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Impedance Control of a Flexible Link Robot for

Constrained and Unconstrained Maneuvers

Using Sliding Mode Control (SMC) Method

G.R. Vossoughi� and A. Karimzadeh1

In this paper, the modeling and impedance-control of a one link exible robot is presented. The

concept of impedance control of exible link robots is rather new and is being addressed for the

�rst time. The control algorithm is valid for both constrained and unconstrained maneuvers.

First, equations of motion and the associated boundary conditions are derived using Hamilton's

principle. A linear �nite dimensional model is, then, generated in the Cartesian coordinates, using

the assumed mode method and by introduction of a proper coordinate transformation. The target

impedance is, then, introduced in the Cartesian coordinate system and a control law is designed

to realize the proposed target impedance for a given frequency range, using the Sliding Mode

Control Theory. A set of computer simulations are carried out to demonstrate the e�ectiveness

of the proposed control law. Simulations are carried out with various contact sti�ness. As the

results show, when the environmental surface sti�ness is smaller than, or comparable to, that of

the link, the control system is able to achieve stable behavior and the link vibration diminishes

rather rapidly. However, when the environmental sti�ness is much greater than that of the

sti�ness of the link, although the robot achieves stable behavior during contact, the vibrations

tend to increase.

INTRODUCTION

The closed-loop motion control systems fall, in gen-
eral, into two di�erent classes: unconstrained and
constrained systems. In the �rst case, the dynamic
system (e.g., a manipulator) is driven in its workspace
without contact with the environment. In the second
case, the system is driven in its workspace in such a way
that the environment continuously exerts a dynamic
or kinematic constraint on the system's motion. A
dynamic maneuver, such as leading a manipulator in
a free environment towards a metal surface and, then,
machine the surface, may consist of both types of
maneuver.

The rejection of external forces is an important
design speci�cation when the dynamic system is un-
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constrained. Once the system crosses the boundary
of the unconstrained environment (i.e., the dynamic
system interacts with the environment), the dynamics
of the system will change and stability will no longer
be guaranteed with the same controller. In constrained
maneuvering, the interaction load must be accommo-
dated rather than resisted. If one de�nes \compliancy"
as a measure of the stability of a dynamic system to
react to interaction forces and torques, one can state
the objective as assuring compliant motion in the global
Cartesian coordinate frame for dynamic systems that
must maneuver in a constrained condition.

Three general approaches to the compliant motion
control include: Impedance control, sti�ness control
and hybrid position/force control. Hogan [1] �rst
presented the idea of impedance control. In this
method, neither the position nor the forces are con-
trolled. In impedance control, one rather dictates a pre-
de�ned dynamic { often second-order and referred to
as the target impedance - between the motion (position
and orientation) and the interaction loads (forces and
torques). An impedance control system reduces to a
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position control system during unconstrained maneu-
vers (because there are no interaction forces) and ac-
commodates/controls contact forces during constrained
conditions. Indeed, position control and force control
are two extremes of impedance control. The former
implies very high impedance, while the latter implies
very low impedance.

Impedance control of rigid manipulators has been
extensively addressed in the literature [1-6]. Many
researchers have also considered the position, force
and hybrid position/force control of exible manipula-
tors [7-15]. However, the problem of impedance control
of a exible manipulator has not yet been addressed in
the literature. Impedance control provides a universal
approach to the control of exible robots - in both
constrained and unconstrained maneuvers. This also
allows for controlling the compliance of exible robots/
structures beyond their natural compliance, making
them more exible or rigid, as needed.

In this article, a novel impedance-control strat-
egy is presented for a one-link exible manipulator
using the Sliding Mode Control (SMC) theory. By
including a term for the desired interaction force,
the target impedance speci�cation allows for force
tracking during constrained maneuvers. Based on the
SMC and eigenvalue assignment method, the dynamic
system is forced in the sliding mode to achieve the
desired impedance. Simulation results of the exible
link, during the transition from an unconstrained to
constrained condition (wall with speci�ed sti�ness),
are presented to demonstrate the e�ectiveness of the
proposed impedance-control strategy.

MODELING

In this section, the modeling of a one degree of
freedom exible robot is carried out for use under two
conditions: Unconstrained and constrained state. In
the �rst case, it is assumed that the robot can move
freely in its workspace without coming into contact
with the environment. In the second case, it is assumed
that the robot is in contact with an environment having
a sti�ness, ke.

