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Simulation of a Density Current
Turbulent Flow Employing Di�erent
RANS Models: A Comparison Study

A. Mehdizadeh1 and B. Firoozabadi1;�

Abstract. The accuracy of Reynolds Averaged Navier-Stokes (RANS) turbulence models to predict
the behavior of 2-D density currents has been examined. In this work, a steady density current is simulated
by the k � ", k � " RNG, two-layer k � " and modi�ed �2 � f model, all of which are compared with the
experimental data. Density currents, with a uniform velocity and concentration, enter a channel via a
sluice gate into a lighter ambient uid and move forward down-slope. The eddy-viscosity concept cannot
accurately simulate this ow because of two stress production structures found within it. Results show
that all isotropic models have a weak outcome on this current, but by improving the ability of the models,
the results will improve.
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INTRODUCTION

Density current is formed when a heavier uid than
the ambient ows down an inclined bed. These ows,
which are common phenomena in nature, can be
formed by salinity, temperature inhomogeneities, or
suspended particles of silt and clay. These currents
are often observed in oceans and large lakes, powder
snow avalanches in mountainous areas and pyroclastic
ows in volcanic zones. In reservoirs and lakes, density
currents are important in managing siltation and water
quality.

Previous laboratory experiments of density cur-
rents include those performed by Ellison and Turner [1],
Rad [2], Alavian [3], Parker et al. [4], Garcia [5],
Altinakar et al. [6] and Lee and Yu [7].

In numerical studies, the vertical structure model
uses Reynolds equations in order to obtain the ow
variables that are non-uniform over the depth. A
turbulence closure is required to estimate the Reynolds
stresses. Stacey and Bowen [8,9] calculated the vertical
distribution of the velocity and concentration pro�les
of one-dimensional currents and employed a mixing
length model for the turbulence closure. Eidsvik and
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Brrs [10] applied the k � " turbulence model and
investigated the possibility of self-acceleration of the
currents. The vertical structure of density currents
has also been studied by Brrs and Eidsvik [11] using
the Reynolds stress model. The k � " model, which
is very popular, has been applied to density currents
plunging into reservoirs by Farrell and Stefan [12], Ku-
pusovic [13] and Bournet et al. [14]. Density currents
that occur in sedimentation tanks have been simulated
by the k � " turbulence model in Lyn et al. [15] and
Lakehal et al. [16]. Using the low Reynolds number
turbulent model, k � " (Launder-Sharma turbulence
model), Firoozabadi et al. [17] studied the structure of
this current.

The k � " model has some weaknesses, which
cannot accurately simulate behavior near the wall
(e.g. over-prediction of eddy viscosity near the wall or
inability to simulate anisotropy e�ects near the wall).

Yakhot and Orszag [18] introduced the Renor-
malization Group (RNG) model. In the latest version
of the RNG k-epsilon model, an additional term has
been added in the epsilon equation [19]. According to
Pope [20], the additional term in the epsilon equation
is an ad hoc model, not derived from the RNG theory.
The additional term accounts for the turbulent to
mean-strain time scale ratio through the modi�cation
of the production coe�cient. The term changes dynam-
ically with the rate of the turbulence strain and it is
largely responsible for the di�erence in the performance
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of the standard and RNG models. In consequence
of this operation, the turbulent di�usivity decreases
signi�cantly in high shear stress areas, yielding a more
realistic behavior of ow.

A compromise between the assertions of a uni-
versal wall layer, as made by wall function methods,
and a full simulation of the wall adjacent region, is to
formulate a simpli�ed model for that layer and patch
it onto the full k � " model. The full model is solved
in the outer region. The k � l formulation has been
used to this end, in an approach called the \two layer
k�" model" [21]. Rodi [22] examined this model on the
backward step and his results showed that this model
had better results than the k�" model, especially in the
near wall region. Using the same model combination,
Cho et al. [23] performed promising calculations of the
two-dimensional unsteady ow �eld in a linear turbine
cascade, including transition on the blade surfaces.

