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Modeling and Intelligent Control of a
Robotic Gas Metal Arc Welding System

H. Sayyaadi� and A.A. Eftekharian1

Welding is an important manufacturing process that can be automated and optimized. This
paper focuses on the development of a robotic arc welding system, wherein a three-degree-
of-freedom Selective Compliance Assembly Robot Arm (SCARA) is interfaced to a Gas Metal
Arc Welding (GMAW) process. The entire system is composed of a robot linked to a GMAW
system. Set points are derived using the desired mass and heat input, along with the weld speed.
The stick-out and the current of the welding process are controlled using an Adaptive Neural
Network Controller (ANNC). The trajectory of the robot or the weld pro�le is also controlled by
implementing a Mixed Fuzzy-GA Controller (MFGAC) on a three-axis SCARA robot. The system
is, then, analyzed and the results show adequate improvement in the e�ciency and performance
of the proposed controller in welding a curvilinear weld pro�le.

INTRODUCTION

Being the most popular process, gas metal arc welding
is an important component in many industrial and
manufacturing operations and high quality welding
procedures are essential to overall product quality in
any production facility.

The practical industrial welding task is di�cult.
In order to make high quality weld, it is required to
implement experienced weld operators. One reason
for this is the need to have the welding parameters
properly adjusted for a given task, in order to get good
results. Generally, a good weld is identi�ed by its
microstructure and by various factors (e.g., the amount
of spatter, or the amount of over�ll or under�ll, etc.).
Although these are not easily measured or quanti�ed,
they can be related to characteristics, such as the
cooling rate of the weld pool, the metal transfer mode,
the bead/groove geometry and work piece defects etc.
Likewise, many of these characteristics can be related
to the mass and heat transferred from the GMAW
process to the weld pool.

The speci�c focus of this paper is the automation
of the GMAW process by the combination of a robot
integrated gas metal arc welding system and by the use
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of intelligent controllers, such as neural networks and
fuzzy method. The use of control in the GMAW process
can eliminate much of the \guess work" often used by
welding engineers to specify welding parameters for a
given task.

Advanced and intelligent methods for controlling
the welding process can lead to signi�cant improve-
ments in the economic competitiveness of an indus-
try [1].

Smartt and Einerson [2] developed a steady-state
model for heat distribution, based on the unit length of
the weld and mass (the transverse cross-sectional area
of the deposited metal) transferred from the electrode
to the work piece in the GMAW process. Using the
relation for heat and mass, a PI-based control system
was developed for maintaining the desired heat and
mass by regulating the current.

Abdel Rahman [3] developed a model-based non-
linear controller, which uses nonlinear state feedback
to exactly linearize and decouple the GMAW system.
The linearized system is then controlled using 2-PI
controllers. In [3], the design of the controller is based
on the simpli�ed model for the GMAW process.

Jalili et al. [4] developed a feedback linearization
controller based on a sliding mode control action for a
GMAW system. The controller uses a nonlinear state
feedback to exactly linearize and decouple the process.
The linearized system is then controlled using a model
reference sliding mode controller.

Successful applications of a pseudo-gradient adap-
tive algorithm, for self-tuning a PI-based puddle width
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controller, for a consumable electrode of the GMAW
process, were given by Henderson et al. [5].

Doumanidis [6] developed an adaptive, Multi-
Input Multi-Output (MIMO) scheme to control both
geometrical and thermal characteristics of a weld,
based on lumped parameters and distributed param-
eters in modeling and identi�cation.

The problem of the adaptive and decoupling
control of the MIMO welding process was addressed by
Cook et al. [7]. Moore, Yender and Naidu [8] developed
the analytical and experimental model of the GMAW
and, then, used single-output and multi-loop PI control
strategies to control the process. As discussed in [7],
the variables that are close to the process in the control
algorithm were used.

Golob et al. [9] proposed a fuzzy controller for
the GMAW process; they modeled the self-regulation
process analytically, developed various dynamic models
and, then, proposed a welding current control, based on
a fuzzy PI controller.

Bingal and Cook [10] developed a model to cor-
relate the anode temperature pro�le with the dynamic
melting rate in a gas metal arc welding system. Com-
ponents of this model are identi�ed as the electrode-
melting rate and the temperature-dependent resistivity
of the electrode and arc voltage. The di�erential
equations describing the dynamic behavior of the elec-
trode extension were derived from mass continuity and
energy relations and, then, a �nal model was developed
for the GMAW dynamics.

Here, a simpli�ed second order nonlinear GMAW
model and the models for heat and mass transfer are
used to independently control current and arc length,
using the open circuit voltage and wire feed speed.
Since the mass and heat transferred to the work piece
determine the quality of the welding, it is necessary
to achieve the desired mass and heat values for a
particular welding. Thus, assuming that the contact
tip to work piece distance and weld torch speed are
being held constant during welding, one approach to
controlling the quality of the weld in the GMAW
process is to control the current and stick-out, which
could de�ne the arc voltage, so as to control the heat
and mass input to the weld pool. Therefore, this
paper presents the design of an adaptive neural network
controller for the GMAW process. Attractive features
of this type of adaptive controller include the lack
of dependency on the process parameters, the robust
behavior of the controller to noise, disturbance and
uncertainty and, �nally, ease of implementation. In
the robotic part of the system in this work, a mixed
fuzzy GA controller is presented for controlling a 3-axis
SCARA robot.

The main di�erence between MIMO control sys-
tems and Single-Input Single-Output (SISO) control
systems is in the means of estimating and compensating

for the interaction between the degrees of freedom.
MIMO systems usually posses complicated dynamic
coupling. Thus, estimating the accurate dynamic
model and decoupling it for designing the controller
is di�cult. Hence, the traditional model-based SISO
control scheme is hard to implement on complicated
MIMO systems, as the computational procedure is
large. Therefore, model-free intelligent control strate-
gies are gradually attracting attention. Although the
fuzzy control theory has been successfully employed
in many control engineering �elds [11-15], its control
strategies were mostly designed for SISO systems, in
spite of the e�ect of dynamic coupling on MIMO
systems. Additionally, the number of control rules
and controller computational burdens grows larger,
exponentially, with the number of variables considered.
Clearly, the di�culty in controlling MIMO systems is
how to solve the coupling e�ects between the degrees
of freedom. Therefore, an appropriate coupling fuzzy
controller is incorporated into a Traditional Fuzzy Con-
troller (TFC) for controlling a MIMO robotic system in
order to compensate for the dynamic coupling e�ects
between the degrees of freedom.