Modeling of an Unconstrained One-Link

Flexible Robot

Let one consider a one-link exible robot with length,
l, mass per unit length, �, and uniform exible rigidity,
EI , that is driven by a motor in the horizontal plane by
a torque, � . The beam is assumed to be clamped on the
motor's shaft with moment of inertia, J , and having a
tip point mass, M , at the end. Let � be the angle of
rotation of the rotor and oxy representing the moving
coordinate system, �xed to the rotor and rotating
with angular velocity �; (t) and angular acceleration, ��,

Figure 1. One-link exible robot during an
unconstrained maneuver (with point mass M).

about the inertial coordinate system, OXY. Referring
to Figure 1, let W (x; t) denote the deformation of any
point, x, and We(t) = W (l; t) be the end deection of
the beam at any time, t. To write equations of motion,
the following assumptions are made:

- The e�ects of nonlinear terms (W _�)2 are small and
negligible;

- The joint angle �(t) is assumed to be small (i.e.,
sin(�) � �, cos(�) = 1);

- The rotational e�ects and shear deformations are
negligible and the link is modeled as an Euler-
Bernoulli beam.

Given the above assumptions, for any given point
along the beam, one may write:

y(x; t) = x� � w(x; t): (1)

The total kinetic and potential energies and the virtual
work done by the motor are, then, given by:

Ek =
1

2
J _�2 +

�

2

lZ
0

_y(x; t)2dx+
1

2
M _y(l; t)2;

Ep =
EI

2

1Z
0

y00(x; t)2dx;

�W = ���: (2)

Using Hamilton's principal yields:

tZ
t0

(�Ek � �Ep + �W )dt = 0: (3)
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By separately calculating the variation of the parame-
ter in Equation 3, one gets:

�Ek = J _�� _� + �

lZ
0

( _y� _y)dx+M _y(l; t)� _y(l; t);

�Ep = EI

lZ
0

(y00�y00)dx: (4)

Substituting Equation 4 into Equation 3 and using the
integration by parts gives:

�� : �J �� � �

lZ
0

x�y(x; t)dx �Ml�y(l; t) + �(t) = 0;
(5)

�w : ��y(x; t) +EIy0000(x; t) = 0; (6)

�y(l; t) : �M �y(l; t) +EIy000(l; t) = 0: (7)

In obtaining the above equations, the following bound-
ary conditions have been used:

w(0; t) = w0(0; t) = w00(l; t) = 0: (8)

By substituting Equation 6 into Equations 5 and 7, one
gets:

J �� �EIy00(0; t) = �(t); (9)

��y(x; t) + EIy0000(x; t) = 0: (10)

The boundary conditions for Equation 10 are stated as:

y(0; t) = y00(l; t) = 0; y0(0; t) = �(t);

M

�
y0000(l; t) + y000(l; t) = 0: (11)

By substituting Equation 1 into Equations 9 and 10,
one obtains the equations of motion in the following
forms:

j�� +EIw00(0; t) = �(t); (12)

� �w(x; t) + EIw0000(x; t) = x��; (13)

with the boundary conditions:

w(0; t) = w0(0; t) = w00(l; t) = 0; (14)

Mw0000(l; t) + �w000(l; t) = 0: (15)

The above boundary Conditions are homogeneous,
making the derivation of the �nite dimensional modal
model relatively straightforward using the assumed
mode method.

Modeling of a Constrained One-Link Flexible

Robot

One now proceeds to model a one-link exible robot
with its end-point in contact with an environment.
As shown in Figure 2, it is assumed that the robot
encounters a wall with a known sti�ness exerting a
force, f(t), at the end-point of the robot.