In the last few years, the �2 � f turbulence
model, originally suggested by Durbin [24], has become
increasingly popular, due to its ability to correctly
account for near-wall damping without using the so-
called damping functions. The �2 � f model in many
uid ows, where complex ow features are present, has
shown to be superior to the other RANS methods. For
example, Parneix et al. [25] successfully computed the
strongly three-dimensional ow around a wall-mounted
appendage. Using the �2 � f model, Hermanson et
al. [26] obtained improvements in the prediction of heat
transfer rates, as compared to k � " computations for
a stator vane ow. Similar results were also found
in Sveningsson [27]. Another class of ows, where
the �2 � f model seems to work well, is separated
ows. Cokljat et al. [28] computed a set of recirculation
ows and found that the �2 � f model in many cases
outperformed the two-equation approaches. The same
trend was seen in Iaccarino [29], where the ow in an
asymmetric di�user was computed using the �2 � f
model and the Launder-Sharma low-Reynolds number
k � " model. The separation bubble characteristic of
this ow was fairly accurate when predicted with the
�2 � f model, whereas the k � " model produced no
recirculation at all. Due to the somewhat unstable for-
mulation of the wall boundary condition of relaxation
parameter, f , in the original formulation of the �2 � f
model, Lien and Kalitzin [30] slightly rede�ned f , in
order to have a numerically more attractive boundary
condition. Due to the improved numerical properties of
the rede�ned model, it has become more popular than
the original, which in most cases, required a coupled
solution procedure (e.g. [27]). In a recent study of
Sveningsson [31], the behavior of two versions of the
�2�f model is compared, in an attempt to investigate
in which aspects they di�er and, also, to improve the
overall understanding of �2�f models performance. In
the new study of Heschel et al. [32], 3D wall jets, using

di�erent turbulence models, have been compared with
each other, using Fluent software. They showed that
linear eddy viscosity turbulence models are unable to
predict the lateral spreading rate of three dimensional
wall jets accurately. If Reynolds stress models are used,
it can also be derived that the computed results are
very sensitive to the chosen pressure strain models.
However, they showed that the �2 � f model has very
good agreement with DNS data.

In this study, a density current was simulated by
the k � ", k � " RNG, two-layer k � " and modi�ed
�2 � f turbulence models, all of which were compared
with experimental data.

MATHEMATICAL MODELING

Governing Equations

Figure 1 shows the schematic sketch of the density
current. The salt solution is used as the dense layer
and its concentration is so small that a Boussinesq
approximation can be used. With this assumption, the
e�ects of the density di�erence are neglected in the
inertial term, but included in the buoyancy force term.
However, the governing equations of this current are:
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where these equations are continuity, momentums and
mass balance and u and � are streamwise and normal

Figure 1. The schematic sketch of the density current.
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velocity in x and y directions. C is the concentration
of the salt solution, de�ned as C = (�� �w)=(�s � �w)
and � is the density of the salt-water solution. �s and
�w are the salt and water densities. � and � are the
viscosity and di�usivity of the mixture, respectively. In
the momentum equation, g0 is the reduced gravitational
acceleration, which is de�ned as:

g0 = g
�� �w
�w

: (5)

In the mass balance equation (concentration equation),
�s is the turbulence di�usivity. By using the turbulent
Schmidt number, Sc, and turbulence eddy viscosity, �t,
the eddy di�usivity is de�ned by:

�s =
�t
Sc
: (6)

While the Schmidt number, similar to the Prandtl
number, is predictable to be a�ected by the buoyancy,
there is assumed to be unity here [15].