After constructing the mixed fuzzy controller, the
use of genetic algorithms in the design and implementa-
tion of the mixed fuzzy logic controller is investigated.
Previously, a generation of membership functions had
been a task mainly undertaken either iteratively, by
trial-and-error, or by human experts. A task such as
this is a natural candidate for the GA, since GA's
attempt is to create membership functions that will
cause the controller to perform optimally. Recently,
much work has been done using GA to do this task.
Karr, for example, used a GA to generate membership
functions for a PH control process [16] and a cart-
pole problem [17]. Such work has shown GA's ability
to successfully create the individual parts of a fuzzy
controller. Mohammadian and Stonier [18] developed
a fuzzy logic controller and optimized the membership
functions using genetic algorithms. Mester, in [19],
developed a neuro-fuzzy-genetic controller for robot
manipulators; he applied the genetic algorithm for the
fuzzy rules set optimization. Eskil, Efe and Kaynak,
in [20], proposed a procedure for T-Norm adaptation
in fuzzy logic systems, using genetic algorithms. They
investigated the performance of a fuzzy system, having
parameterized T-Norm in control of the robot manip-
ulators.

In this paper, �rst, a mixed fuzzy control system
is constructed and, then, a genetic algorithm is applied
to tune and optimize the membership functions and
scaling factors in such a manner that a high precision
controller for the trajectory tracking of a SCARA
robot is obtained. This mixed fuzzy-GA controller can
e�ectively remove the coupling e�ects of the robotic
system and the control strategy proposed in this paper
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is very easy to design and implement. This paper
is organized as follows: First, some reviews about
the modeling of a GMAW process are presented and,
then, the control objective is discussed. Subsequently,
an adaptive neural network controller is designed.
Applications of the adaptive neural network control to
the GMAW process and simulation results are given
in the other section. Next, in the robotic part of the
system, a mixed fuzzy control is designed and a genetic
algorithm is introduced and implemented in the fuzzy
controller for optimization. The simulation results of
a curvilinear weld pro�le for robotic welding is, then,
presented and, �nally, the results are discussed and
conclusions are drawn.

MODELING OF THE GMAW PROCESS

In this section, The GMAW system is briey discussed.
The power supply consists of a constant voltage source
connected to the electrode and the work piece. The
wire speed, S, travel speed of the torch, R, open-
circuit voltage, Voc, and contact tip to work piece
distance, CT , are adjusted to get the desired weld.
Here, x is the distance of the center of the mass
of the droplet from the electrode [1]. Modeling of
the GMAW process dynamics produces a �fth-order
nonlinear di�erential equation. The model used in this
work is the fourth-generation of the derivative equation
that originated at the Idaho National Engineering and
Environmental Laboratory (INEEL) and which was
subsequently developed by INEEL, as well as Idaho
State University (ISU) researchers and others [1,21].
Here, the results are not described in detail, but
interested readers may refer to the following earlier
work in GMAW modeling [10,22]. The state-space
representations of the resulting equation are given in
the following equations. The state variables are de�ned
as follows:

x1 = x droplet displacement (m)
x2 = _x droplet velocity (m/sec)
x3 = md droplet mass (kg)
x4 = ls stick-out (m)
x5 = I current (A)

The nonlinear state equations become as follows:

_x1 = x2;

_x2 =
�kx1 �Bx2 + Ftot

x3
;

_x3 = MR�w;

_x4 = u1 � MR

�r2
w
;

_x5 =
u2 � (Ra +Rs +RL)x5 � V0 � Ea(CT � x4)

Ls
;

(1)

where Ftot = Fem + Fd + Fm + Fg force acting on the
droplet. The forces, Fem, Fd, Fm, Fg, are the electrode
magnetic force, aerodynamic drag force, momentum
force, and gravity force, respectively. k and B are
the sti�ness constant and damping coe�cient of the
droplet. Ra and Rs are the arc resistance and source
resistance, respectively. �w is the electrode density, rw
is the electrode radius, V0 is the arc voltage constant,
Ea is the arc length factor, Ls is the source inductance
and MR is the melting rate. The melting rate, MR,
and the electrode resistance, RL, are given by:

MR = C2�x4x2
5 + C1x5;

RL = �

"
x4 +

1
2

 �
3x3

4��x

� 1
3

+ x1

!#
: (2)

The output equations can be as follows:

y1 = V0 +Rax5 + Ea(CT � x4);

y2 = x5; (3)

where the output variables are:

y1 = Varc arc voltage (V),
y2 = I current (A),

and the control variables are:

u1 = S wire feed speed (m/sec),
u2 = Voc open-circuit voltage (V).

The detachment of a droplet will occur, either due
to the imbalance of forces on the droplet, which means:

Ftot > Fs: (4)

Or due to the shape instability as follows:

rd >
�(rd + rw)

1:25
�
x+rd
rd

��
1 + �0I2

2�2(rd+rw)

� 1
2
; (5)

where Fs is the surface tension force, rd is the droplet
radius, �0 is the permeability of free space and  is the
surface tension of liquid steel [1]. Further equations of
the droplet velocity and detachments criteria can be
found in [1,10,22]. Figure 1 shows a schematic diagram
of the GMAW process.

The GMAW dynamics model, given by Equa-
tions 1, is highly nonlinear, which makes the simulation
or control of the process very di�cult. To simplify the
model, based on some approximations, �rst, consider
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Figure 1. Schematic diagram of GMAW system.

the current, I, and stick-out, ls, relations from Equa-
tions 1 as follows:

_x4 = u1 � Mr

�r2
w
;

_x5 =
u2 � (Ra +Rs +RL)x5 � V0 � Ea(CT � x4)

Ls
:

(6)

In [1], it has been shown that:

RL = �x1: (7)

So, the simpli�ed model is:

_x4 = u1 �
�
C2�
�r2
w
x4x2

5 +
C1

�r2
w
x5

�
;

_x5 =
u2 � (Ra +Rs + �x4)x5 � V0 � Ea(CT � x4)

Ls
:

(8)

The objective is to achieve the desired weld bead cross
section, Gd [mm2], and heat ow to the weld pool, Hd
[J/mm]. This is achieved by considering the following
relation:

Gd =
MR

R
� 109; (9)

where R is the weld torch travel rate, [mm/s], and MR
is the melting rate, [m3/s], given by [3]:

MR = C1I + C2�I2ls; (10)

where C1 and C2 are constants, � [ohm/m] is the
welding wire resistivity and ls [m] is the stick-out of
the welding wire.

