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Research Note

Maximum Dynamic Load Carrying Capacity
of a 6UPS-Stewart Platform Manipulator

M.H. Korayem� and M. Shokri1

In this paper, a computational method for obtaining the maximum Dynamic Load Carrying
Capacity (DLCC) for the 6-UPS Stewart platform manipulator is developed. In this paper, the
manipulator is assumed to be non-rigid and the joint actuator torque capacity and accuracy
of motion are considered major limiting factors in determining the maximum payload. The
maximum dynamic payload carrying capacity of the manipulator is established, while the dynamic
model of a typical hydraulic actuator system is used in the joint actuator force capacity for a given
trajectory. The 
exibility of the manipulator is assumed to be eventuated from the manipulator's
joints 
exibility. According to the high complexity of the dynamic equations system of the 
exible
joints parallel manipulators, the e�ects of the 
exibility of the prismatic joints are considered in
a static situation to show the considerable e�ects of the joint's 
exibility on the motion accuracy
of the 6UPS-Stewart platform. This method can be used for determining the maximum dynamic
payload, which acts as an end-e�ector for the mechanical design of the manipulator and the
optimized selection of the actuator, such as machine tools, based on the hexapod mechanism.

INTRODUCTION

The Dynamic Load Carrying Capacity (DLCC) of
a robot manipulator is a method of presenting the
relationship between dynamic performance and actu-
ator torque capacity and is de�ned as the maximum
payload that the manipulator can repeatedly lift in
its fully extended con�guration, while the dynamics of
both the load and the robot manipulator itself must
be taken into account. For the rigid manipulators,
the major limiting factor in determining maximum
load is the joint actuator capacity. For 
exible joint
manipulators, a 
exible deformation constraint should
also be considered for the prede�ned trajectory, since
the 
exible deformation of joints has an e�ect on the
precision of the dynamic trajectory of the end-e�ector.

There are some applications of a parallel robot
manipulator that determine the maximum DLCC of
the manipulator. For a given trajectory, it is very
important to select the optimized joint actuator ca-
pacity and vice-versa. Using machine tools, based on
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hexapod manipulators, is one application of a parallel
manipulator where the determination of the DLCC
is critical in the mechanical design of the machine
and the manipulator. In this paper, the DLCC of a
6UPS-Stewart platform and a computational approach
for determining its maximum load is developed. The
Stewart platform is an example of a parallel connection
robot manipulator and its structure is obtained from
a generalization of the mechanism originally proposed
by Stewart as a 
ight simulator. The position and
orientation of the moving platform are controlled by
the lengths of the six legs actuated by six prismatic
joints. Each leg is connected to the base by a 2-DOF
universal joint and connected to the moving platform
by a 3-DOF spherical joint [1,2].

The DLCC problem of a robot manipulator was
studied about two decades ago. Important research in
this �eld was done by Wang and Ravani [3,4]. They
studied the problem associated with the load-carrying
capacity of mechanical manipulators and found that
the problem of synthesizing a point-to-point dynamic
robot motion with an optimum load-carrying capacity
can be formulated as a trajectory optimization prob-
lem. Other considerable research was done by Bowling
and Khatib [5,6]. They introduced the Dynamic Ca-
pability Equations (DCE) as a new tool for analyzing
robotic manipulator performance. These equations
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describe the magnitudes of translational and rotational
acceleration and force guaranteed to be achievable in
every direction, from a particular con�guration, given
the limitations on the manipulator's motor torques.
There are some works concerning DLCC problems
in an open-chained manipulator, in which 
exible
deformation and joint actuator capacity are considered
as a limiting factor [7-9].

There has been considerable research undertaken
on the DLCC of parallel manipulators. For exam-
ple, Yong Sheng Zhao and his coworkers introduced
a novel uni�ed method for computing the dynamic
load carrying capacity of multiple cooperating robotic
manipulators [10]. Han S. Kim and J. Choi introduced
an analytical method to evaluate the forward and
inverse force transmission capability of fully parallel
manipulators [11]. Merlet considered a classical Gaugh
platform with extensible legs, which is submitted to a
given load and the values of the articular forces were
determined when the platform was translated into a
given 3D workspace. In this algorithm, the orientation
of the platform is assumed to be constant [12]. Nokleby
and his coworker introduced a methodology of using a
scaling factor to determine the force capability of non-
redundant and redundant-actuated parallel manipula-
tors [13].