The kinetic and potential energy of the link and
the virtual work done by the motor may be written as:

Ek =
1

2
J _�2 +

�

2

lZ
0

_y(x; t)2dx+
1

2
M _y(l; t)2;

Ep =
EI

2

lZ
0

y00(x; t)2 + f(t)y(l; t);

�W = ���: (16)

Substituting Equation 16 into Equation 3 and integrat-
ing by parts yields:

�J ����

lZ
0

x�y(x; t)dx�Ml�y(l; t)+�(t)�f(t)l=0; (17)

��y(x; t) +EIy0000(x; t) = 0; (18)

EI(M �y(l; t) + �y000(l; t)) + �f(t) = 0: (19)

Equations 17 and 18 describe the equation of motion
for the exible link. Equation 19 gives a boundary
condition at x = l. The other three B.C's for
Equation 18 are, as follows:

y(0; t) = y00(l; t) = 0; y0(0; t) = �(t): (20)

Substituting Equation 18 into Equations 19 and 17, one

Figure 2. Constrained one-link exible robot in contact
with environment (with known sti�ness Ke).
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obtains:

J �� �EIy00(0; t) = �(t); (21)

��y(x; t) +EIy0000(x; t) = 0; (22)

y(0; t) = y00(l; t) = 0; (23)

y0(0; t) = �(t); (24)

EI

�
M

�
y0000(l; t) + y000(l; t)

�
= �f(t): (25)

Substituting Equation 1 into Equations 21 to 25 gives:

j�� +EIw00(0; t) = �(t); (26)

� �w(x; t) +EIw0000(x; t) = x��; (27)

w(0; t) = w0(0; t) = w00(l; t) = 0; (28)

EI

�
M

�
w0000(l; t) + w000(l; t)

�
= f(t): (29)

Note that the boundary condition in Equation 29 is
non-homogenous, calling for special attention. In the
following section, a �nite dimensional modal model
will be derived for the robot in both unconstrained
and constrained conditions, one that is suitable for the
controller design applications.

CONSTRUCTION OF FINITE

DIMENSIONAL MODEL

A �nite dimensional model is constructed for both
unconstrained and constrained cases. In order to con-
struct a �nite dimensional model, the eigen-function
expansion method is used.

Unconstrained-Case

Substituting w(x; t) =
NP
i=1

'i(x)qi(t) into Equations 12

and 13 and multiplying every term by 'i(x), one
obtains:

�qi(t) = �!2i qi(t) + bi�� � �!2i _qi(t); (30)

J �� +EI

NX
i=1

'00i (0)qi(t) = �(t): (31)

In which, 'i(x) represents the solution of the Euler-
Bernoulli beam (with the given boundary conditions),
and !i and � are the frequency of vibrations and
the small structural viscous damping of the beam's

material, respectively. Other parameters are de�ned
as:

bi =< x;'i(x) >; (32)

< 'i; 'j >=

lZ
0

'i'jdx+
M

�
'i(l)'j(l);

< 'i; 'j >= 0 if i 6= j: (33)

Constrained-Case

Substituting w(x; t) =
NP
i=1

'i(x)qi(t) into Equations 26

and 27 and multiplying both sides by 'i(x), results in:

�qi(t)=�!
2
i qi(t)+bi

����!2i _qi(t)�('i(l)=�)f(t); (34)

J �� +EI
NX
i=1

'00i (0)qi(t) = �(t); (35)

bi =< x;'i(x) >; (36)

where 'i(x) is the solution of the following equation
and boundary conditions:

'0000 = (�!2=EI)'; (37)

'(0) = '0(0) = '00(l) = 0; (38)

M'0000(l) + �'000(l) = 0; (39)

and ! is the frequency of vibrations.

MODELING IN THE CARTESIAN

COORDINATE SYSTEM

Since the target impedance is always de�ned in the
Cartesian coordinate system, the dynamic model shall
be expressed in the Cartesian coordinate system. One
can use Equations 1 to construct a transformation
between end point coordinate x(t) and the joint co-
ordinate �(t):

x(t) = l� �

nX
i=1

qi(t)'i(l): (40)

Di�erentiating Equation 40 and using Equation 34, one
gets:

�x = ktu(t) +
nX
i=1

kiqi(t) + ci _qi(t) + af(t); (41)
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where:

kt = l �

nX
i=1

bi'i(l); ki = 'i(l)!
2
i ;

ci = �ki; a =

nX
i=1

'i(l)
2=�; (42)

and u(t) = ��(t) is considered as the control input.
In Equation 34 and Equation 41, when the robot
moves freely without any environmental contact, then,
f(t) = 0 and, as long as the endpoint is in contact with
the environment, one has f(t) = �kex(t), where ke is
environmental sti�ness at the point of contact.