Hd =
EI�
R

=
I(Ve + Varc)�

R
; (11)

where I is the current from the electric source, Ve is the
voltage drop across the electrode, Varc is the voltage
drop across the arc, E is the secondary circuit voltage
drop, � is the heat transfer e�ciency from the process
to the base metal and R is the weld torch travel speed.
In [4] Varc and Ve are expressed as follows:

Ve = I(ls + 0:5(x+ rd));

Varc = V0 + Ea(CT � ls) + IRa; (12)

where V0, Ea and Ra are empirical constants and rd
and x are droplet radius and displacement, respectively.
Since the droplet radius and displacement are hard to
measure in a practical welding environment and are
much smaller than the stick-out, they can be neglected
in the calculation of the desired arc length to produce
a certain heat input. Thus, given a desired weld bead
cross section, Gd, and heat, Hd, Equations 9 through 12
can be used to �nd the desired current and stick-
out, which can achieve the desired values of heat and
mass transfer to the weldment [1,4]. These values of
current and stick-out are then used as set points for
the dynamic system in Equations 8 and an adaptive
neural network controller is used to track the desired
set points. It should be emphasized that in this scheme
it is not required to control the torch travel speed, R,
which can be adjusted through an outer loop control of
thermal and �ll processes.

ADAPTIVE NEURAL NETWORK
CONTROLLER

Neural networks are becoming more and more pop-
ular and their use is growing day by day. This is
because neural networks have many attractive features,
such as learning ability, approximation of functions,
robustness, adaptiveness and so on, which are capa-
ble of solving the problems with uncertainty factors.
Therefore, in this research, an adaptive neural network
structure is used to control the uncertain structure
of the GMAW model and, also, to interact with
di�erent environmental disturbance and noise. Intense
research has been undertaken to use neural networks
as controllers. The control learning schemes, which
are used in this paper, are discussed here. Control
systems have inuence on di�erent features of modern
life. A control system is, in the broadest sense, any
interconnection of components to provide a desired
function. The portion of a system to be controlled is
called the plant or process. A controller is used to
produce the desired behavior of a plant.

To train a neural network controller, supervised
learning can be used. In order to do this, the plant's
output is presented to traditional feedback linearization
and the neural network controllers (Figure 2). The
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Figure 2. Supervised learning using an existing
controller.

feedback linearization controller's output is used to
control the plant and the plant's output is used as
input to the neural network and feedback linearization
controller. So, the neural network will be trained, as
time goes by and will eventually become a controller.
After completion of training, the feedback linearization
controller can be ignored and the neural network will
take control. However, this time another scheme, which
is called unsupervised learning, is used (Figure 3).
This kind of learning is very practical in cases where
disturbances and uncertainties exist, because in this
manner, the neural network can adapt its structure
to the new conditions and can, therefore, perfectly
maintain the system in a stable phase.

For control purposes, in this paper a feed forward
controller is used with the structure 4-10-2. This means
that a 3-layer network, with 4 neurons in the input
layer, 10 neurons in the hidden layer and 2 neurons
in the output layer, is used. The choice of hidden
layer size is one of the most important considerations
for neural network design and this area of study
is still under intensive research, with no conclusive
solutions yet available. The exact analysis of this
issue is quite di�cult, due to the complexity of the
network's mapping and the nondeterministic nature
of many successfully completed training procedures.
In this work, the number of neurons in the hidden

Figure 3. Unsupervised learning adaptive neural network.

layer is determined by the trial and error approach.
Several attempts have been made to study network
performance with di�erent numbers of neurons. The
number of neurons within the hidden layer is selected,
based on the accuracy of the control process.

The structure of the network used here is a 3-
layer perceptron with an extended back propagation
algorithm; the activation function, which in the neuron
units is a general kind of sigmoid function:

f(x;U; L; T ) =
U � L

1 + e
�x
T

+ L; (13)

where U , L and T are the upper bound, lower bound
and slope of the activation function, respectively. The
function is reduced to the usual sigmoid when L = 0,
U = 1 and T = 1. The Enhanced Back-Propagation
Algorithm (EBPA) updates not only the matrix of
the weights between the input/hidden layers and hid-
den/output layers, W (K) and V (K), respectively, but
also the parameters, U , L and T , of the neurons at the
hidden and output layers [23,24]. In [25], it is shown
that the EBPA algorithm performs equally as well as
a simple BP, in terms of learning speed and approxi-
mation accuracy. These characteristics are particularly
suitable for online learning problems. Here, the EBPA,
which is used in the learning procedure, is explained.

Knowing that e(t) = y(t)� ys(t), the error vector
at time t, where y(t) stands for plant output and ys(t)
stands for network output, is de�ned by the following
equations. At any given time, t, if x(t) is the input
vector, then, the ith element of the output vector at
the hidden layer is as follows:

z(i; t) = Lh(i; t) +
Uh(i; t)� Lh(i; t)

1 + e
�(V (i;t)�x(t)+PV (i;t))

Th(i;t)

; (14)

where Lh(i; t) is the ith element of the lower limit
vector (for the hidden layer), Uh(i; t) is the ith element
of the upper limit vector (for the hidden layer), Th(i; t)
is the ith element of the slope vector (for the hidden
layer), V (i; t) is the ith row of the (input to hidden
layer) weight matrix and PV (i; t) is the ith element of
the (input to hidden layer) threshold vector. The ith
element of the output vector at the network's output
is as follows:

Ys(i; t) = LO(i; t) +
UO(i; t)� LO(i; t)

1 + e
�(W (i;t)�z(t)+PW (i;t))

TO(i;t)

; (15)

where LO(i; t) is the ith element of the lower limit
vector (for the output layer), UO(i; t) is the ith element
of the upper limit vector (for the output layer), TO(i; t)
is the ith element of the slope vector (for the output
layer), W (i; t) is the ith row of the (hidden to output
layer) weight matrix and PW (i; t) is the ith element of
the (hidden to output layer) threshold vector. Vector
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X(t), containing the �rst nh� (ni+no) + 4� (no+nh)
neural network states, where ni, nh and no are the
number of neurons in input, hidden and output layers,
respectively, is updated according to an extended
gradient rule as follows:

X(t+ T ) = X(t)� � � @ys
@X
� e(t) + Z(t); (16)

where � is the learning rate, @ys
@X is the Jacobian

matrix, T is the sampling time and Z(t) represents an
additional contribution from a �ltered error as follows:

D(t+ 1) = ��D(t)� � � @ys
@X
� e(t);

Z(t) = ��D(t): (17)

The �lter decay rate, �, is called \momentum", if � =
0, the update law reduces to the classic gradient rule.
It can be seen that Z(t) somehow represents all past
increments of X(t). The �nal part of the whole state
vector is D(t).