While a large amount of research has been con-
centrated on the modeling, analysis and related topics
of Stewart platforms, which have been published in
the literature, there has been little research concerning
the DLCC of parallel manipulators, including the
Stewart platform based manipulators. In this paper,
a computational approach for obtaining the maximum
dynamic load carrying capacity for a 6-DOF parallel
manipulator, based on Stewart platforms and called
a 6-UPS Stewart platform manipulator, is presented.
In this paper, the manipulator is assumed to be a
non-rigid manipulator and the joint actuator torque
capacity and accuracy of motion are considered as
the major limiting factors in determining the maxi-
mum payload. The maximum dynamic load carrying
capacity of a manipulator is established while the
dynamic model of a typical hydraulic actuator system
is used in the joint actuator force capacity for a given
trajectory. The 
exibility of the prismatic joints is
considered, in order to model and formulize the motion
accuracy constraint. Due to the high complexity of the
dynamic equations system of 
exible joints in a 6UPS-
Stewart platform, the 
exibility e�ects of the prismatic
joints are only considered in a static situation, in
order to show the considerable e�ects of the joint's
de
ection on the motion accuracy of the 6UPS-Stewart
platform. This method can be used for determining the
maximum dynamic payload, which acts on the end-
e�ector of the manipulator, for the mechanical design
of the manipulator and the optimized selection of the

actuator, such as machine tools, based on a hexapod
mechanism.

In this paper, �rst, a geometrical model of a
6UPS-Stewart platform is considered and its kinemat-
ics are established, based on this model. The dynamics
of a 6UPS-Stewart platform are established by using
a virtual work principle. Secondly, the DLCC of
a 6UPS-Stewart platform is formulated and actuator
capacity and accuracy constraints are imposed on the
developed DLCC model to determine the maximum
load for a given trajectory. A computational algorithm
is developed to determine the maximum load of a
6UPS-Stewart platform for a given trajectory, based
on the established DLCC model. Finally, the developed
algorithm is implemented using mathematics software
and its performance is tested by several given trajec-
tories and the results are simulated by using Working
Model software.

KINEMATICS AND DYNAMICS MODEL
OF THE 6UPS-STEWART PLATFORM
MANIPULATOR

The principle of virtual work or the d'Alembert's
principle is used for the dynamic analysis of a 6UPS-
Stewart platform. In this model, dynamic and gravity
forces at the joints are considered. Further, it is
assumed that no rotation of any leg about the longitu-
dinal axis of the leg is allowed.

For the kinematics and dynamic analysis, a coor-
dinate frame, A(x; y; z), is attached to the �xed base
and another coordinate frame, B(u; v; w), is attached
to the moving platform. The x � y plane contains
the universal joints, Ai, and the u � v plane contains
the ball joints, Bi, for i = 1 � � � 6. The origin of the
moving frame, B, is located at the center of the moving
platform and the origin of the �xed frame is located at
the center of the �xed base. Each of the six limbs is
denoted by a vector, Si. A vector model of a 6-UPS
Stewart platform is shown in Figure 1.

A new coordinate frame, Ai(xi; yi and zi), is
de�ned for ith limb with the origin located at Ai, as
called a joint frame (Figure 1). This frame presents the
orientation of each limb relative to the base frame. The
unit vector, ki, of ith joint frame is de�ned along the leg
axis, the unit vector, ji, along the rotation axis of the
universal joint and the unit vector, ii, perpendicular to
ki and ji, according to the right hand rule. The length
and unit vector of the ith leg is de�ned as follows:

di = jSij ! si =
Si
di
: (1)

Since each leg of a 6UPS-Stewart platform is connected
to a �xed plate by a universal joint, there is no
rotation about the longitudinal axis of the leg and the
orientation of the leg can be described by two Euler
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Figure 1. Kinematics con�guration and vector model of
6UPS-Stewart platform.

angles, namely, a rotation of 'i about the zi-axis,
resulting in a (x0i; y0i; z0i) system, followed by another
rotation of �i about the rotated y0i-axis. Therefore,
the transformation relating the joint frame to the �xed
(base) frame can be de�ned as R'i:R�i.

