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In this paper, the Markov models, eigenvectors and eigenvalue concepts are used to propose
a methodology for analyzing the transient reliability of a system with identical components
and identical repairmen. The components of the systems under consideration can have two
distinct con�gurations, namely; they can be arranged in series or in parallel. A third case is also
considered, in which the system is up (good) if k-out-of-n components are good. For all three
cases, a procedure is proposed for calculating the transient probability of the system availability
and the duration of the system to reach the steady state.

INTRODUCTION

Reliability has been a major concern for system de-
signers. Redundancy of components is usually required
to design highly reliable systems. A common form of
redundancy is k-out-of-n: a G system, in which at least
k out of n components must be good for the system
to be good [1]. Consider a system having n identical
components. In parallel systems, the failure occurs
when all of its n components fail. In series systems,
the failure occurs if at least one of the components fails.
Redundancy of components is usually incorporated in
a system design for increasing system reliability.

Many systems consist of components having var-
ious failure modes. Several authors have considered
a k-out-of-n system subject to two failure modes.
Among those, Moustafa [2] has presented Markov
models for analyzing the transient reliability of k-out-
of-n: G systems subject to two failure modes. He
proposed a procedure for obtaining closed form tran-
sient probabilities and the reliability for non-repairable
systems. He, then, extended his work by providing
a set of simultaneous linear di�erential equations for
two di�erent k-out-of-n repairable and non-repairable
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systems: G systems subject to M failure modes [3]. In
his paper, numerical solutions for the reliability of the
repairable systems were discussed and closed formulas
for solutions of the reliability for the non-repairable
systems were presented. Another research e�ort is
the work of Pham, M. and Pham, H. [4], which has
considered [k; n�k+1]-out of-n: F systems subject to
two failure modes. Shao and Lamberson presented a
model for k-out-of-n: a G system with load sharing [5].

Another attempt is the work conducted by Sarhan
and Abouammoh [6], who applied the concept of a
shock model to derive the reliability function for a k-
out-of-n non-repairable system with non-independent
and non-identical components. Later, El-Gohary and
Sarhan [7] extended the work of Sarhan and Abouam-
moh, by proposing a Bayes estimator for a three
non-independent and non-identical component series
system under the condition of four sources of fetal
shock. They support their estimation method by
presenting a simulation study and show how one can
utilize the theoretical results obtained in their paper.

In this paper, Markov models are presented for
transient reliability and availability of series, parallel
and k-out-of-n systems. The systems under consid-
eration have n identical components and k identical
repairmen. A methodology is proposed, based on
Markov models, for obtaining the probability of a
system to be available at time t, and for calculating the
duration for the system to reach its steady state [8,9].

This paper is organized as follows: In the fol-
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lowing section, the nomenclature and de�nitions are
presented. Then, the next section describes the
methodology for analyzing the transient reliability and
availability of the system, as well as the procedure for
calculating the time elapse until the system reaches the
steady state. After that, a numerical example and,
�nally, the concluding remarks are presented.

NOMENCLATURE, DEFINITIONS AND

PRELIMINARIES

N(t) number of components failed before time t,
N 0(t) number of repaired components before

time t,
X(t) number of failed components at time t;

X(t) = N(t)�N 0(t),
pn(t) probability of having n failed components

at time t; pn(t) = P (X(t) = n),
A(t) probability of system to be up (good) at

time t, regardless of its historical
components failure and/or repair,

A(1) long time system availability or system
reliability,

P 0(t) =
dP (t)

dt
; P 0n(t) =

dPn(t)

dt
:

De�nition 1

If Q be an n�n matrix, then, � is an eigenvalue, such
that Q:X = �:X , where X is a non-zero vector and
eigenvector.

De�nition 2

Let fX(t) : t � 0g be a continuous-time stochastic
process with �nite or countable state space R; usually
R is f0; 1; 2; � � � g, or a subset thereof.

It is said that fX(t)g is a continuous-time Markov
chain, if the transition probabilities have the following
property: For every t; s � 0 and j 2 R:

P (X(s+ t) = jjX(u);u � s) = P (X(s+ t)jX(s));

and:

Pij(t) = P (X(t+ s) = jjX(s) = i) = P (X(t)

= jjX(0) = i):

Considering X(t) as the number of failed components
at time t, one will have a Markov model, as shown in
Figure 1.

Example 1

If one lets n = 4 and k = 3, the Markov model is
represented by Figure 2.

Lemma 1

If one considers Q as the state transient rate matrix
and P (t) as the state transient probability in the
exponential Markov chain with continuous time, then,
one has [10]:

1. P 0(t) = P (t):Q,

2. P 0n(t) = Pn(0):Q,

3. Pn(t) = Pn(0):P (t).

In which Q and P (t) are square matrices and Pn(t) and
Pn(0) are row vectors.

Lemma 2

Let one consider a continuous time exponential Markov
chain, in which P 0(t) = P (t):Q, then, one has [11]:

P (t) = eQ:t; Pn(t) = Pn(0):e
Q:t:

Lemma 3

Let one consider Q and d to be n � n matrices and
V to be an invertible matrix, then, for every positive
integer, k, one has [12]:

(V:d:V �1)k = V:dk :V �1:

Figure 1. State transition diagram of the system with n components and k repairmen.
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Figure 2. State transition diagram of the system with 4
components and 3 repairmen.