The three most important parameters �, � and
T must be chosen before the learning procedure. The
e�ectiveness and convergence of the back-propagation
learning algorithm depends signi�cantly on the value
of these learning constants, which is strongly related
to the class of the learning problem and the network
architecture. In general, the optimal value of the
learning constants will be decided only for the given
problem and there is not a unique value suitable for
di�erent training cases. Therefore, the values of the
learning constants have to be chosen experimentally
by a trial and error approach. In this study, the
development and training of the network were carried
out by using the MATLAB neural network toolbox, the
SIMULINK toolbox [26] and, also, the neural network
toolbox [25], available on the Mathworks website [27].

APPLYING ADAPTIVE NEURAL
NETWORK CONTROLLER TO GMAW
PROCESS

The �rst step in the design of a controller for the
GMAW process is designing a conventional controller,
in order to learn the neural network controller. For
this task, a feedback linearization controller is used.
The �rst step is to choose a nonlinear state feedback to
obtain a linearized system. Then, a simple controller
for the linearized system is designed. The nonlinear
state feedback can be obtained by an inspection of the
system in Equations 8. The following control law for
current control is chosen:

u2 = �x4x5 + V0 + Ea(CT � x4) + LsV2; (18)

which results in the linearized current equation as
follows:

_x5 = �Ra +Rs
Ls

x5 + V2: (19)

The control law for the stick-out loop is as follows:

u1 =
C1s5 + C2�x2

5x4

�r2
w

+ V1; (20)

which results in the following linearized stick-out equa-
tion:

_x4 = V1: (21)

Thus, the linearized system is obtained and current and
stick-out dynamics are decoupled. A controller that
can achieve a set point tracking could be as simple as a
PI controller, for both the current loop and a stick-out
loop [3]. Hence:

V1 = Kp1(x4d � x4) +Ki2

tZ
0

(x4d � x4)dt;

V2 = Kp2(x5d � x5) +Ki2

tZ
0

(x5d � x5)dt; (22)

where x4d and x5d are the desired values for the current
and stick-out, respectively, and Kp1, Ki1, Kp2 and Ki2
are the controller's gains. Figure 4 shows a schematic
diagram of the nonlinear controller.

The most important parameter values, which are
considered in the GMAW process, are presented in
Table 1 (interested readers are referred to [21] for a
complete list of welding parameters). For training the
neural network controller from an existing controller, 4
inputs and 2 outputs of the classic controller are used
as the input and output signals for the neural network.
The four inputs are reference values of the current and
the stick-out, which can be attained through Equa-
tions 9 to 12, and the feedback values of the current and
the stick-out, which can be attained from the feedback
loop of the classic controller. The two outputs are S
and Voc, which are used as signals to make the output
error and train the network (Figure 5). After training is
completed, the neural network controller is substituted

Figure 4. Schematic diagram of nonlinear controller.
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Table 1. The system parameters.

Parameter Value

C1 2.8855e-10 m3/A

C2 5.22e-10 m3/A2.Ohm

� 0.2821 Ohm/m

Ea 1500 V/m

Va 15.7 V

Ra 0.022 Ohm

RS 0.001 Ohm

Ls 0.35 mH

R 8 m/s

CT 0.01 m

rw 0.001 m

Figure 5. Schematic diagram of the training process.

for the classic controller (Figure 3). In this manner, the
neural network controller can deal perfectly with both
tracking and disturbance rejection tasks. In order to
evaluate the algorithm, �ve di�erent cases, as shown in
Table 2, were considered for the simulation. The results
of the simulation are shown in Figures 6 through 9.

As can be seen, Figure 6a shows the tracking
response of the proposed controller for the stick-out and
Figure 6b shows the tracking response of the current
for Case 1 in Table 2. The simulation results of
other cases are shown in Figure 7. Figure 8 shows
the response of the neural network controller, in cases
where 50% uncertainty exists in the parameters of
the GMAW model. The parameters considered for
uncertainty are: Ea, �, Ra, Rs, Ls and R, which are
weld parameters identi�ed formerly. The 50% model

Table 2. Cases considered for simulation.

Cases Gd Hd Id Lsd
Case 1 1.5e-5 5e5 215.8561 0.0143

Case 2 1.5e-5 6.5e5 235.0264 0.0106

Case 3 1.5e-5 7e5 241.6517 0.0096

Case 4 2.05e-5 5.5e5 196.7447 0.0174

Case 5 2.05e-5 6e5 200.8751 0.0163

Figure 6. Desired and actual responses for stick-out (a)
and current (b) for Case 1 of neural network controller.

uncertainty is applied to these six parameters with 50%
tolerance as (x� 50%x). When these uncertainties are
applied to the GMAW model, considerable di�erences
between this new case and the previous one will occur.
The new case may be considered as an actual system
that di�ers from the old case, which represents the
ideal model. Thus, the controller, as illustrated in
Figure 8, has to overcome these changes and satisfy
the stable performance of the system. As illustrated
in the �gure, the neural network becomes stable after
0.2 sec and overcomes the changes. The uncertainties
applied for evaluating the performance of the controller
are derived from the actual welding process, which
encounters di�erent sources of noise and disturbance,
such as wind blow, temperature variations, air damp-
ness and additional vibrations. As stated in [7,8,21],
these disturbances are considered maximum up to 30%
changes in the parameters, but in this research, 50%
changes are applied to these parameters in order to
verify the adaptation e�ectiveness of the proposed
controller. The neural network weights are drawn
in Figure 9. From this �gure, it is clear that the
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Figure 7. Desired and actual responses for stick-out (a)
and current (b) for Cases 2 to 5 of neural network
controller.

weights are changing during the adaptation time until
the structure of the network has become stable and can
overcome the changes.