By de�ning the Cartesian coordinate vector,
[x y z ' �  ]T , where [x y z]T is the position vector
and [' �  ]T is the orientation vector of the moving
platform's mass center, the orientation of the moving
platform can be presented by three Euler angles. As
shown in Figure 1, the platform connection point, Bi,
can be transformed to the base frame as follows:

Si = P +RABbiB � ai; (i = 1; � � � ; 6): (2)

This equation is the inverse kinematics equation for
the Stewart platform. In this approach, each prismatic
joint is modeled as two parts: The lower part (cylinder)
and the upper part (piston) and the position vector of
the mass center of the lower and upper part of the
ith prismatic joint (CG1 and CG2 in Figure 1) are r1i
and r2i, which are presented as relative to the base
frame. The mass and moment of inertia of the lower
and upper part of the ith prismatic joint are (m1i; I1i)
and (m2i; I2i).

The principle of the virtual work for a 6UPS-
Stewart platform can be stated as:

�qT � + �xTp Fp +
6X
i=1

�xTi Fi = 0; (3)

where � is the vector of an actuated joint
torques/forces, Fp is a six-dimensional wrench, in-
cluding the sum of the applied and inertia wrenches
about the center of mass of the moving platform, Fi
is a six-dimensional wrench, including the sum of the
applied and inertia wrenches about the center of mass
of the ith link and �q; �xp and �xi are the virtual
displacement of the actuated joint, platform and ith

link. The virtual displacement of the actuated joint
is related to the virtual displacement of the moving
platform, by the manipulator Jacobean matrix, Jp, and
the virtual displacement of the ith link can be related
to the virtual displacement of the moving platform,
by a link Jacobean matrix, Ji. The manipulator
and link Jacobean matrices can be determined by
using the vector loop equation, which is written based
on Equation 2. For a 6UPS-Stewart platform, the
equation of motion can be written as follows:

JTp � + Fp +
6X
i=1

(JT1iAiF1iAi + JT2iAiF2iAi) = 0; (4)

where J1Aii and J2Aii are the link Jacobean matrices
and F1Aii and F2Aii are the wrenches, including the
sum of the applied and inertia forces of the lower and
upper part of the ith link, relative to the joint frame
which can be expressed as follows:

FkAii =
�

mkigAi �mkiakiAi�IkiAi�kiAi � !kiAi � (IkiAi!kiAi)

�
;

k = 1; 2: (5)

FORMULATION OF DYNAMIC LOAD
CARRYING CAPACITY FOR A
PRESCRIBED TRAJECTORY

By supposing that the load is located on a moving
platform, rigidly, the moving platform and load can
be considered as a rigid body. So, the load e�ect
on the dynamic behavior of the manipulator can be
accounted for by using the compound body, which
is the equivalent of the moving platform and load.
Therefore, an equivalent mass, (mC), mass center,
(CC), and moment of inertia, (IC), relative to a moving
coordinate system can be de�ned for a compound body
as follows:

mc = mp +mL; (6)

Cc =
mpCp +mLCL
mp +mL

; (7)

Ic = Ip +mp[C�p ]T [C�p ] + IL +mL[C�L]T [C�L]; (8)

where mP and mL are the mass of the moving platform
and load, respectively; CP and CL are the position
vector of the moving platform mass center and the
position vector of the load mass center, relative to
the moving coordinate system, respectively, and IP is
the moving platform about itself mass center, and IL
is the load moment of inertia relative to the moving
coordinate system. C�P and C�L can be de�ned as
C�P = CC � CP and C�L = CC � CL. The position,
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velocity and acceleration vectors of a compound body,
relative to a �xed coordinate system, can be calculated,
based on the position, velocity and acceleration vector
loop of each leg. According to the equation of motion of
the moving platform (Equation 5) the load e�ect on the
dynamic behavior of the manipulator can be presented
as follows:

JTp � + Fc +
6X
i=1

(JT1iAiF1iAi + JT2iAiF2iAi) = 0; (9)

where Fc is a wrench, including the sum of the applied
and inertia forces about the equivalent mass center of
the load and platform, de�ned as:

Fc=
�
mcg�mc(ap+�p�Cc+!p�(!p�Cc))�Ic�p � !p � (Ic!p)

�
; (10)

where !p, ap and �p are angular velocity, linear and
angular acceleration vectors of the mass center, relative
to the �xed coordinate system.

Formulation of the Joint Actuator Constraint

In a 6UPS-Stewart platform, the joint actuator is
a hydraulic/pneumatic linear actuator. The torque
constraint of a hydraulic/pneumatic linear actuator
can be formulated, based on the torque-speed charac-
teristics. There is much research into determination
of the dynamic model of hydraulic/pneumatic linear
actuators. The analysis of a typical hydraulic servo-
system is well documented in [14]. A power curve
for power saving circuits can be plotted, so that any
two force-speed coordinates intersecting on the curve
represent the input power for which the curve is
designed. The power of a hydraulic actuator system
is:

PH = �Ps:qmax; (11)

in which Ph is hydraulic power, Ps is supply pressure,
q is 
ow rate and � is e�ciency coe�cient, which
is determined, based on the internal friction of the
actuator and the internal leakage of the valve and
actuator. The maximum 
ow rate of a hydraulic
actuation system can be determined, based on the
maximum operating velocity of the actuator. By
supposing that the maximum desired velocity for the
positive and negative stroke is Vmax, the maximum

ow rate in the positive and negative stroke can be
expressed as:

q+
max = A+:Vmax; (12a)

q�max = A�:Vmax; (12b)

where A+ and A� are the e�ective piston area with
a positive and negative stroke. The hydraulic power

of a given actuation system is spent to overcome the
load and internal friction forces. Thus, the hydraulic
power is converted to mechanical power. The produced
mechanical power generates a total force, which is
acting to the system and velocity of the piston. This
means that an actuator with a fast approach speed
and an output force would require an input power,
P , and when switched to a slow work speed under
the same power consumption, would produce a larger
force. The relation between the generated force and
the working velocity of the hydraulic system can be
shown as a power curve (force-speed curve), which is
shown in Figure 2 for a typical hydraulic system, where
V1 and V2 are two di�erent working speeds and F1 and
F2 are the available forces of the actuator, respectively.
By supposing the internal friction forces to be 15% of
the total force acting on the system, the maximum
available force of a given hydraulic actuator system,
with positive and negative strokes, can be written as:

F+
amax = 0:85

Ps:q+
max
_x

; (13a)

F�amax = 0:85
Ps:q�max

_x
; (13b)

where _x is the piston velocity at each point of the
motion path. For hydraulic actuator force capability
analysis, q is determined, based on the piston velocity,
which is given for the prescribed task. For a given
velocity of the piston, the 
ow rate can be written as
a product of the e�ective piston area and the piston
velocity. If F+

a and F�a are the upper and lower bounds
of the available actuator force at each point of the
trajectory, Fnai and Fpai are the ith actuated joint
force for a no-load condition and by adding the moving
platform mass as a sample mass, respectively, the upper
and lower bound of actuator force can be determined
as follows:

(F+)i = (F+
a )i � Fai; (14a)

(F�)i = (F�a )i � Fai: (14b)

Figure 2. Force-speed curve of typical hydraulic system.
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Therefore, the maximum allowable actuator force of
the ith actuated joint is:

Fi = f(F+)i; (F�)ig: (15)

Now, a load coe�cient (Ci�Torque) complying with
the actuator force constraint for each point of the
trajectory can be de�ned as:

Ci�Torque =min
�

Fi
Fpai�Fnai! i=1; 2; � � � ; n

�
: (16)

The load coe�cient, as to the actuator torque capacity
constraint (CLoad�Torque) of the trajectory, can be
selected as the minimum value of Ci�Torque.