Turbulence Modeling

When the dense uid enters the channel and moves
forward under the surrounding water, it behaves like
a wall jet. A characteristic feature of this current
is the presence of both a near-wall layer and a free-
shear layer; these layers interact with each other and
calculation methods must be capable of describing
this interaction. In particular, the damping of nor-
mal uctuations, caused by the presence of the wall,
extends into the free shear layer, causing the plane
wall jet to spread about 30 percent less than the
equivalent free jet [33]. Experimental results show that
location of the maximum velocity is too close to the
wall and the algebraic model (eddy viscosity concept)
predicts that the shear stress must be vanished at
the location of zero velocity gradients. In contrast,
experiments have shown that the locations of zero
shear stress and zero velocity gradients do not coincide
and this behavior can be simulated only with a full
stress-equation model [32,34]. Physical phenomena
involved in density currents are substantially di�erent
and have been considered as highly challenging test
cases for the validation of turbulence models. Since
the density current lies on the bed and at a short
distance from the bed, the near wall region is very
important. Therefore, the near bed behavior has an
important e�ect on the characteristics of this current.
In addition, the presence of the density di�erences
increases the complexities, due to the great source
term of body forces and entrainment and interaction
with the ow and turbulent kinetic energy production
terms. Choi and Garcia [35] studied these e�ects on
the characteristics of the k � " turbulence model.

A Standard k � " Model
Most predictions in industry involve the use of standard
or modi�ed versions of the k � " turbulence model,
available in much existing CFD software. These
models have usually been developed, calibrated and
validated using ows parallel to the wall. The standard
k � " model showed poor results in the near wall
region [36,37]. Moreover, since density currents become
turbulent at low Reynolds numbers (of order 103), the
k � " model, which has been standardized for high
Reynolds number and isotropic turbulence ow, cannot
simulate the anisotropy and non-homogenous behavior
found near the wall [36,38]. In order to integrate k and
" into the wall, it is common practice to introduce low-
Reynolds number damping functions. These are tuned
to mimic certain near-wall behaviors [37]. However, all
these models use a single-point approach that cannot
represent the non-local e�ects of pressure-reection
that occur near solid boundaries [39].

The k � " model equations are as follows:
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where uj = (u; �; 0) is the mean velocity components;
k is turbulent kinetic energy; " is dissipation; �
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The constants in the standard k � " model are:

�k �" C� C1 C2
1.0 1.3 0.09 1.44 1.92

In these equations, eddy-viscosity is de�ned as: �t =
C� k

2

" .

k � " RNG Model
Yakhot and Orszag [18] introduced the Renormaliza-
tion Group (RNG) model. This model is similar to the
k � " model, but additional terms should be added to
the right hand side of Equation 8, so that it is de�ned
as follows:
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In the last term, � is the turbulent time-scale, pro-
portional to the mean ow time-scale. Therefore, this
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model can simulate the o�-equilibrium e�ect. � is
de�ned as:

� = S
k
"
;

where:
S =

p
2SijSij ;

and:

Sij =
1
2

(ui;j + uj;i):

The constants in this model are:

�k �" C� C1 C2 �0 �
0.8 1.15 0.0865 1.45 1.83 4.38 0.015

This additional term, mathematically, causes a
smaller estimation of eddy-viscosity than that of the
standard k � " model and has a better prediction of
the mass transfer from the wall.

Two-Layer k � " Model
In the two-layer model, developed by Chen and Pa-
tel [21], the bulk of the ow is simulated with models
employing a length-scale-determining equation, rang-
ing from the k � " eddy-viscosity model to Reynolds-
stress models, while the viscosity-a�ected near-wall
region is resolved with a simple one-equation model
k � l (model) employing a prescribed length-scale
distribution. Therefore, for the near-wall region, the
eddy-viscosity and dissipation rate are de�ned as:
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The constants are as follows:
Cl = �C�0:75

� ; C� = 0:09; A� = 50:5;

Rey =
k0:5y
�

; A" = 5:08;

and:
A+ = 25:

And the k � " model should be solved far from the
wall region. These models k� " (and k� l) join at the
region where the local Reynolds number is Rey = 250.
This model needs a very �ne grid near the wall region,
therefore, 2 grids are located under the y+ = 1 and 7
grids are located under the y+ = 5.