Equations 34 and 41 can be written in the state
space form, as follows:

_X = AX +Bu+Bff(t); (43)

where:

A =

�
A11 A12

A21 A22

�
;

A22 =

2
664

0 1 0 0 � � � � � � 0
�!21 ��!21 0 0 � � � � � � 0
0 0 0 1 0 � � � 0
0 0 �!22 ��!22 0 � � � 0

3
775 ;

si = �
'i(l)

�
;

A12 =

�
0 0 0 0 0 0
k1 c1 � � � � � � kn cn

�
2�2n

;

B2 =
�
0 b1 0 b2 � � �

�T
2n�1

;

A11 =

�
0 0
0 1

�
2�2

;

Bf =
�
0 a 0 s1 0 s2 � � �

�T
(2n+2)�1

;

B =

�
B1

B2

�
;

A21 = [0]2n�2;

B1 =

�
0
kt

�
2�1

: (44)

DESIGN OF A SLIDING MODE

CONTROLLER FOR ACHIEVING TARGET

IMPEDANCE

In this section, a control system is designed to achieve
the desired target impedance. The controller en-
ables one to control the behavior of the robot in the
constrained as well as unconstrained condition. In
the unconstrained case, in e�ect, the position will be
controlled and in the constrained condition, a dynamic
relationship between position error and contact force is
controlled.

The target impedance is, usually, of the second
order nature and is given by [4,5]:

M�e+ C _e+Ke = �f(t);

e = x(t) � xd; (45)

where xd and f(t) are the desired end-point position
and contact force respectively. In a multi-input multi-
output case,M , C andK are positive de�nite matrices.
In the next section, the role and the selection guidelines
for each of the three parameters M , C and K will be
discussed.

DESIGN OF THE SLIDING SURFACE

In the previous section, the dynamics of the system
were presented in state space form. Assuming that
matrix B has full rank m (m is the number of
inputs), there exists an orthogonal (2n+ 2)� (2n+ 2)
transformation matrix, T , such that:

TB =

�
0
B2

�
; (46)

where B2 is m � m and a nonsingular matrix. The
orthogonality restriction is on T , for reason of numeri-
cal stability and to remove the problem of inverting T
when transforming back to the original system. A suit-
able method for determining T is the QU factorization,
where B is decomposed into the form:

B = Q

�
U
0

�
: (47)

With Q n�n and orthogonal, and U m�m, nonsin-
gular and upper triangular, T is, then, determined by
rearranging the rows of QT .

By writing Equation 43 in terms of the trans-
formed state variable, y = TX , one has:

_y(t) = (TAT T )y(t) + (TB)u+ (TBf )f(t): (48)
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The transformed state, Y , and the state Equation 48
may be now partitioned as:

yT = [yT1 ; y
T
2 ];

y1 2 Rn�m;

y2 2 Rm; (49)

and the matrices TAT T , TB and TBf are partitioned
accordingly, then, Equation 48 may be written in the
form:

_y1 = A11y1 +A12y2 +Bf1f(t); (50)

_y2 = A21y1 +A22y2 +B2u+Bf2f(t); (51)

TAT T =

�
A11 A12

A21 A22

�
: (52)

Now, if one de�nes the sliding surface as:

s = CX = 0: (53)

The main goal will be the determination of elements
of matrix C, so that the desired target impedance is
obtained in the sliding mode.

The sliding surface, in terms of the transformed
state, y, can be stated as:

s=(CT T )y=
�
C1 C2

��
y1 y2

�T
=C1y1+C2y2=0:

(54)

Condition 54, de�ning the sliding mode, may now be
written as:

y2(t) = �Fy1(t); (55)

where the m� (2n+ 2�m) matrix, F , is de�ned by:

F = C
�1

2 C1: (56)

This indicates that the evolution of y2 in the sliding
mode is related linearly to that of y1. The ideal sliding
mode is, therefore, governed by the following equations:

_y1 = A11y1 +A12y2 +Bf1f(t); (57)

y2(t) = �Fy1(t); (58)

which is an (2n + 2 � m)th order system, in which
y2 plays the role of a state feedback controller. Sub-
stituting Equation 58 into Equation 57 results in the
following closed loop dynamic:

_y1 =
�
A11 �A12F

�
y1 +Bf1f(t); (59)

which indicates that the design of stable sliding mode
dynamics (y1 ! 0 as t ! 1) requires the determi-
nation of the gain matrix, F , such that A11 � A12F

has (2n+2�m) left hand half-plane eigenvalues. This
may be achieved using a conventional pole-placement
method, i.e., one that minimizes an integral square
cost function. Here, one can use the pole placement
method to place the eigenvalues of Equation 59 in
the desired locations. However, to achieve the target
impedance Equation 45, one must choose the feedback
gain, F , such that eigenvalues of Equations 59 and
45 are equal. In a multi-input case, one has to
use the eigenstructure assignment method to match
the dynamics of Equations 59 and 45. A problem
which arises in a exible robot is that of the order
of the dynamics in Equation 59 being much higher
than that of Equation 45, depending upon the number
of the assumed modes in the model. Hence, the
eigenvalue assignment is nontrivial. This problem will
be considered, in detail, in the next section.

It is noted that whichever scheme one chooses for
the design, �xing F does not uniquely determine C.

This is due to the F = C
�1

2 C1 degrees of freedom in
the following relationship:

C2F = C1: (60)

A simple method of determining C, is to let C2 = Im
(identity matrix). This gives:

C =
�
F Im�m

�
T: (61)

This approach has the merit of minimizing the amount
of calculations and, hence, reducing the possibility of
numerical error.

SLIDING MODE CONTROLLER DESIGN

Now, one is ready to design a control law for achieving
the desired impedance in Equation 45, i.e., bringing
the systems state variables onto the sliding surface at
a �nite time and maintaining the state trajectory on
the surface. Various methods are proposed for reaching
the sliding surface. A simple reaching law, proposed by
Slotine [16-18], is as follows:

_s(t) = �k sgn(s)� �s(t)� �

Z t

0

s(t)dt; (62)

where �, � and k are positive numbers. The sgn(s) is
de�ned by:

sgn(s) =

8><
>:
1 s > 0

0 s = 0

�1 s < 0

: (63)

By di�erentiating Equation 54 and substituting from
Equations 62 and 43, one can obtain the following
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control input:

u = �(CB)�1fCAX + CBff(t) + F (s)g; (64)

F (s) = k sgn(s) + �s(t) + �

Z
s(t)dt; (65)

in which det(CB) 6= 0 is the necessary condition
for controllability. The control law in Equation 64
guarantees that the system reaches the sliding surface
at a �nite time and stays on the sliding surface there-
after. Once the sliding mode initiates, the dynamics in
Equation 59 are realized and the desired impedance
is achieved. The discontinuous function, sgn, in
the control law Equation 64 causes high frequency
chattering in the sliding mode, which is undesirable. To
overcome this problem, the sgn(.) function is replaced
with the piecewise continuous function, sat(.):

sat(s=�) =

8><
>:
1 s > '

s=' jsj < '

�1 s < �'

; (66)

in which, � is a positive number, known as the
boundary layer. This parameter must be chosen as
small as possible to eliminate the chattering.

SELECTION OF THE TARGET

IMPEDANCE

In the previous section, the desired impedance was
de�ned as:

M�e+ C _e+Ke = �f(t); 0 < ! < !0; (67)

in which (0; !0) is the frequency interval at which one
wants to realize the desired impedance. One usually
selects the K matrix to limit the desired interaction
forces and torques. The choices of inertia matrix (M)
and damping matrix C assure the achievement of !0
and stability of the system.

A small !0 will also allow one to meet strong
sets of stability robustness speci�cations at high fre-
quencies. On the other hand, with a very small !0,
stability robustness to parameter uncertainties may not
be satis�ed. This is true because stability robustness
to parameter uncertainties assign a lower bond on !0.
To achieve a wide !0, one should have a good model
of the system at high frequencies (and, consequently, a
weak set of stability robustness speci�cations at high
frequencies).

Because of the conict between the desired !0
and stability robustness to high frequency un-modeled
dynamics, it is a struggle to meet both sets of speci�ca-
tions for a given model of uncertainty. The frequency
range of operation, !0, cannot be selected to be of an
arbitrary wide, if a good model of the system does not

exist at high frequencies, while a good model of the
system at high frequencies makes it possible to retain
the target dynamics for a wider range of frequencies
(0; !0).