Formulation of the Accuracy Constraint

De
ection at the end-e�ector could be attributed to
both static and dynamic factors, such as, joint clear-
ance, manipulator and load inertia. The DLCC of

exible manipulators is motion dependent, since these
factors are con�guration or motion dependent. If w 2
R6 is considered as the coordinate of a point on the
desired path of motion and w0 2 R6 as the coordinate
of a point on the actual path of motion, the de
ection
of the end-e�ector at this point can be expressed as
follows:

�w = w0 � w:
The small displacement of the end-e�ector can be
related to the small displacement of the actuated
joint as �w = J�q, where J is the manipulator
Jacobean matrix and �q is the 
exible deformation of
the actuated joint and is expressed as �q = q0 � q.
q is the desired displacement and q0 is the actual
displacement of the actuator. The 
exibility of each
actuated joint can be described by a spring constant,
K, and expressed as � = K�q, where � is the torque
of the actuated joint. Thus, the de
ection of the end-
e�ector can be related to the actuator torque in a static
condition as follows:

�w = JK�1�: (17)

In this paper, the prismatic joint of each limb is
assumed 
exible and other joints are assumed to be
rigid for simplicity. The 
exibility of a 
exible joint
can be modeled by a linear spring with spring constant
K. Closed kinematics chains with 
exibility introduce
constraint equations systems that are very complex and
are di�cult to solve, due to the complex relationships
of the equations and the coupling between the algebraic
and di�erential equations. Accordingly, in this paper,
Equation 17 is used for calculation of the de
ection
of the end-e�ector by imposing an accuracy constraint
to show the great e�ect of joint 
exibility on the load

factor of the 6UPS-Stewart platform. In this approach,
de
ection of the end-e�ector is calculated in a static
condition for each point of the trajectory. Actuator
forces, which are calculated by dynamic models, are
used for de
ection determination to provide closer
results to the dynamic condition.

The translational de
ection of the end-e�ector at
each point of the path can be expressed by a constant
value, which introduces an allowable radius of sphere
of translational de
ection for modeling the accuracy
of the motion constraint in DLCC determination. An
allowable radius of sphere of translational de
ection
can be expressed as:

�P =
q

�w2
1 + �w2

2 + �w2
3; (18)

where �w1, �w2 and �w3 are allowable de
ection in
x, y and z directions, respectively. The orientation
de
ection of the end-e�ector can be expressed by three
values, which introduce allowable de
ection for each
orientation de
ection, such as �� � �w4 � �, �� �
�w5 � � and �
 � �w6 � 
.

For DLCC determination, by imposing an accu-
racy of motion constraint, �rst, the de
ection vector
of the end-e�ector for a no-load condition, �wn,
and then, by adding the end-e�ector mass, �we
is calculated for each point of the path of motion.
The additional mass at the end-e�ector changes both
the magnitude and direction of the de
ection. But,
as long as the magnitude of the de
ection is less
than, or equal to, an allowable value, the robot is
considered to remain capable of executing the given
trajectory [7]. In other words, only the magnitude of
the de
ection needs to be considered in this context.
In the following, by adding the end-e�ector mass
(�wai = [�Paxi �Payi �Pazi �wa1i �wa2i �wa3i]T )
the available de
ection vector is calculated at each
point of the path of motion as follows:

�Pai = �P ��Pei; (19a)

�wa1i = �r1 ��w1ei; (19b)

�wa2i = �r2 ��w2ei; (19c)

�wa3i = �r3 ��w3ei; (19d)

where �Pei is the translational de
ection vector in x,
y and z directions, �w1ei, �w2ei and �w3ei are orien-
tation de
ections, by adding the end-e�ector mass, re-
spectively, �P is the allowable radius of the allowanced
sphere of the translation de
ection and �r1, �r2 and
�r3 are the allowable values for ', � and  directions
of orientation de
ection, respectively. Therefore, the
load coe�cient of translation de
ection and orientation
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de
ections (Cki ! k = 1; 2; 3; 4), respectively, can be
expressed as:

C1i =
�Pai

�Pei ��Pni
; (20a)

C2i =
�wa1i

�we1i ��wn1i
; (20b)

C3i =
�wa2i

�we2i ��wn2i
; (20c)

C4i =
�wa3i

�we3i ��wn3i
; (20d)

where �Pni is the translational de
ection vectors in x,
y and z directions and �w1ni, �w2ni and �w3ni are
orientation de
ections for no-load conditions, respec-
tively. The load coe�cient, as to the accuracy of the
motion constraint in the ith point of the path, can be
determined as:
Ci�Accuracy = min fC1i; C2i; C3i; C4ig : (21)

And the load coe�cient, as to the accuracy of the
motion constraint (CLoad�Accuracy) for the whole path,
can be selected as the minimum value of Ci�Accuracy.

Determination of Maximum Dynamic Load for
a Given Trajectory

After determining the load coe�cient of the actuator
constraint (CLoad�Torque) and the load coe�cient of the
accuracy constraint (CLoad�Accuracy), the load coe�-
cient of the whole of the given trajectory can be de-
termined as the minimum value between CLoad�Torque
and CLoad�Accuracy. Then, the maximum dynamic load
for a given trajectory can be determined as follows:

mL = CLoadme: (22)

COMPUTATIONAL PROCEDURE FOR
DETERMINING DYNAMIC LOAD
CARRYING CAPACITY

By imposing the joint actuator torque capacity and the
accuracy of motion constraints, a computational pro-
cedure for determining the DLCC of a 6UPS-Stewart
platform, is outlined and also 
ow-charted in Figures 3a
and 3b. In order to calculate the load coe�cient of a
given path, �rst, the actuator forces under no-load and
sample load conditions are determined and, then, the
load coe�cient, due to the actuator torque capacity
constraint (Ci�Torque) and the load coe�cient, due to
the accuracy of motion constraint (Ci�Accuracy), are
determined, for each point of the path. Then, the load
coe�cient of the current point of path (Ci�Load) is
considered as the minimum value of them. The load
coe�cient of the whole of the path is considered as the
minimum value of CLoad.

SIMULATION RESULTS AND
DISCUSSIONS

Based on the above algorithm, a computer program was
developed to solve the inverse dynamics and compute
the maximum DLCC of the 6UPS-Stewart platform
(shown in Figure 4) for a given trajectory, using
Mathematica software. Figure 4 shows the location of
the universal and ball joints and the initial location
of the moving platform. In this procedure, �rst,
it is assumed that the manipulator is a rigid joint
and the maximum load of the given trajectory is
determined by imposing the actuator force capacity
as the limiting factor. Then, it is assumed that the
prismatic joints of the manipulator are 
exible and the
maximum load of the given trajectory is determined
by imposing the accuracy of motion as the limiting
factor.

The system of equations is derived and expanded
by using a numerical value for its parameters in Table 1.
The following system of equations can be solved to �nd
actuator forces:0B@Jp11 � � � Jp16

...
. . .

...
Jp61 � � � Jp66

1CAT 0B@�1...
�6

1CA+

0B@Fp1...
Fp6

1CA
+

6X
i=1

 0B@J1iAi11 � � � J1iAi16
...

. . .
...

J1iAi61 � � � J1iAi66

1CAT 0B@F1iAi1
...

F1iAi6

1CA
+

0B@J2iAi11 � � � J2iAi16
...

. . .
...

J2iAi61 � � � J2iAi66

1CAT 0B@F2iAi1
...

F2iAi6

1CA! = 0;
(23)

where details of Jp, J1Aii, J2Aii, F1Aii and F2Aii can be
found in Appendix. The de
ection vector of the end-
e�ector at each point of the path is determined by:26664

�w1
�w2

...
�w6

37775 =

26664
Jp11 Jp12 � � � Jp16
Jp21 Jp22 � � � Jp26

...
...

. . .
...