�2 � f Model

An attractive alternative to the k�" model is the �2�f
turbulence model [24]. The reason for this is the avail-
ability of an additional turbulent velocity scale generic
wall normal Reynolds stress component, �2. Also, the
damping functions can be avoided. By considering the
exact transport equations for Reynolds stresses in a
fully developed channel ow, it can be readily shown
that the production of u� (the only Reynolds stress
component that a�ects the mean ow �eld) should
be proportional to �2. In two-equation models, the
velocity scale (squared) is not explicitly available, but
is replaced by the turbulent kinetic energy, k. As k
has a di�erent wall distance dependency (y2), from �2

(y4), this model is expected to be inaccurate as the
walls are approached. This de�ciency can be controlled
to some extent by introducing a damping function
that improves the wall distance dependency of u�.
Durbin [24] showed that, by simply replacing k with
�2 in the de�nition of the eddy-viscosity, results were
substantially improved. Hence, an alternative interpre-
tation, or de�nition of the damping function, say f�, is
�2 = f�k. The main problem with a damping function
is that this function can be tuned to only a limited
number of test cases. In �2 � f models, on the other
hand �2 is governed by a separate transport equation
and, thus, has the potential of being applicable to a
wider range of ow situations. In general, �2 should
be regarded as a scale for the velocity component
responsible for turbulent transport. It is proportional
to k far from solid walls, while, in the near-wall
region, it becomes the velocity uctuation normal to
the solid surface, regardless of the orientation of the
surface. One important feature of the �2 equation is its
ability to account for non-local e�ects (e.g. kinematics
blocking) by solving an elliptic relaxation equation for
f ; a parameter closely related to the pressure strain
redistribution term. A modi�ed Helmholtz operator
introduces ellipticity, which is amenable to numerical
computation. It introduces wall e�ects by a linear
equation. This operator generates turbulence pro�les
that evolve from the near-wall behavior to far from the
solid boundaries. Finally, a mathematical constraint
has been added to prevent non-realizability of the eddy
viscosity, especially in the stagnation region [40].

For an extensive discussion on this subject, see
[41]. The model equations are outlined as follows: The
�2� f model could be thought of as a simpli�cation of
a full Second Moment Closure (SMC) model [40]. For
instance, the source terms in the f equation represent
a return to isotropy and isotropization models for
energy redistribution. In this and in other ways,
the important e�ects of the near-wall anisotropy are
represented. However, the �2 � f model has the
advantage of solving the mean ow with an eddy
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viscosity, which avoids some computational stability
problems that have been encountered with the full
SMC models. It is a general geometry turbulence
model; valid right up to solid walls. It does not need
wall functions, whose universality is increasingly being
called into question [42].

In the modi�ed �2 � f turbulence model, the
following transport equations must be solved in order
to estimate the eddy viscosity:
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the dissipation near the wall and improves the predic-
tion of k. This model also needs �ne grids near the wall
region. The �rst grid in this model was located at the
region in which y+ was less than one.

Test Cases and Boundary Conditions

The computational domain was de�ned, based on the
two-dimensional laboratory experiments of Garcia [5]
and Akiyama [43]. It is supposed that the channel
in all cases has 6 m length and other variables are
related to its experimental model. Since it is well-
known that the behavior of density currents is fully 3D,
even in relatively-narrow umes, the issue as to what
extent 2-D simulations can capture the main features
of the ow is expected to be addressed. The boundary
conditions at the inlet are known and similar to the
experimental models. The salt-water solution, as a
dense uid with uniform velocity and concentration,
enters the channel under the still bodies of water
passing through a sluice gate opening and moves along
the bed inclined at angle �. The schematics of the mesh
and boundary conditions have been shown in Figure 2.
At the out-ow boundary, the stream-wise gradients
of all variables are set to zero. It is expected that the
modeling of the outlet has only a local e�ect on the ow
�eld. At the free surface, the rigid-lid approximation is
made. Then, the symmetry condition is applied, which
includes zero gradients and zero uxes perpendicular to
the boundary. At the bed, velocities and concentration
gradients are set to zero, Ui = 0; k = 0; �2 = 0;
" = 2�k=y2; ~f = 0 and for models, such as the k � "
model, the wall function has been used in the sub-layer
region; it means only one grid located below y+ = 30.
Also, for k�", k�" RNG, the two-layer model and the
modi�ed �2 � f equations, at the free surface, no ux
conditions are imposed, i.e., @k

@y = @"
@y = @v2

@y = @f
@y = 0

and, at the inlet kin = (0:1uin)2 and "in = 10k3=2
in =hin,

in which hin = inlet height, are used [44]. To verify
the results of these models, three data sets, such as the
height of the body and the non dimensional velocity
pro�les from di�erent researchers, have been examined.