EIGENVALUES ASSIGNMENT OF THE

VIBRATION MODES

One of the main issues in the impedance control of
exible link robots is that the number of eigenvalues of
the target impedance is much smaller than the number
of modes of the system. To overcome this, one must
place the eigenvalues associated with the vibration
modes far from the origin, relative to the eigenvalues
of the target impedance. This makes the dynamics of
the target impedance dominant.

Letting !i and �i(i = 1 � � �n) be the frequency
and damping coe�cient of the ith vibration mode,
the eigenvalues are placed at ��!i�i � !j , where �
is a positive number that must be properly selected.
In selecting �, the control system must preserve the
stability robustness speci�cation over the frequency
range (0; !0). Proper selection of � requires experience
and understanding of the system. � must be large
enough to guarantee that the performance speci�cation
will be met, but also, small enough to ful�ll the stability
robustness speci�cation. Because one needs to have
a relatively large � (because �i's are very small), one
has to choose the frequency range, !0, as small as
possible.

BEHAVIOR OF IMPEDANCE CONTROL IN

UNCONSTRAINED AND CONSTRAINED

CONDITIONS

If, for a robot manipulator, the impedance in Equa-
tion 45 is realized over a speci�ed frequency range
(0; !0), depending upon the environment with which
the robot interacts, one can consider two modes for
impedance control. These modes are position control
and regulating force control.

Unconstrained Case

Before any contact (and in the absence of any contact
force f(t) : f(t) = 0), the arm is actually under position
control. In this phase, the governing impedance
equation is:

M�e+ C _e+Ke = �f(t) = 0; e = x� xd:

Thus, if the target impedance in Equation 45 is stable
(by proper selection of parametersM , C and K), then,
the error e = x � xd is guaranteed to approach zero,
thereby, achieving position control (x! xd).
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Constrained Case

After contact (and in the presence of contact force f(t))
the arm is actually under endpoint \force compensa-
tion". In this phase, the governing impedance equation
(assuming xe = 0) is:

M�e+ C _e+Ke = �f(t) = �Ke(x)

)M�e+ C _e+ (K +Ke)e

= �Ke(xd); (68)

where e = x� xd and Ke = environmental sti�ness:

Steady state position error:

e = �
Ke

(K +Ke)
(xd)

x!

�
K

K +Ke

�
xd; (69)

Steady state contact force:

f = �Kex =
�KKe

K +Ke

xd;

f =
�K

K +Ke

fd: (70)

If one assumes the desired contact force is mod-
ulated by the desired position, xd, as in fd = ke(xd),
then, one gets:

Steady state contact force f=�Ke:x=
K

K +Ke

fd:
(71)

Thus, under contact conditions, one can get controlled
regulation of the contact forces by proper selection of
the impedance parameter, K, or by location of the
eigenvalues of the target impedance in Equation 45.
Accurate control of the contact force requires the use
of force error in the impedance control law and will not
be pursued here.

COMPUTER SIMULATION RESULTS

The simulations are carried out to demonstrate the
e�ectiveness of the proposed impedance control law.
The simulation is done for two cases: (a) A wall
sti�ness, Ke = 100 (N/m) and (b) A wall sti�ness,
Ke = 1000 (N/m). Other assumed parameters are:

l = 0:9 (m); E = 2:06e11;
I = 1:41e� 11 (m4); � = 0:405 (kg/m);

� = 1:2e� 4 (N.s/m); M = 0:66 (kg);
J = 0:2; a = 1000;
b = 500; k = 0:2;

xd = �0:08+ 0:05t (m) (for unconstrained case);

xd = 0:02 (for constrained case):

The equivalent sti�ness and mass at the end of the
beam can be given by:

Keq =
3EI

l3
>> 12 [N/m];

Meq =
�l

3
= 0:12 [kg]:

Impedance parameters for two cases are given as:

for unconstrained phase:

M=0:06; C=2:1; K=16; !0=15(rad/s); �=50;

for constrained phase:

M=0:06; C=1:8; K=12:5; !0=15(rad/s); �=50;

contact time:

t = 1:6[sec]:

The simulation has been carried out using two
modes for the controller design and using four modes
for the model simulation. For each case, the �rst
mode q1(t), second mode, q2(t), end point position,
y(t), joint angle, �(t), angular velocity, _�(t), and
contact force, f(t), are plotted. Figures 3 to 8 show
the results for Case (a). As the results show, the
link has a stable behavior before and during contact
with the environment. Moreover, the vibration modes

Figure 3. Transient response of � for Case (a).
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Figure 4. Transient response of _� for Case (a).