Jp61 Jp62 � � � Jp66

37775

:

26664
1
K1

0 0 0
0 1

K1
0 0

...
...

. . .
...

0 0 0 1
K1

37775 :
26664
Fa1
Fa2

...
Fa6

37775 : (24)

Simulation Results

Various desired trajectories were simulated and a sim-
ple one was solved to illustrate the algorithm. In
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Figure 3a. Computational 
owchart for kinematics and dynamic analyis of the mnaipulator.

this example, it is assumed that the platform starts
at rest and accelerates with a constant acceleration
of a = [�0:15;�0:20;�0:30] m/s2 for a period of
1 second, while all the other parameters are held
constant. Furthermore, the initial conditions for the
position and orientation of the moving platform origin
are P1 = f0; 0; 0:41143; 0; 0; 0g and its velocity and
acceleration are zero. The velocity and acceleration
of the trajectory are obtained by di�erentiating the
trajectory by a sampling time of 0.01 seconds. The

displacement, velocity, acceleration and force of the
actuators are determined by using the kinematic and
dynamic models of the manipulators for a given trajec-
tory, as shown in Figures 5a to 5d.

For a given hydraulic actuator system and the
mass of a platform of 8.633 kg, by considering only
the actuator torque capacity constraint, the maximum
load that can be carried in a given path is 1022.38 kg,
which the given actuators can carry in executing the
trajectory. Figure 6 shows the time-varying forces
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Figure 3b. Computational 
owchart for DLCC determination of the manipulator.

Figure 4. 6UPS-Stewart platform.

required to execute the trajectory against the upper
and lower bounds of the available forces, which depend
on the joint velocity.

It is seen that the load so determined uses joints 1
and 2 to their maximum extent at about 0.5 seconds,

while other joints bounds are not reached during the
course. By considering the prismatic joints 
exibility,
when the actual trajectory of the moving platform is
plotted in based coordinates, with the prescribed upper
and lower bounds of �P = 0:0052 m and �r1 = �r2 =
�r3 = 0:01 deg, as shown in Figures 7a to 7c, it is
apparent that the desired tracking accuracy cannot be
achieved for mLoad = 1022:38 kg (out of accuracy zones
of the moving platform are shown in Figures 7a to 7c
for a given trajectory). This clearly demonstrates the
need to impose an additional constraint on end-e�ector
de
ection when the DLCC is determined for a 
exible
manipulator.

By imposing the actuator torque capacity and
motion accuracy constraints on DLCC determination
of the manipulator, a load of mLoad = 803:465 kg
was found as the maximum payload. It means that
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Table 1. Numerical value for simulation.

Manipulator Parameters

Parameter Value Unit

Lb, L0b 386.75, 100.00 mm

Lm, L0m 290.55, 140.82 mm

fIpcxx ; Ipcyy ; Ipczzg f107220.53,107220.53,210552.33g kg.mm2

e1, e2 115.46, 87.46 mm

mP , m1, m2 8.633, 0.832, 0.669 kg

fI1cxx; I1cyy; I1czzg f4802.25,388.51,4802.25g kg.mm2

fI2cxx; I2cyy; I2czzg f3692.99,57.92,3692,99g kg.mm2

CP f0,0,9.35g mm

Hydraulic Actuator System Parameters

A1, A2 201.06, 102.52 mm2

PS 10.3 MPa

L, w, u 200, 34, 20 mm

� 1.03 GPa

C1, C2, C3, C4 0.65 -

� 872 kg/m�3

Figure 5a. Joint displacement.

Figure 5b. Joint velocity.

Figure 5c. Joint acceleration.

Figure 5d. Force of actuators (no load condition).
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Figure 6. Force of joint actuated in maximum load carrying.

neither of the constraints is violated in executing the
same trajectory and end-e�ector de
ection require-
ments when the manipulator carries the calculated
maximum payload. By imposing the actuator torque
capacity and motion accuracy constraints, the desired
and actual trajectory against de
ection bounds is
shown in Figures 8a to 8f for the same trajectory and
end-e�ector de
ection requirements.