Solver

Using the pressure correction scheme SIMPLEC and a
collocated grid arrangement with the Rhie-Chow [45]
interpolation, a �nite volume code was developed. The
Loda scheme was used to discrete the momentums,

Figure 2. The schematic of mesh and boundary
conditions.
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turbulence and di�usion equations. Due to the con-
vergence problems, the multi grid method was used to
enhance the numerical stability. The equations were
solved with a coupled tri-diagonal matrix algorithm
(TDMA). All uid properties were treated as being
constant. Convergence of the solution was obtained
when the maximum summation of the residuals in all
nodes was less than 10�3. The mean ow variables,
such as mean ow velocity, are grid independent for
all models; it was found that these models were not
sensitive about the number of meshes in the x direction.
100 meshes in that direction were enough, but in order
to prevent numerical problems, because of the aspect
ratio of the grid cells, it was endeavored to reduce the
aspect ratio, especially for two-layer and �2�f models
in the near wall region. So, for unity, 140 meshes
were used in an x direction for all models. In the y
direction, these models needed di�erent strategies for
mesh generation, which has been previously explained.

RESULTS AND DISCUSSION

Figure 3 shows the height of the steady state density
current in comparison with the experimental data of
Akiyama [43]. In the experimental e�orts, it is common
to measure the height of this current via its brightness
using optical instruments. Therefore, in this work,
it was supposed that the height of the current is the
location where the concentration is equal to 1% of the
inlet concentration (like the boundary layer approach).

It can be seen that all the k � " based models
have overshot the height of the current. It seems that
these models overestimate the eddy viscosity near the
wall [39], so the friction coe�cient increases, causing
the growth of the dense layer to be overshot. On
the other hand, at the interface, because of the large
di�usion term in the k� " model (consequently, in the
other approach of the k � " model), the dense layer
shows very rapid spreading. However, as the ability of
the models improves, the height decreases. In the face
of the k�", k�" RNG and two-layer k�" model, which
cannot simulate anisotropic e�ects, the �2 � f model
can simulate anisotropic behavior near the bed and free
shear layer; therefore, the agreement between predicted
and experimental results is very good. Moreover, in
this �gure, it is seen that, by increasing the inlet
Reynolds number, the growth rate of the dense layer de-
creases. Figure 4 shows the comparison among RANS
models to predict the bed skin-friction coe�cient. At
the inlet section, an internal hydraulic jump probably
forms and a large amount of mixing causes entrain
of clear water. This �gure illustrates that all models
come together far from the inlet, but at the inlet
section, which has large anisotropic e�ects, shear rate
and mixing, these models estimate di�erent friction
coe�cients and turbulent kinetic energy. Figure 4 also

Figure 3. The steady density current height with the
RANS models, in comparison with the experimental data
(at two di�erent inlets Reynolds number).

Figure 4. The friction coe�cient computed by RANS
models.
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shows that after a short distance, the density current
becomes established; i.e. Cf becomes almost constant
and the drag force and buoyancy are balanced with
each other. The k � " model has over-predicted the
turbulent kinetic energy in the shear layer and has
caused an increase in the entrainment rate, so the
height of the current overshoots. The two-layer model
shows a similar weakness, but the k � " RNG predicts
low turbulent kinetic energy in this region. In Figure 5,
velocity vectors and turbulent kinetic energy contours
are shown. This �gure illustrate that the turbulent
kinetic energy in the shear layer has greater e�ects
than the bed friction coe�cient on the height of the
current. It is remarkable that the height of the body
is proportional to the shear layer turbulence intensity
and the bed friction coe�cient, respectively.