In Figure 10, the system and controller are
simulated for cases where 70% model uncertainties,
with external disturbance and noise, occurred in the
welding process at time 0.5 sec. In this new case,
only 4 parameters, Ea, �, Ra and Ls, of the welding
process are examined as uncertainties. Indeed, external
noise and disturbance, such as random or repeated
signals, are applied to the control loop, which come
from unpredictable e�ects in the control signal ow. It
can be understood from Figures 8, 9 and 10 that the
neural network controller has a robust behavior and
an adaptation capability to overcome all unpredicted
e�ects, due to model uncertainties, environmental
disturbances and so on.

MIXED FUZZY CONTROL

The di�culty associated with applying a traditional
fuzzy control theory for controlling MIMO systems,

Figure 8. Desired and actual responses for stick-out (a)
and current (b) for Case 1 of neural network controller
with 50% model uncertainties.

such as in many types of robotic manipulator, is in
overcoming the coupling e�ects between the degrees of
freedom.

Therefore, the concept of a coupling controller to
compensate for these coupling e�ects was developed to
enhance the control performance of robotic manipula-
tors, such as the SCARA robot.

A typical dynamic model of a robotic system is
complicated with uncertainty, so, model-free intelligent
control strategies are employed in designing a MIMO
system controller. This work proposes a new control
approach by combining a TFC and a suitable cou-
pling fuzzy controller for controlling MIMO systems.
Adaptive control and robust control methods have been
developed for controlling SISO and MIMO systems in
order to evaluate their control performance [28,29].
However, the applications of these control methods
still require some knowledge about the system and the
variation range of the parameters; also, their output re-
sponse has oscillatory features during the initial learn-
ing interval. The fuzzy set theory has been successfully
applied in a number of control applications [30,31],
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Figure 9. Changes in the weight of neural network
controllers for Case 1 with 50% model uncertainty (the
neural network becomes stable after 0.2 sec and overcomes
the changes).

based on SISO systems, without considering the dy-
namics model of the system. This work develops a
mixed fuzzy control strategy to control the robotic part
of the system. The control strategy includes a TFC
and a coupling fuzzy controller. Figure 11 shows this
control block diagram. The procedure for designing
the mixed control strategy involves, �rst, designing a
TFC to individually control each degree of freedom
of the robot. Then, an appropriate coupling fuzzy
controller is designed to compensate for the system
dynamic coupling between the degrees of freedom.

A TFC that operates with an output error of the
system and an error di�erential in the continuous time
system is adopted as the main controller to control each
degree of freedom of the robotic system. Here, the
input variable of the TFC, for the degrees of freedom
of the system, are de�ned individually as follows:

ei = Ri � Yi; (23)

_ei = _Ri � _Yi; (24)

where ei is the output state error of the ith degree of
the system and _ei is used for indicating the state error
derivative of the ith degree of a robot. The membership
function of a fuzzy logic controller is usually di�cult
to decide. This work develops a membership function
with an adjustable parameter, �ji , according to the
dynamic characteristics of the selected robotic system.
The control purpose can be achieved easily by only
adjusting this parameter value, �ji , in the practical
control process. Figure 12 represents a triangular mem-
bership function and its implementation to convert
the input and output variables, ei, _ei and ui, into
linguistic control variables (NB NM, NS, ZO, PS,
PM, PB), where ui is the control signal and �ji is

Figure 10. Desired and actual responses for stick-out (a),
current (b) and neural network weights (c) for Case 1 with
70% uncertainty and noise occurring at 0.5 sec.

Figure 11. MFC for robotic system.
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Figure 12. Membership function of a TFC.

a scaling factor. The subscripts i = 1; 2; � � � ;m are
used for expressing each degree of freedom of the
system and the superscripts j = 1; 2; 3 are used for
indicating the output state error of the system, the
state error derivative and the control output. This
study applies the state evaluation fuzzy control rule [30]
for controlling robotic systems. Table 3 lists the fuzzy
control rules that are employed in controlling a MIMO
robotic system. The fuzzy inference logic applied the
Max-Min product composition [30] to operate the fuzzy
control rules. Finally, this work employs the \center of
area" method [30], to defuzzify the output variables to
achieve an actual control signal for the control task.

In a real MIMO system, the control output is
inuenced by more than one variable. According to
the system characteristics, these system variables are
obviously interactive as follows:

Yi = Pi(u1; u2; � � � ; um; Y1; Y2; � � � ; Yn); (25)

or:

Yl = Pl(ul; Y1; Y2; � � � ; Yn); (26)

where Pi(:) and Pl(:) represent complex coupling func-
tions that are di�cult to de�ne and drive. According
to an analysis of the dynamics Equations 25 or 26,
there exist ui, the e�ect of which can be completed by
ul. ui and ul are the e�ects of the dynamics coupling
characteristics of the MIMO system. The main e�ect
on the system is controlled using a TFC. The secondary
e�ect on the system is controlled by designing an
appropriate coupling fuzzy controller. Clearly, the

Table 3. Fuzzy control rules of a TFC.

NB NM NS ZO PS PM PB

NB NB NB NB NM NM NS ZO

NM NB NB NM NM NS ZO PS

NS NB NM NM NS ZO PS PM

ZO NM NM NS ZO PS PM PM

PS NM NS ZO PS PM PM PB

PM NS ZO PS PM PM PB PB

PB ZO PS PM PM PB PB PB

control structure of the fuzzy control system is very
complicated, when the input variable is multiple-degree
and the output variable is one, or more than one,
degree. Thus, the parameters of a fuzzy control system
are di�cult to decide, because the fuzzy control rules
are generated as a geometric series and, as a result,
CPU time will increase signi�cantly. Hence, the design
procedure of this fuzzy coupling controller should be
simpli�ed to reduce the computational time during the
implementation. The input variable of the coupling
fuzzy controller is chosen, mainly, as two coupling
a�ected factors, such that the structure of the fuzzy
rules can be built conventionally.

According to the coupling situation between the
degrees of freedom of the MIMO robotic systems, which
can be analyzed by dynamics coupling characteristics,
a few of the mainly a�ected coupling factors are, �rst,
considered to design an appropriate coupling fuzzy
controller in order to compensate for the dynamics
coupling e�ects and enhance the control performance
of the system. Figure 13 shows the membership
functions of the coupling fuzzy controller, where �ji
is a positive number scaling factor. According to
the dynamics coupling characteristics of the robotic
system, its meaning is the same as the scaling factor,
�ji , in the previous section.

