
Scientia Iranica, Vol. 14, No. 1, pp 64{71

c
 Sharif University of Technology, February 2007

A Multiple Scale Method Solution for the

Nonlinear Vibration of Rectangular Plates
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1
and S.E. Khadem

�

In this paper, �rst, the equations of motion for a rectangular isotropic plate have been derived.

This derivation is based on the Von Karmann theory and the e�ects of shear deformation

have been considered. Introducing an Airy stress function, the equations of motion have been

transformed to a nonlinear coupled equation. Using the Galerkin method, this equation has been

separated into position and time functions. By means of the dimensional analysis, it is shown

that the orders of magnitude for nonlinear terms are very small, with respect to linear terms.

Then, for the �rst time, the invariant manifold theory has been applied to the plate problem

and it is proved that the nonlinearities are sti�ness and inertia types. Finally, the multiple

scale method is applied to the equations of motion and closed-form relations for the nonlinear

natural frequencies and mode shapes of the plate are derived. The obtained results are in good

agreement in comparison with numerical methods. Using the obtained relation, the e�ects of

initial displacement, thickness and dimensions of the plate on nonlinear natural frequencies and

displacements have been investigated. These results are valid for a special range of the ratio of

thickness to dimensions of the plate, which is a characteristic of the multiple scale method.

INTRODUCTION

Large amplitude vibrations of rectangular plates have
been investigated rigorously by many authors. A
good review has been done by Sathyamoorthy [1], and
Benamar et al. [2] have developed one model for large
displacements and nonlinear vibrations of plates with
di�erent boundary conditions. This model is based on
the Hamilton principle and spectral analysis. In this
method, one assumes that for a system with weakly
nonlinear terms, the response is:

w(x; y; t) = �(x; y)q(t):

Assuming q(t) as a harmonic function, the �(x; y) will
be found by the harmonic balance method.

Also, Bikri et al. [3] investigated the e�ects of
geometrical nonlinearity in the free vibration case of
thin isotropic laminated rectangular composite plates.
They determined the fundamental nonlinear natural
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frequency and related mode shapes of the plate using
a numerical method.

Ribeiro and Petyt [4] used the hierarchical �nite
element method for the free vibration analysis and
discovered the internal resonances of the system by this
method. In this work, they considered the geometrical
nonlinearity and demonstrated the plate mode shapes
with the amplitude of the vibration.

Amabili [5] investigated, theoretically and exper-
imentally, large amplitude (geometrically nonlinear)
vibrations of rectangular plates subject to radial har-
monic excitation in the spectral neighborhood of the
lowest resonances with di�erent boundary conditions.

Huang and Zheng [6] investigated the nonlinear
vibration and dynamical response of simply supported
shear deformable plates on elastic foundations. The
plate was subjected to a transverse dynamic load,
combined with initial in-plan static loads and resting
on an elastic foundation.

In all the above works, the researchers have con-
sidered the e�ects of geometrical nonlinearity, which
is a kind of nonlinearity in the sti�ness. But, in a
nonlinear system, there may be some other kinds of
nonlinearity, such as nonlinear inertia and nonlinear
damping.
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Shaw and Pierre [7] de�ned a new method, which
is named the invariant manifold, for nonlinear contin-
uous systems and detected the kind of nonlinearities
in nonlinear equations. This method can be used
for systems with weak nonlinearities. Based on this
method, Nayfeh et al. [8] obtained the nonlinear fre-
quencies and mode shapes for one-dimensional contin-
uous systems, which have nonlinearities in sti�ness and
inertia. Mahmoodi et al. [9] analyzed the nonlinear
free vibration of a continuous damped system, which
contains nonlinearity terms in inertia, sti�ness and
damping.

In this paper, for the �rst time, the method of the
invariant manifold is used for plate vibration analysis,
which has nonlinearities in inertia and sti�ness. The
advantage of this method is that of obtaining closed-
form relations for the nonlinear natural frequencies and
nonlinear mode shapes. Also, using this method, the
e�ects of system parameters on the natural frequencies
and nonlinear mode shapes can be determined accu-
rately. It is shown that by increasing the ratio of
thickness to the dimensions of the plate, the nonlinear
frequencies of the plate will increase.

The obtained results show good agreement, with
respect to what has been obtained by other researchers,
and, also, with respect to available numerical results.

DEFINITION OF THE PROBLEM

An isotropic elastic rectangular plate, with dimensions
a and b and thickness h, is considered. Figure 1 shows
the dimensions and displacement of the plate. The
plate is under large de
ection and the displacements
are unknown.

