the wave propagation
approach is presented. Natural frequencies resulted
by this method are in good agreement with those
available in the literature. E�ects of shell parameters,
m, n, h=R, L=R, and angular velocity, 
, at di�erent
boundary conditions on the natural frequencies, are
investigated. At low circumferential modes (small n
values), the stationary natural frequencies are between
the forward and backward frequencies, while at high
circumferential modes (large n values), the stationary

Figure 6. Variation of !� with the ratio for [90/0/90]
with CC boundary conditions (R = 1, h=r = 0:005,
Omega = 100 and (m;n) = (1; 1)).

frequency is smaller than both forward and backward
natural frequencies. This means that mode number
n has more in
uence than angular speed, 
, on the
forward and backward frequencies at low circumfer-
ential modes. But at high circumferential modes,
angular speed, 
, plays a leading role on the forward
and backward frequencies rather than mode number
n. This is due to the e�ectiveness of Coriolis and cen-
trifugal forces at high rotating speeds. The backward
frequency is always larger than the forward frequency;
however, the di�erence between the backward and
forward frequencies reduces as mode n increases. The
backward frequency increases monotonically with the
increase of angular speed while the forward frequency
decreases at smaller (m;n) modes and increases at
larger (m;n) modes. However, the di�erence between
the forward and backward frequencies grows with the
increase of angular velocity. The e�ect of boundary
conditions on the natural frequencies is signi�cant at
low circumferential modes while at high circumferential
modes, forward, backward and stationary frequencies
are independent of imposed boundary conditions. The
transition of fundamental frequencies from higher to
lower circumferential modes occurs at di�erent h=R
ratios for di�erent boundary conditions. The natural
frequencies decrease as the length parameter, L=R,
increases, but the reductions are signi�cant at low
L=R ratios. For any length parameter L=R ratios,
the stationary frequencies are between the forward
and backward frequencies. The di�erence between the
forward and backward frequencies enhances as L=R
increases. It has been noted that natural frequencies
decrease sharply at low values of L=R, but this vari-
ation is smooth at large L=R ratios. The stationary
natural frequency is between forward and backward
frequencies for all length parameters, L=R. The
di�erences between forward and backward frequencies
enhance as L=R increases.
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