According to each degree of freedom of the robot
and the e�ects of the dynamics coupling in the system,
the fuzzy control rules of the coupling fuzzy controller
can be decided and adjusted on the basis of the system's
output response. Table 4 lists the coupling fuzzy
control rules in controlling a MIMO robotic system.
The fuzzy inference and defuzzi�cation methods are
similar to those of the TFC.

The outputs of the coupling fuzzy controller are
chosen directly as the coupling control inputs. The
main reason for this is that there is a di�erent cou-

Figure 13. Membership function of a MFC.

Table 4. Fuzzy control rules of a MFC.

NB ZO PB

NB NB NB ZO

ZO NB ZO PB

PB ZO PB PB
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pling e�ect for each step and it does not have an
accumulating characteristic. The coupling e�ects are
incorporated into the TFC for each step to improve
the performance and robustness of the system. Accord-
ingly, the total control input of this MFC is represented
as follows:

Ui = ui + Ul!i; i 6= l; (27)

where ui expresses the system control input of the
ith degree of a TFC and Ul!i represents the coupling
e�ects control of the lth degree, relative to the ith
degree of the coupling fuzzy controller.

The additional coupling fuzzy controller compen-
sates for the unknown coupling e�ects of the MIMO
robotic system, so, this study proposes a mixed fuzzy
control strategy that can be employed to control MIMO
robotic systems, such as SCARA. Huang and Lian [32]
once proposed the mixed fuzzy control strategy and
applied it in controlling the active dynamic absorber
for an MIMO system and obtained good control
performance. Lian and Lin [30] proposed a mixed
fuzzy controller for general MIMO systems and, also,
proposed a state-space approach for two DOF robotic
cases to analyze the stability of the controller. In this
work, previous ideas for mixed control strategies are
used and, also, a GA is incorporated to design a more
accurate and more performable mixed fuzzy controller,
which is very suitable for controlling MIMO robotic
plants and shows very interesting characteristics (which
will be discussed in the next section). The dynamics
equation of the robotic manipulator (Figure 14) is as
follows:

M(q)�q + C(q; _q) _q +G(q) = �; (28)

where q =
�
q1 q2 q3

�T is a 3 � 1 vector of the joint
position, _q =

�
_q1 _q2 _q3

�T is a 3 � 1 vector of the

Figure 14. Schematic diagram of a three-axis SCARA
robot.

joint velocity, �q =
�
�q1 �q2 �q3

�T is a 3�1 vector of the
joint acceleration, � =

�
�1 �2 �3

�T is a 3 � 1 vector
of control input torque, M(q) is a 3�3 inertial matrix,
C(q; _q) is a 3�3 matrix of coriolis and centrifugal forces
and G(q) is a 3� 1 gravity vector.

In this paper, it is assumed that the three links
of the robotic manipulator are thin cylinders or rods
of mass, m1, m2 and m3, respectively. In general, due
to the robust behavior of the designed controller, if the
dynamic equation of the robot is expressed as follows:

M(q)�q + C(q; _q) _q +G(q) + Unknown = �; (29)

the controller is still capable of overcoming the un-
desired e�ects of unknown terms and disturbances,
which may come from joint friction and environmental
vibrations etc. Because of the di�erences in the scope
of this work and these e�ects, it is not necessary to
consider uncertainties and disturbances in the simula-
tion of the robot. Thus, this work only studies the
tracking response of the robotic manipulator and the
optimization process for this task. The kinematics
Denavit-Hartenberg parameters of the SCARA robot
are given in Table 5 [33].

Using the inward and outward Newton-Euler iter-
ational method, proposed in [33], the joint torques will
be derived in a close form as follows:

�1 =

"�
m+1

3
+m2 +m3

�
a2

2 + (m2 + 2m3)a2a3C2

+
�m2

3
+m3

�
a2

3

#
��1 �

"�m2

2
+m3

�
a2a3C2

+
�m2

3
+m3

�
a2

3

#
��2 + b1( _�1)

� a2a3S2

"
(m2 + 2m3) _�1 _�2 �

�m2

2
+m3

�
_�2
2

#
:
(30)

The torque on the second joint is given by:

�2 =�
"�m2

2
+m3

�
a2a3C2+

�m2

3
+m3

�
a2

3

#
��1+b2( _�1)

+
�m2

2
+m3

�
a2

3
��2 � a2a3S2

�m2

2
+m3

�
_�2
1:

(31)

Table 5. Kinematics parameters of the three-axis
SCARA robot.

Joint d a � � Home

1 d1 0 �1 0 0

2 0 a2 �2 0 0

3 d3 a3 0 0 0
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Figure 15. Block diagram of the mixed and traditional fuzzy control strategy.

And the torque on the third joint is given by:

�3 = m3 �d3 � gm3 + b3( _d3); (32)

where (g) represents gravity acceleration and b1, b2 and
b3 represent the robotic manipulator, based on a typical
welding task, are chosen as:

m1 = 2 kg; m2 = 3 kg; m3 = 3 kg;
a2 = 0:4 m; a3 = 0:6 m; d3 = 0:5 m;

The three-axis SCARA robot is treated as a system,
comprised of a two-input two-output system (for the
�rst two links) and a single-input single-output system
(for the last link). The dynamics of Equations 30 and
31 are coupled and the �rst two joints are considered
to be a MIMO system. Hence, a mixed fuzzy controller
(Tables 3 and 4) has to be designed to control the �rst
two joints of the robot.

The third joint is dynamically de-coupled from
the �rst two joints and is modeled as a SISO system.
Hence, a traditional SISO fuzzy controller (Table 3)
has to be designed to control the third joint of the
robot. Figure 15 represents the control block diagram
of the designed fuzzy controller. The angular errors
and error derivatives of the links 1, 2 and 3, de�ned by
Equations 23 and 24, are chosen as the input variables
of a TFC. From Equation 27, the total control input
torques for this controller are given by:

U1 =u1+U2!1; U2 =u2+U1!2; U3 =u3;
(33)

where u1, u2 and u3 are the control input torques that
come from the TFC of the links 1, 2 and 3, respectively.