Figure 5. Transient response of vibration Mode I for
Case (a).

Figure 6. Transient response of vibration Mode II for
Case (a).

have also been shown to die out after contact. As
discussed previously, before the contact (t < 1:6),
the impedance controller acts as a simple position
controller and, during the contact (t > 1:6), as a
regulating force controller. As shown in Figures 7
and 8, there are steady state errors in the contact
force and endpoint position, according to Equations 69
and 70. Figures 9 to 14 represent the results for
Case (b). In this case, the sti�ness of the surface is
much greater than that of the link. In this case, also,
the link vibrations are damped out before and during
the contact. In this case, separation did not occur, but,
if the sti�ness of the environment increases, separation
may also occur during the contact. As shown in
Figures 13 and 14, steady state position and contact
force errors in this case are larger than that of Case (a).
This increase in the steady state errors resulting from
higher environmental sti�ness is also predicted from

Figure 7. Transient response of y(t) for Case (a).

Figure 8. Transient response of fn(t) for Case (a).



42 G.R. Vossoughi and A. Karimzadeh

Figure 9. Transient response of � for Case (b).

Figure 10. Transient response of _� for Case (b).

Figure 11. Transient response of vibration Mode I for
Case (b).

Figure 12. Transient response of vibration Mode II in
Case (b).

Figure 13. Transient response of y(t) for Case (b).

Figure 14. Transient response of fn(t) for Case (b).
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Equations 69 and 70. One should also note that, as the
eigenvalues for target impedance are moved further to
the left (in the left half plane), the e�ective endpoint
sti�ness of the robot increases to values much larger
than the inherent endpoint exibility and instability
during contact becomes inevitable. Simulation with
eigenvalues, � < �20, leads to unstable behavior
during contact (results not shown here). A simulation
was also carried out with two sets of eigenvalues that
correspond to the value of K = 8 N/m and K = 15
N/m (di�erent from the inherent endpoint sti�ness
Keq � 12 N/m), in order to show the e�ects of
parameter K on the impedance controller. These
results are shown in Figures 15 to 20 and are labeled
as Case (c).

Based on the above results, one can conclude that
the proposed impedance control strategy has enabled
one to control the behavior of the exible link robot in

Figure 15. Transient response of � for Case (c).

Figure 16. Transient response of _� for Case (c).

Figure 17. Transient response of Mode I for Case (c).

Figure 18. Transient response of Mode II for Case (c).

Figure 19. Transient response of y(t) for Case (c).
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Figure 20. Transient response of fn(t) for Case (c).

both constrained and unconstrained conditions, a ca-
pability that would, otherwise, require two controllers,
each with a di�erent control structure.

CONCLUDING REMARKS

In this paper, the modeling and impedance control
of a exible link manipulator, using a sliding mode
control technique, have been considered. The pro-
posed controller works well in both unconstrained and
constrained conditions. One can control the behavior
of the manipulator, in both conditions, using a single
controller with a single structure (by only tuning the
impedance parameters). The use of the sliding mode
control theory provides a suitable domain for future
research into issues such as robustness and the e�ects of
various nonlinear e�ects, actuator dynamics and other
uncertainties and external disturbances. These studies
should be complemented by experimental results to
further validate the proposed control method.

NOMENCLATURE

ke sti�ness of environment

L length of robot

� mass per unit length

EI exural rigidity of link

M tip mass

� joint angle

w(x; t) deection of any point x at time t

we(t) = w(l; t) end point deection of link

Ek kinetic energy

Ep potential energy

�W virtual work done of motor

J moment inertia of rotor

f(t) normal contact force

!i(i = 1:::n) natural frequency of link

'i(x) mode shape of link

� small structural damping of link

�(t) torque developed by motor

x(t) end point position

xd(t) desired motion trajectory

M desired mass matrix

K desired sti�ness matrix

B desired damping matrix

u(t) control input

T transformation matrix
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