As shown in Figures 8a to 8f, the parts of the path
which were out of alignment under the �rst constraint,
did coincide on the bound of the path.

CONCLUSION

The main objective of this investigation is to formulate
DLCC and to determine the maximum load for a

typical parallel manipulator, based on the Stewart
mechanism and imposing actuator torque capacity and
accuracy of motion constraints. Simulation results of
an introduced typical 6UPS-Stewart platform show an
acceptable operation of model and algorithm. The
simulation results of several typical paths show that,
when the �rst constraint is imposed, the maximum
load is about 20% more than when both constraints
are imposed. In the other words, the simulation result
shows that, if only the �rst constraint is imposed for

exible joint manipulators, the load so determined
may result in substantial de
ections at the end-e�ector
when it moves through the prede�ned dynamic trajec-
tory. In order to be able to control the end-e�ector
tracking precision, addition of the second constraint is
necessary.
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Figure 7a. X direction of desired and actual trajectory
against de
ection bound without accuracy constraint.

Figure 7b. Y direction of desired and actual trajectory
against de
ection bound without accuracy constraint.

Figure 7c. Z direction of desired and actual trajectory
against de
ection bound without accuracy constraint.

Figure 8a. X direction of desired and actual trajectory
against de
ection bound with accuracy constraint.

Figure 8b. Y direction of desired and actual trajectory
against de
ection bound with accuracy constraint.

Figure 8c. Z direction of desired and actual trajectory
against de
ection bound with accuracy constraint.
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Figure 8d. ' rotation of desired and actual trajectory
against de
ection bound with accuracy constraint.

Figure 8e. � rotation of desired and actual trajectory
against de
ection bound with accuracy constraint.

Figure 8f.  rotation of desired and actual trajectory
against de
ection bound with accuracy constraint.
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APPENDIX

di = �[PTP + bTiBbiB + aTi ai + 2PT [RABbiB ]

� 2PTai � 2[RABbiB ]Tai]
1
2 ; (A1)

RAiA =
�
cos �i: sin�i cos�i sin �i: sin�i� sin �i 0 cos �i

�
; (A2)

r1i = ai + e1siA; r2i = ai + (di � e2)siA; (A3)

v1iAi = e1(!iAi � siAi);
v2iAi = (di � e2)(!iAi � siAi) + _disiAi; (A4)

a1iAi = e1( _!iAi � siAi) + e1!iAi � (!iAi � siAi);
a2iAi = (di � e2)( _!iAi � siAi) + (di � e2)!iAi

� (!iAi � siAi) + �disiAi + 2 _di(!iAi � siAi);
(A5)

!i = si � _Si
di
; _di = si: _Si; (A6)

�di = si:ap + si:(!p � (!p � biA)) +
1
di

( _Si � _disi)2;
(A7)

�i=
1
di

(si�ap)+
1
di

(si�(!p�(!p�biA))�2 _di!p);
(A8)

I1iAi = I1ic +m1ie2
1diag(1; 1; 0);

I2iAi = I2ic +m2i(di � e2)2diag(1; 1; 0); (A9)

Ip = RABIpcRTAB ; (A10)

vbi = vp + !p � biA; (A11)

Jbi =

0@1 0 0 0 biz �biy
0 1 0 �biz 0 bix
0 0 1 biy �bix 0

1A ; (A12)

vbiAi = JbiAi _xp =

0@JbiAixJbiAiy
JbiAiz

1A _xp; (A13)

Jp =

0BBB@
Jb1A1z
Jb2A2z

...
Jb6A6z

1CCCA ; J1iAi =
1
di

0BBBBBB@
e1JbiAix
e1JbiAiy

01�6�JbiAiy
JbiAix
01�6

1CCCCCCA ;

J2iAi =
1
di

0BBBBBB@
(di � e2)JbiAix
(di � e2)JbiAiy

diJbiAiz�JbiAiy
JbiAix
01�6

1CCCCCCA ; (A14)

Fp =
�
fp
np

�
=
�

mpg �mpap�Ip�p � !p � (Ip!p)

�
: (A15)