U1!2 and U2!1 represent the torques, due to the
coupling e�ects between links 1 and 2, respectively.

In this work, two sets of desired trajectories for
the simulation of a SCARA robot are used. The �rst
set is for examining the performance of the designed
controller, along a sinusoidal path, R1 = p1 sin(2�t=Td)
and R2 = p2 sin(2�t=Td), which is shown in Figures 16
through 19, and the second set is for the weld pro�le,
which is discussed in the next section. For the �rst

Figure 16. Angular tracking response using a TFC.
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Figure 17. Angular tracking error response using a TFC.

Figure 18. Angular tracking response using a MFC.

case, the period, Td, is 2 sec and the amplitudes are
chosen as p1 = 6�for the �rst link and p2 = 9�for the
second link. Parameters of the TFC were chosen as
follows:

�ji =

8<: �1
1 = 1:2; �2

1 = 0:02; �3
1 = 3;

�1
2 = 1:2; �2

2 = 0:02; �3
2 = 1:5;

Parameters of an appropriate coupling fuzzy controller

Figure 19. Angular tracking error response using a MFC.

were chosen as follows:

�ji =

8<: �1
1 = 1:1; �2

1 = 0:02; �3
1 = 3;

�1
2 = 1:1; �2

2 = 0:04; �3
2 = 1:5:

Figures 16 and 18 plot the angular tracking response of
the TFC and MFC. According to the angular tracking
errors of these two controllers, which are shown in
Figures 17 and 19, the control performance of these
controllers can be compared further. The maximum
amplitude of the angular tracking error is within 0.0097
rad for link 1 and 0.0065 rad for link 2 of this robotic
system for MFC, which is compared to 0.012 rad and
0.009 rad for the �rst and second links, respectively,
of the TFC. Clearly, the control performance of the
mixed fuzzy control algorithm exceeds that of the TFC
for this MIMO robotic system.

INTEGRATION OF MIXED FUZZY LOGIC
CONTROLLER AND GENETIC
ALGORITHM

A Genetic Algorithm (GA) is an optimization tech-
nique developed by J. Holland et al. A GA is one
of the recently attracted search algorithms, based
on the mechanics of natural selection and natural
genetics [34]. It is easy to implement GA as an e�cient
mothod for multivariable optimization problems, such
as fuzzy controller design. A GA uses the operations
of selection, reproduction, crossover and mutation to
generate the next population and it searches for an
optimal solution from a set of points. Recently, many
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GAs have been presented. Figure 20 shows a ow chart
of the GA.

The contents of a conventional GA can be simply
described as follows:

Coding of Parameters: The strings of searching
parameters for the optimization problem are the
genes in a chromosome, which can be binary-coded
or real coded;

Initial Generation: Generates an initial population of
N strings by calling random numbers;

Fitness Evaluation: The �tness function is the per-
formance index of a GA for verifying the solutions;

Selection: The �tness of o�spring is compared with
that of the parent. The better chromosome is selected
and the worst is killed;

Reproduction: Is a copy of the strings from a mating
pool into a new generation. Strings with high �tness
values obtain a larger number of copies in the next
generation;

Crossover: Selecting random pairs of strings from a
mating pool and some portions of the chromosomes
are exchanged;

Mutation: A part of a chromosome is changed and
makes it probable that the population will get out of
the local minimum.

Figure 20. Flow chart of the genetic algorithm [20].

The GA is a powerful tool for structure optimiza-
tion of the fuzzy logic controller. In this paper, the GA
is used for optimization of the mixed fuzzy controller,
which is undertaken in two steps. In step 1, the GA is
used to �nd an optimal membership function and, in
step 2, the torque ranges and scaling factors of the �rst
and second links of the robot in the MFC are optimized.
The membership functions can be represented either
by triangular or trapezoidal shapes. In this study,
triangular fuzzy membership functions are used. These
triangles include the variable based width and shift
along the x-axis, freely. Therefore, each one requires
the de�nition of two points to �x it. There are three
ways to achieve optimal membership functions:

1. Choose all membership functions as variables to be
optimized,

2. Choose only the overlaps between membership
functions as variables to be optimized,

3. Choose only the position of the bottom vertices of
each membership triangle and do not change the tip
position.

In the �rst choice, the entire set of fuzzy member-
ship functions for a MFC system must be represented
as bit strings (of 0 and 1). This can be a lengthy
and complicated procedure. To do this, the best
choice is to use a method called concatenated, mapped,
unsigned, binary coding [34]. In the second choice, the
overlaps between di�erent fuzzy membership functions
are considered as parameters to be optimized. Unlike
the �rst choice, all the fuzzy membership functions
are not needed to be coded into bit strings [18]. In
the third choice, two bottom vertices of each triangle
are considered as variables. This method is very
e�cient, if the membership functions are symmetric.
In this case, the number of variables to be changed
has become half and this makes utilization of the GA
for fuzzy membership optimization much easier and
more e�cient. In this paper, the third method for the
optimization process is used.

In order to de�ne the membership functions,
variables must be considered, such that the formulation
of the membership functions becomes dependent on
those variables. For this reason, here, the method in
Figure 21 is considered. As shown in the �gure, each
triangle is formulated, based on the position of its tip
and parameters, aji , b

j
i and cji . In these parameters,

index i is dedicated to the usage of those membership
functions, as for the �rst or second link controller;
index j is for the sequence of triangles in the speci�c
membership function and parameters a, b and c are
for error, derivative error and torque, respectively.
The only constraint imposed on the individual triangle
of the membership functions is that the triangles
bordering the extreme limits of the action or control
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Figure 21. De�ning variables for triangles of membership
functions.

must not be changed. This is because, for almost all
applications of FLC systems, the membership functions
have two extreme limits (i.e., upper bound and lower
bound), which are shown in Figure 22.

The extreme bordering triangles are called corner
triangles and the triangles between the two extreme
bordering triangles are called inner triangles. Each
corner triangle needs the de�nition of only one point
for it to be determined, while each inner triangle needs
the de�nition of two points for it to be determined.
For optimization of the membership functions of a
FLC, it is only required to code the variables, aji , b

j
i

and cji , into bit strings. Here, in this paper, only
the membership functions of the �rst and second joint
torques in the TFC section of the mixed fuzzy controller
are optimized, thus, there are 12 variables to construct
the bit strings. These 12 variables are c1!6

1 and c1!6
2 .