Figure 6 shows the computed vertical structure of
the dense underow, and illustrates that the turbulent
kinetic energy in the shear layer develops on an inclined
bed. In this �gure, the stream-wise velocity is given
in a dimensionless form. That is, the vertical axis is
non-dimensionalized by the local current thickness, and
the horizontal axis is non-dimensionalized by the layer-
averaged value. The layer-averaged quantities can be
calculated as follows [1]:

U =

hR
0
udy

h
; (16)

Cav =

hR
0
Cdy

h
; (17)

where U is layer-averaged velocity of the layer and Cav
is layer-averaged concentration of the layer.

Figure 5. The turbulent kinetic energy contours and
velocity pro�les computed by RANS models Rei = 2538,
hi = 4 (cm).

Figure 6. Similarity collapse of vertical structure of
dense underow.

Figure 6 shows the velocity pro�le at some down-
stream locations computed with RANS models. It
is seen that all of the models are almost �tted with
the experimental data (especially �2 � f model), but
according to Figure 3, the k � ", k � " RNG and two-
layer k� " models have over-estimated in body-height.
It seems this point comes from the properties of the
dimensionless pro�le, which has no sense of the body
height expansion rate. It can be seen from Figure 6 that
the maximum velocity occurs quite close to the channel
bottom, particularly in the two-layer model, which used
one equation model in this region. Good agreement
between computed solutions and experimental results is
obtained. Therefore, the �2�f model has much better
results on this current (both regarding body height and
dimensionless velocity pro�les).

Entrainment Concept

Due to the presence of shear layer at the interface of
the density current and ambient uid, the interface
is disturbed and the surrounding uid is entrained.
Turbulence at this boundary entrains the stationary
ambient uid immediately above it into the layer and
dilutes it. The turbulent region grows with distance
downstream as the non-turbulent uid becomes en-
trained in it. Therefore, a small mean vertical velocity
perpendicular to the mean ow is generated when the
ambient uid is initially at rest. Ellison and Turner [1]
suggested that the velocity of the inow into the
turbulent region must be proportional to the velocity
scale of the layer; the constant of this proportionality
is called the entrainment coe�cient, E.

If a 2-D ow is considered and, therefore, if
the lateral entertainment is neglected, the entrainment
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coe�cient, E, is de�ned as:

d(UA)
dx

= EUb0; (18)

where A is area of cross section of the dense layer; U
is layer-averaged velocity; and b0 is the width of the
layer. Entrainment is governed by the bottom slope,
friction and mixing at the interface of the dense layer.
In this study, the entrainment coe�cient is derived by:

E =
1
U

d
dx

(Uh); (19)

where h is the local height of the density current.
The entrainment coe�cient of the density current,
calculated with RANS models, is shown in Figure 7
along the downstream for Rein = 2538. It can be
seen that, due to the higher shear rate, E is maximum
at the inlet. Hence, greater turbulent kinetic energy
production and larger mixing is generated in this
region. Then, E decreases to an almost constant, as
the ow becomes established. It can be seen that the
model which predicts greater turbulent kinetic energy
(Figure 5) in the shear layer region provides the greater
entrainment coe�cient.

Figures 8 and 9 show the layer-averaged velocity
and concentration at the downstream locations com-
puted with RANS models. In Figure 8, it can be
seen that the average velocity computed by the �2 � f
model decreases very slowly, but other models predict
very rapid decreasing in the averaged velocity. This
comes from the fact that the �2 � f model predicted
the growth of the height truly and slowly (Figure 3).

Figure 9 illustrates that the layer-averaged con-
centration decreases at the downstream and it can
be seen that the averaged concentration, velocity and
height of current (Figure 3) are linked to each other.

Figure 7. The entrainment coe�cient.

Figure 8. Averaged velocity along the bed (Equation 15).

Figure 9. Averaged concentration along the bed
(Equation 16).

Moreover, this �gure illustrates that the averaged con-
centration simulated by the two-layer model decreases
very rapidly near the inlet section, due to over predic-
tion in mixing intensity and entrainment. It is very
attractive that this decreasing rate (Figures 8 and 9) is
proportional to the amount of turbulent kinetic energy,
which is shown in Figure 5. For example, the k � "
RNG model, which produces the smaller amount of
turbulent kinetic energy near the inlet section, predicts
a smaller mixing and slighter decreasing in the averaged
concentration compared to that of the k�" or the two-
layer models in this section.