The displacement relations, based on the �rst
order shear deformation and the Von Karmann theory,

Figure 1. Rectangular isotropic plate and displacement
after de
ection.

are:

u(x; y; z; t) = u0(x; y; t) + z�(x; y; t);

v(x; y; z; t) = v0(x; y; t) + z�(x; y; t);

w(x; y; z; t) = w0(x; y; t); (1)

in which u, v and w are the displacements in the
directions of x, y and z, respectively, and u0, v0 and w0

are the displacements of the mid-plane. Also, � and �
are the angles between the normal to mid-plane before
and after deformation. The components of stresses are:
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where Nx, Ny and Nxy are the membrane in-plane
forces,Mx, My andMxy are the bending moments and
Qx and Qy are the internal shear forces. Also, I is
the moment of inertia and E is the Young modulus.
The internal forces and bending moments are shown in
Figure 2.

Considering the �rst order shear deformation
theory and using variational calculus, the force-
displacement relations for an elastic isotropic plate will

Figure 2. Internal forces and bending moment in the
plate.
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become as follows:
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Computing kinetic and potential energy and using
the Hamilton principle for conservative systems, the
equations of motion are found, as follows:
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Also, the boundary conditions are:

at x = 0 and x = a :

u = 0 or Nx = 0;

v = 0 or Nxy = 0;

w = 0 or Qx +Nx
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and at y = 0 and y = b:
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Equations 4 through 8 are the equations of motion
for a rectangular isotropic elastic plate under large
amplitude vibration, considering the shear deformation
and rotary inertia phenomena.

Assuming, principly, transverse motion, an Airy
stress function, �, is introduced as:
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Substituting the above function in the equations of
motion, Equations 6 and 7 are satis�ed automatically
and the other equations become, as follows:
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where D = Eh3

12(1��2) .

The proper compatibility equation must be con-
sidered for the middle surface strains, which is stated,
as follows:
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Eliminating � and � from Equations 12 through 14,
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The above equation is the equation of motion in a
transverse direction, for a rectangular isotropic elastic
plate.

Such an equation is derived for the Classical
Plate Theory (CPT), without considering the e�ects
of shear deformation and rotary inertia by Nayfeh [10],
as follows:"
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where � is the Airy stress function. Comparing
Equations 17 and 16, it can be seen that the existence
of shear deformation and rotary inertia will complicate
the equation of motion and will generate more nonlin-
ear terms, which are explained later.

MULTIPLE SCALE METHOD

In order to calculate the natural frequencies and trans-
verse mode shapes of the system, Equation 16 must

be solved. For this purpose, there are many di�er-
ent methods, i.e., numerical methods, �nite elements
methods and analytical analysis, such as perturbation
methods.

The method that will be used in this paper is
the multiple scale method [9]. The most important
advantage of this method is that, by identi�cation of a
non-dimensional small parameter, which has a physical
interpretation and by using several time scales, one can
obtain a complete physical understanding about the
behavior of the system and the in
uence of di�erent
parameters and terms on the �nal response of the
system.

To solve the above nonlinear equation, �rst, by
using the Galerkin method, one discretizes the equation
by writing the solution as:
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Then, by selecting  ij(x; y), which satis�es the bound-
ary conditions, the multiple scale method is used to
�nd the time function f(t). For this purpose, without
any lack of generality, the case of a square plate with
all sides hinged will be considered in the �rst mode.
Therefore;
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to satisfy Equation 15. The boundary conditions of the
problem are used, as follows:

at x = 0 and x = a :

w(x; y) = 0;
@2w
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= 0; (22)

and at y = 0 and y = a :
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@2w

@y2
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By de�ning the non-dimensional parameters as:
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and substituting Equations 20 and 21 into Equation 16,
multiplying the left-hand side by sin(�x

a
) sin(�y

a
) and

integrating over the plate area, one obtains a non-
dimensional equation, as follows:
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and r = h
a
.

Comparing Equation 25 with the equation which
is derived by Nayfeh [8], it is found that the �rst
term of this equation presents the nonlinearity in the
sti�ness and the two last terms are the nonlinear terms
in inertia. So, this system has nonlinearity in sti�ness
and inertia.

Now, Equation 25 is rewritten as:
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Equations 28 show that the order of magnitude of
nonlinear terms, with respect to linear terms, is weak.
So, the system has weak nonlinearities.

By de�nition, the small parameter, ", is, as
follows:

p
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Equation 27 will be written as:
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weak nonlinear terms. Now, Equation 30 will be solved
by the method of multiple scales. First, this equation
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Considering the above relations and expanding the
function, f , as follows:

f = f0 + "f1 + � � � ; (35)

and, by substituting it in Equation 32 and equating
the coe�cients of "0 and "1 with zero, one obtains the
following:
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a general solution for Equation 36 can be written as:

f0(T0; T1) = A(T1)e
i!T0 +A(T1)e

�i!T0 ; (38)

A(T1) is an undetermined function of T1 and will be
determined later. A(T1) is the complex conjugate of
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A(T1). Substituting f0 from Equation 38 in Equa-
tion 37 will result in:

d2f1
dT 2
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where prime denotes a derivative, with respect to T1
and cc means complex conjugates. Secular terms,
which are the terms that produce nonperiodic solu-
tions, must be eliminated from Equation 39. So, the
solvability condition for Equation 39 is, as follows:
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2A = 0: (40)