Note that variables a and b are not used.
The bit strings representing these parameters

must then be judged and assigned a �tness value,
which is a score representing the degree to which they
accomplished the goal of de�ning high performance. In
this paper, the Root Mean Square Error (RMSE) for
the �rst and second links of the robot (Equation 34)
is used as the �tness function of the genetic algorithm.
The RMSE term can be evaluated to determine the
�tness of the strings in a population. This error could
be the distance between the set point and the output of
the system. Here, 30 populations and 100 generations
are used for the optimization process.

Figure 22. A set of membership functions of a FLC with
bordering triangles of the membership functions.

In step 2 of the optimization process in this paper,
the torque ranges and scaling factors of the �rst and
second links in the MFC are optimized. In this part
of the optimization process, eight variables, formerly
identi�ed as �3

1, �3
2, �3

1 and �3
2 , and ranges for u1, u2

and U1!2 ; U2!1, in designing membership functions,
are considered. The bit strings representing these
parameters must then be judged and assigned a �tness
value. The results of the optimization processes for
both steps 1 and 2 are shown in Figures 23 through 25
and the �tness function is as follows:

Fitness=

  n1X
k=1

error2
1k

!
=n1+

 n2X
k=1

error2
2k

!
=n2

!� 1
2

;
(34)

where n1 and n2 represent the size of the error vector
for links 1 and 2, respectively, which are equal here,
and error1k and error2k are �rst and second link errors.
The values of optimized scaling factors are as follows:

�3
1 = 3:66; �3

2 = 3:314;

and

�3
1 = 3:91; �3

2 = 1:39:

According to Figure 24, the maximum amplitude of the
angular tracking errors are within 0.004589 rad for link
1 and 0.0019 rad for link 2, which can be compared
to 0.0097 rad for link 1 and 0.0074 rad for link 2
before optimization (Figure 19). Clearly, the control
performance of the mixed fuzzy GA control algorithm
grows, rather than the MFC.

Figure 23. Angular tracking response using an optimized
MFC.
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Figure 24. Angular tracking error response using an
optimized MFC.

Figure 25. Modi�ed membership functions of an
optimized MFC for links 1 and 2 in TFC part of the
controller.

SIMULATION RESULTS OF THE
WELDING ROBOT

The inference between the GMAW and the SCARA, as
discussed in the earlier part of the paper by Equations 9
through 11, obtains the value of the robot end-e�ector
speed or the weld torch speed as input and computes

the value of the desired stick-out, or arc voltage and
desired current as outputs. For a simulation of the
welding robot, Case 1 in Table 2 is considered here.
The actual welding starts when the robot has reached
the lift o� position and goes on until the weld speed or
the end-e�ector speed is constant at 8 mm/s.

According to the trajectory planning for the weld
pro�le, the speed is constant from time t = 0:1 sec
to t = 2:5 sec, but the third link reaches its desired
trajectory after 0.25 sec. Hence, the robot executes
the welding operation of the desired weld pro�le from
t = 0:25 sec to t = 2:5 sec, for a period of 2.25 sec., at
a speed of 8 mm/s. At t = 2:5 sec, the power is turned
o� and the welding ends. Hence, the desired stick-
out and current responses are obtained. For obtaining
the desired angular trajectory of the robotic system,
the inverse kinematics transformation of the output
position into the joint coordinate must be formulated.
The relation between the position of the arm end-
e�ector and the values of the joint angles are as follows:

xe = a2 cos(�1) + a3 cos(�1 + �2);

ye = a2 sin(�1) + a3 sin(�1 + �2); (35)

where xe and ye represent the end-e�ector position.
An inverse mapping of linkage coordinates to joint
coordinates must be performed, so an inverse problem
has to be solved by using Equation 35. Joint angles �1
and �2 can be expressed in terms of the tip position as
follows:

cos(�2) =
(x2
e + y2

e)� (a2
2 + a2

3)
2a2a3

; (36)

tan �1 =
�(a3 sin �2)x2 + (a2 + a3 cos �2)ye
(a3 sin �2)ye + (a2 + a3 cos �2)xe

: (37)

The results of the weld pro�le simulation are shown in
the following �gures. For tracking the weld pro�le, the
speed of the weld torch is holding constant at 8 mm/s
and the duration time of the welding is chosen as 2.5
sec. Note that the desired weld pro�le is curvilinear.
Figure 26 shows the joint trajectories and Figure 27
shows the tracking response of the GMAW system.

Once the desired response is achieved for the
angular positions of the �rst and second joints, it is
important to have the third joint in such a position
that the proper weld torch position is available for
welding. The third joint moves from 0.2 m to 0.49
m and Figure 26c shows that the desired response is
obtained for the third joint.

For validation of this work in comparison to pre-
vious work in this area, some simulations are presented
here. The �rst simulation is a comparison between
ANNC and the feedback linearization controller [3]
of the GMAW process, in cases where 50% model
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Figure 26. Tracking responses of robot joints for the
weld pro�le.

uncertainty exists in the plant parameters. Figure 8,
formerly discussed, shows that tracking is accomplished
successfully after almost 0.2 sec. But, Figure 28, which
is based only on the feedback linearization strategy dis-
cussed in [3], cannot converge to the desired trajectory,
even after 0.5 sec, and a steady state error exists in
the system response. Another simulation is presented
in Figures 18 and 23, which shows a di�erence between
the TFC [13,14,30] and MFGAC. From these �gures, it
is also clear that the tracking response of the MFGAC
is much better than that of the TFC.

CONCLUSION

In this paper, the modeling of a SCARA type robot
for a continuous welding job was addressed. Ad-

Figure 27. Stick-out (a) and current (b) responses of the
system for Case 1 in Table 2 of the weld pro�le.

Figure 28. Desired and actual responses for stick-out (a)
and current (b) for Case 1 in Table 2 of feedback
linearization controller with 50% model uncertainties.

vanced control strategies, including feedback lineariza-
tion mixed with a neural network and fuzzy controller
and mixed with a GA, have been used to accomplish
control tasks for both robot motion and a welding job,
together. From the implemented control algorithm
based adaptive neural network, it can be seen that
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very good performance in the weld task is achieved.
In the control strategy of the robotic manipulator, the
mixed fuzzy control and GA perform very well and the
controller's performance and robustness are improved,
compared to a simple fuzzy controller.
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