Comparing RANS Models

According to the solution procedure and mesh gener-
ation, it is considered that the �2 � f model has the
best results and can simulate this current very well,
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Table 1. Summary results of the RANS models, using a 2000 MHZ Pentium-4 processor.

Models k � " k � " RNG Two Layer �2 � f
Iteration O (1200) O (1400) O (1200) O (3000)

Run Time/Run Time k � " 1 (3 hr approx.) 1.3 (4 hr approx.) 2.1 (6 hr approx.) 4.5 (13 hr approx.)

Number of Grids 140� 54 140� 54 140� 77 140� 66

Wall Function Used Used Not used Not used

Accuracy in This Case Function insu�cient Function insu�cient Function poor Function well

with about a 4.5 times increase in time consumption
per iteration, in comparison with the standard k � "
model. Since the �2� f model has two equations more
than the k�" model, normally, it needs 40% more time
to solve these additional equations. On the other hand,
these equations impose additional cost because of their
computational stability problems, reduction methods
for which are required (e.g. multi grid method).
Moreover, access to convergence is hard in this model
and needs very �ne grids near the bed. The two-
layer k � " model also needs very �ne grids near the
bed, so the computational cost is more than the k � "
model. However, its results are not proportional to this
increased cost at least in this test-case. The k�" RNG
model has better results than the k�"model. Although
its computational cost is almost similar to the standard
k � " model, its convergence needs more attention. In
this study, by considering both computational cost and
result accuracy, the �2 � f model is the best model
and completely worthy of use. The k � " RNG model,
standard k � " model and two-layer k � " model are
known as the next ranks. Using a 2GHz Pentium-
IV processor, Table 1 shows a comparison between
these 4 models. In this table, it is seen that, in the
�2�f model, convergence accessibility is di�cult and it
needs roughly 2.5 times more iterations than the others.
Moreover, although the two-layer model is perfect in
the sub-layer region, it seems that the shear layer has
greater e�ects on this current than that of the sub-layer
region. Also, this model over-estimates the turbulent
kinetic energy in the shear layer. On the other hand,
since the �2 � f model uses excellent turbulent time
and length-scale in the domain, its prediction is the
best among other models, especially in the shear layer
and near the wall region. Finally, if one ignores the
�2�f model, because of its cost and complexity in the
convergence and numerical sti�nesses, the k � " RNG
model will be the second most accurate and e�cient
turbulence model option to simulate this current.

CONCLUSIONS

Four turbulence models have been applied to simulate
the structure of the density current. Momentums,
continuity, di�usion equations of the salt-water solution

and turbulence equations are solved simultaneously
by the SIMPLEC method, without any limitations or
simpli�cations. The computed height of the dense
underow, velocity, concentration and other character-
istics were compared with one another and with the
experimental data. It was also shown that the density
current is very sensitive to the type of turbulence model
which simulates it, because of the structure of this
current, which is like a wall jet. Moreover, it has been
shown that the �2�f model has the best result on this
current, especially in calculating the shear layer and
near the bed characteristics, according to its ability to
simulate the anisotropy e�ects in the domain.

NOMENCLATURE

b0 width of the layer
C�; C"1; C"2 constants in the k � " model
C concentration
" energy dissipation rate
E water entrainment coe�cient
f� damping function
f relaxation variable
g gravity
g0 reduced gravity
H water depth
h density currents height
� Von Karman constant
k turbulent kinetic energy
L length-scale of turbulence
Pk production term
Ri bulk Richardson number
Sij strain rate tensor

S S2 = SijSij
T time scale of turbulence
U = Uav layer-averaged velocity in the x

direction
u� shear velocity
u; � x and y directions, respectively
uiuj Reynolds stresses
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�2 turbulent velocity scale
y wall normal distance
�t turbulence viscosity
�k; �" turbulence constants
�w density of water
�s density of salt solution
� channel slope angle
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