Now, A(T1) is stated in the polar form, as:
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where 
 is the amplitude and � is the phase. Substitut-
ing Equation 41 in Equation 40 and separating the real
and imaginary components equal to zero, the following
are obtained:
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Equation 42 means that the amplitude of the mode
shape is constant and it is not a function of any time
scales. This is because the system does not possess any
kind of damping. Also, from Equation 43, it is obtained
that:
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So, by eliminating the secular terms, Equation 39 will
become:
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Substituting Equations 45 and 47 into Equation 35 and
converting it to a triangular form, the time function will
be:
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! and !N are the linear and nonlinear natural fre-
quencies of the �rst mode, respectively, and 
 is the
amplitude of vibration.

Equation 50 means that the frequency of nonlin-
ear oscillation is dependent on the parameters of the
system, the small parameter (relative thickness), ", and
the amplitude of oscillation, which are characteristics
of nonlinear systems.

One of the advantages of the multiple scale
method, with respect to other methods, is that, by
using this method, the e�ects of system parameters
on the system responses can be recognized accu-
rately.

For example, the dependence of the �rst nonlinear
frequency to amplitude (initial displacement of the
mid-point of the plate) is illustrated in Figure 3.

Figure 3. Variation of �rst nonlinear frequency with
respect to initial displacement of mid-point.
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This �gure shows that, for an elastic plate, by in-
creasing the initial displacement, the nonlinear natural
frequencies are decreased quadratically.

Figure 4 shows the e�ect of small parameters on
the amplitude and �rst frequency of the plate.

It is shown that, because there is no damping in
this system, the amplitude is constant and does not
vary with respect to time. However, the period of
harmonic oscillations is decreased by increasing this
small parameter.

Figure 5 shows the variation of the �rst nonlinear
frequency of the plate, with respect to the ratio of
thickness to dimension, i.e., r = h

a
.

Thus, the frequency is increased, with respect to
the ratio of thickness to dimension and, after a critical
value of this ratio, the nonlinear frequency is decreased.
For some values above the critical value of this ratio,
the frequency will become negative. This means that
the method which is described here is valid when the

Figure 4. E�ect of small parameter on the displacement
of the mid-point (x = a=2, y = a=2).

Figure 5. Variation of �rst nonlinear frequency with
respect to the square ratio of thickness to dimension.

ratio of thickness to dimension is small and, therefore,
the multiple scale method can be used.

NUMERICAL SOLUTION

To compare the above solution, with respect to other
solutions, Equation 25 has been solved by the Runge-
Kutta numerical method. This solution has been
obtained using MAPLE 9 software and the following
values for numerical parameters as � = 0:3, h = 2,
a = 50. The numerical method and multiple scale
method results have been compared in Figure 6.

One can see from Figure 6 that the numeri-
cal results are in good agreement with the multiple
scale method. However, the multiple scale method
solution has the advantage that it provides a closed-
form solution with a good physical insight, whereas
the numerical methods do not provide a closed form
solution and lack this type of physical insight.

CONCLUSION

In this paper, �rst, the equations of motion for an
isotropic elastic plate were derived. In this derivation,
the e�ects of shear deformation and rotary inertia were
considered. Then, by using an Airy stress function,
these equations were converted to one coupled equation
and a compatibility equation. Using the Galerkin
method, a nonlinear di�erential equation, with respect
to time, was obtained. This equation has nonlinearities
in sti�ness and inertia.

Then, by using the method of multiple scales,
this equation was solved and the nonlinear natural
frequencies and response of the system were obtained.
It is shown that the analytical results are in good
agreement with the numerical results.

The advantage of the present solution is that the
e�ects of nonlinearities can be determined accurately.

Figure 6. Comparison of the numerical and multiple
scale method, � = 0:3, h = 2, a = 50.
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Dimensional analysis shows that the order of magni-
tude of nonlinear terms, with respect to linear terms,
is weak. Also, the obtained results and the �gures
show that, by increasing the initial displacement of the
mid-point, the �rst nonlinear frequency is decreased
quadratically. Also, it is shown that, by increasing the
ratio of thickness to the dimension of the plate, the
nonlinear frequency of the plate will increase, but, this
result is valid for a special range of this ratio, which is
a characteristic of the multiple scale method.

NOMENCLATURE

a; b dimensions of plate

E Young's modulus

f time function

h thickness of plate

I moment of inertia

Nx; Ny; Nxy in-plane internal forces

Mx;My;Mxy internal bending moments

Qx; Qy internal shear forces

T0; T1 time scales

u; v in-plane displacement

w lateral displacement

Greek

�; � angle of rotation

" non-dimensional small parameter

� Airy stress function

� Poisson's ratio

� density

! linear natural frequency

!N nonlinear natural frequency

� non-dimensional time parameter

 position function
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