PROPOSED METHODOLOGY

To describe the proposed methodology for analyzing
the system's transient reliability, consider a system
having n identical components and k repairmen. The
components can be arranged in parallel or series. The
authors' methodology can analyze three distinct cases.
In the case of parallel components, one considers that
the system fails when all n components fail. In case of
series components, one considers that the system fails
when a component fails. The case is also considered
in which k-out-of-n components fail. It is assumed
that the time between two consecutive failures of a
component is a random variable, having exponential
distribution with parameter �. It is also assumed
that there are k identical repairmen providing services
to the system. The service time of a component is
also an exponentially distributed random variable with
parameter �. The goal is to provide a methodology for
analyzing the transient availability of the system and
the time until the system reaches its steady state.

The proposed methodology for obtaining system
availability and transient probabilities are based on sev-
eral theorems. These theorems are proved to provide
the underlying theory of this methodology. First, these
theorems are presented, as follows.

Theorem 1

Let one consider Q as an n � n square matrix, which
has n non-repeating eigenvalues, then, one has:

eQ:t = V:ed:t:V �1;

where t represents time, V is a matrix of eigenvectors
of Q, V�1 is the inverse of V and d is a diagonal matrix
of eigenvalues of Q, de�ned, as follows:

d =

2
6664
�1 0 � � � 0
0 �2 � � � 0
...

...
. . . 0

0 0 � � � �n

3
7775 :

Proof

P (t) = eQ:t =
P
1

k=0
(Q:t)k

k! =
P
1

k=0
tk

k! (Q)
k: Since Q

has non-repeating eigenvalues, then, one has:

Q = V:d:V �1;

and, by Lemma 3, one has:

Qk = V:dk:V �1:

Therefore, one has:

P (t) =
X tk

k!
(V:dk :V �1) =

X
V:
(d:t)k

k!
:V �1

= V:

�X (d:t)k

k!

�
:V �1 = V:ed:t:V �1:

Theorem 2

Consider P (t) = eQ:t in which Q is the transition
matrix. In matrix Q, one of the eigenvalues is zero and
the remaining eigenvalues are complex numbers with
negative real parts.

Proof

Since in every row of the transition matrix, the sum-
mation of row elements is zero, it can be deduced that
one of the eigenvalues of matrix Q is zero. By Theorem
1, one has:

P (t) = V:ed:t:V �1 = (pij(t));

pij(t) = �j +

nX
k=1

�ijk :e
�k:t;

in which �k is the kth eigenvalue, �ijk 's are constant
values and �j is the limiting probability. Using the con-
tradiction, if one assumes that one of the eigenvalues of
Q is a complex number with a positive real part, then,
one has limt!1 e�kt =1. Therefore:

lim
t!1

pij(t) =1;

which contradicts the fact that limt!+1 pij(t) = �j
and, therefore, the eigenvalues of Q are complex
numbers with negative real parts.

Theorem 3

Consider P (t) = eQ:t, in which Q is the transition
matrix. The time until the system reaches the steady
state (P (t) =) can be calculated by the following
formula:

t =
ln "

Sr
;

in which " is a very small positive number (i.e., 0h" �
0:0001), Sr is the largest real part of the eigenvalues,
excluding the zero elements of matrix Q and

Q
is a

square matrix, representing the limiting probabilities.
The elements of matrix P (t) and

Q
are shown, as
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follows:

P (t) =

2
6664
p00(t) p01(t) � � � p0n(t)
p10(t) p11(t) � � � p1n(t)

...
...

. . .
...

pn0(t) pn1(t) � � � pnn(t)

3
7775

=

2
6664
�0 �1 � � � �n
�0 �1 � � � �n
...

...
. . .

...
�0 �1 � � � �n

3
7775 :

Proof

pkj(t) = �j +

nX
m=1

�kjm:e
�m:t

= �j +

nX
m=1

�kjm:e
(Sm:+Cm:i):t

By Theorem 2, all Sm are negative and i =p�1 (�j ; �kjm; Sm and Cm are constant numbers).
Now, suppose Sr is greater then Sm, then, for large
values of t, one has:

pkj(t) = �j + "0;

where "0 is a very small positive number. Therefore,
one has:

pkj(t)��j ; "=eSr:t; Sr:t=ln "; t=
ln "

Sr
:

Note that computational calculations are done accord-
ing to 4 digits precision, therefore, " < 0:0001 and, if
" < 0:0001, then, the system reaches the steady state.

Based on the proof of these theorems, an algo-
rithm is now proposed for calculating the availability
of the system.

Algorithm

1. Determine the transition matrix Q,

2. Determine the eigenvalues and eigenvectors of ma-
trix Q,

3. Determine P (t) = V:ed:t:V �1,

4. Determine Pn(t) = Pn(0):P (t),

5. Determine the availability of the system, according
to the type of the system, as follows:

� For a parallel system: A(t) = 1� pn(t),

� For a series system: A(t) = p0(t),

� For k-out-of-n system: A(t) =
Pn�k

i=0 pi(t).

Note that the above complexity of the algorithm is
o(n2).

A NUMERICAL EXAMPLE

Let one consider a system having �ve identical compo-
nents. There are two identical repairmen for repairing
this system. It is assumed that the time to the failure
of the repaired component is a random variable with
an exponential distribution function with a mean of
0.2 hours. The repair time is also considered to be
a random variable, distributed exponentially, with a
mean of 0.1 of an hour. It is required to calculate
the system availability at any given time and the time
until the system reaches the steady state. To show the
exibility of the proposed methodology, the following
system con�gurations are considered:

1. Components are arranged in series;

2. Components are arranged in parallel;

3. The system is working if at least 2-out-of-5 compo-
nants are good.

SOLUTION

The graphical Markov model can be represented in
Figure 3.

The transition rate matrix is �rst determined, as
follows:

Q =

2
6666664

�25 25 0 0 0 0
10 �30 20 0 0 0
0 20 �35 15 0 0
0 0 20 �30 10 0
0 0 0 20 �25 5
0 0 0 0 20 �20

3
7777775
;

Pn(0) =
�
1 0 0 0 0 0

�
;

Pn(t) = Pn(0):V:e
d:t:V �1

=
�
p0(t) p1(t) p2(t) p3(t) p4(t) p5(t)

�
;

p0(t) =0:0502e
�62:1t + 0:159e�43:7t + 0:292e�30:8t

+ 0:236e�19:6t + 0:153e�8:85t + 0:11;

Figure 3. State transition diagram of the system with 2
repairmen.
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p1(t) =� 0:187e�62:1t � 0:296e�43:7t � 0:168e�30:8t

+ 0:128e�19:6t + 0:246e�8:85t + 0:277;

p2(t) =0:237e
�62:1t + 0:00387e�43:7t� 0:358e�30:8t

� 0:229e�19:6t + 0:0698e�8:85t + 0:277;

p3(t) =� 0:135e�62:1t + 0:294e�43:7t + 0:0928e�30:8t

� 0:304e�19:6t � 0:155e�8:85t + 0:208;

p4(t) =0:0388e
�62:1t� 0:204e�43:7t + 0:265e�30:8t

+ 0:0130e�19:6t � 0:217e�8:85t + 0:104;

p5(t)=�0:00460e�62:1t+0:0431e�43:7t�0:123e�30:8t

+ 0:156e�19:6t � 0:0971e�8:85t + 0:026:

Now, one can calculate the system availability for
di�erent con�gurations of the system, as follows:

1. Components are arranged in parallel:

A(t) = 1� p5(t); A(1) = 0:974:

2. Components are arranged in series:

A(t) = p0(t); A(1) = 0:11:

3. The system is working if at least 2-out-of-5 are
good:

A(t) = p3(t) + p2(t) + p1(t) + p0(t)

= 1� p4(t)� p5(t);

A(1) = 0:87:

One can calculate the time until the system
reaches the steady state. Table 1 represents the
probability of the system to be up (good) at time t, for
di�erent values of t and di�erent system con�gurations.

By the following closed form formula, one can also
calculate the elapsed time until the system reaches the
steady state:

t =
ln "

Sr
=

ln 0:0001

�8:85 = 1:04:

As can be seen from both Table 1 and the above closed
form formula, the system reaches the steady state after
one time unit.

The limiting probability can also be calculated, as
follows:

�0 = 0:11; �1 = 0:277; �2 = 0:277; �3 = 0:208;

�4 = 0:104; �5 = 0:026:

Table 1. Elapsed time until system reaches the steady
state.

t
A(t)

for Series

A(t)

for Parallel

A(t)

for 2-out-of-5

0.05 0.38 0.9996 0.9941

0.10 0.222 0.9972 0.971

0.15 0.166 0.9926 0.9429

0.20 0.141 0.9877 0.9198

0.25 0.129 0.9835 0.9029

0.40 0.115 0.9767 0.879

0.50 0.112 0.9751 0.8741

0.70 0.11 0.9742 0.8702

1.00 0.11 0.974 0.87

1.20 0.11 0.974 0.87

1.50 0.11 0.974 0.87

CONCLUSION

In this paper, a methodology for analyzing systems
transient reliability and availability with identical com-
ponents and identical repairmen is proposed. The
Markov model, eigenvector and eigenvalue concepts are
employed to develop the methodology for the transient
reliability of such systems. The proposed methodology
is versatile in the sense that it can be applied to a
variety of systems, i.e. series, parallel and k-out-of-
n systems. The proposed methodology can also be
employed for determining the time until the system
reaches the steady state.

By developing this method, the following new
research areas have been provided, which are under
study:

1. Analyzing the transient reliability and availability
of a system with non-identical components and
repairmen;

2. Analyzing the transient reliability and availability
of a system with standby components and re-
pairable components;

3. Analyzing the transient reliability and availability
of all reliability exponential models.
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