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GLR Detector for Coded Signals
in Noise and Interference

A.A. Tadaion�, M. Derakhtian1, M.M. Nayebi2 and M.R. Aref2

In this paper, the detection of a coded signal in additive white Gaussian noise and the interference
is studied, where there is no knowledge about the correlation between the received symbols and
about the noise and interference parameters. The Maximum Likelihood (ML) estimates of the
unknown parameters are found, they are substituted in the probability density functions of the
observation and the Generalized Likelihood Ratio (GLR) detector is derived. This detector can
also be used for the activity detection of a signal in unknown Inter-Symbol Interference (ISI). In
this case, the interference is modeled as the unknown correlation between the received symbols.
Simulation examples are performed to evaluate the performance of the proposed detector.

INTRODUCTION

Detection methods for signals with correlation between
the received symbols in noise and interference are
of special importance in the implementation of a
communication system. Signal activity detection is
an important stage in real communication systems,
since the performance of the succeeding stages, such
as demodulation and decoding, depends on correct
knowledge of the signal activity. The signal sym-
bols are either independent or correlated with some
known/unknwon properties. The correlation between
the received symbols in a transmission system may be
because of the coding on the transmitted information
or due to the Inter-Symbol Interference (ISI) imposed
on the signal, as the signal goes through the channel.
Some attempts are made to propose e�cient detectors,
in terms of performance and computational complexity,
for such a detection problem in a variety of appli-
cations, including spectrum management and surveil-
lance, signal con�rmation and some other intelligence
gathering activities, interference identi�cation, mod-
ulation classi�cation and, also, in electronic warfare
and threat analysis (e.g., see [1-9] and the references
therein).

The traditional method of detecting the presence
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of a signal is the energy detector, in which the energy
level of the received signal is compared with a prede-
termined threshold, to detect whether a signal is active
or not [3]. However, such a method is susceptible to
the a priori knowledge of the noise variance and the
interference [1]. It must be noted that most of the exist-
ing methods for signal presence detection assume that
the signal, or some of its parameters, and/or the noise
parameters are known, while, in practice, they may
not be available to the receiver. In addition, mostly,
the presence detection problem has not been studied in
cases where the received symbols are correlated. The
authors have proposed Generalized Likelihood Ratio
(GLR) detectors for the activity detection of a Phase
Shift Keying (PSK) signal with unknown amplitude
and phase in unknown white Gaussian noise [10].

In this paper, the signal presence detection in
Additive White Gaussian Noise (AWGN) is studied,
where the received symbols are correlated. The GLR
detector for this problem is derived. It is noted that the
well-known problem of the activity detection of a signal
in noise and ISI can also be formulated and solved by
the proposed detector. Therefore, the recent problem is
formulated and the proposed GLR detector is applied
to solve it.

The remainder of the paper is organized as fol-
lows. First, the signal presence detection problem is
formulated as a binary hypothesis test. Then, the
Maximum Likelihood (ML) estimates of the unknown
parameters are founded and, by substituting them
in the Likelihood Ratio (LR), the GLR detector is
derived. After that, the presence detection of a signal
in ISI is studied and, assuming that the channel is
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unknown, the GLR solution is proposed. No assump-
tion is made of the signal in this derivation and some
simulation examples and their results are reported to
evaluate the performance of the presented detector.
Finally, the paper is concluded.

PROBLEM FORMULATION

The desired problem is modeled as a binary hypothesis
testing problem. In hypothesis H0, the samples of
the white Gaussian noise that are independent are
received. In this hypothesis, no assumption of receiving
the signal is made. The white Gaussian noise samples
are of the zero mean and unknown variance, �2. In
hypothesis H1, the signal is received in AWGN. The
transmitted symbols are assumed to be chosen from a
symmetric constellation, such as a PSK family or some
QAM (Quadrature Amplitude Modulation), such as
16QAM. The assumption is that the received symbols
are correlated. For instance, the transmitter uses a
coding that is unknown for the receiver and, so one
can assume that the received symbols are the samples
of a Gaussian process with zero mean and unknown
covariance matrix R. In this formulation, ISI is not
assumed, the receiver noise is additive white Gaussian
and independent of the signal. The hypothesis testing
problem is, then, as follows:(H0 : r[k] = u[k]; the signal is absent,
H1 : r[k] = v[k]; the signal is present,

k = 0; � � � ;K � 1; (1)

where r[k] = [r0[k]; � � � ; rN�1[k]]T is the baseband
representation of the received signal vector in the kth
time interval (that can be anywhere in the received
sequence), u[k] = [u0[k]; � � � ; uN�1[k]]T � N (0; �2IN ),
in hypothesis H0, is the complex white Gaussian
noise with zero mean and unknown variance �2. In
hypothesis H1, v[k] = [v0[k]; � � � ; vN�1[k]]T � N (0; R)
represents the correlated signal symbols plus AWGN.
Since the modulated signal samples are correlated, due
to the coding applied to them, the signal plus noise in
hypothesis H1 is modeled as a Gaussian process with
zero mean and covariance matrix R. In addition, the
observation data is considered as some N -blocks, which
is necessary for the estimation of the covariance matrix,
R (see e.g. [11]).

GENERALIZED LIKELIHOOD RATIO
DETECTOR FOR CODED SIGNALS

According to the Neyman-Pearson criteria, the optimal
test is obtained by constructing the LR and comparing
it with a threshold. This threshold is adjusted, such
that the Probability of False Alarm, (Pfa), be less than

a predetermined value. In composite hypothesis testing
problems, where one or both of the hypotheses contain
unknown parameters, if the constructed test maximizes
the Probability of Detection (Pd) for all values of
the unknown parameters, the detector is Uniformly
Most Powerful (UMP) test. However, the UMP test
does not exist for all composite hypothesis testing
problems [12]. Therefore, the UMP tests are looked
for within the class of invariant tests or unbiased tests,
namely, UMP Invariant (UMPI) or UMP Unbiased
(UMPU) tests, respectively. The other well-known
test is the GLR test, which mostly performs close to
optimum [10]. In this detector, the ML estimates of the
unknown parameters are substituted in the likelihood
ratio and the resulting likelihood ratio is compared with
a threshold [13].

In the following, to derive the GLR detector
for Equation 1, the ML estimates of the unknown
parameters, �2 and R are substituted, under each
hypothesis in the probability density functions (pdfs)
of the observation under each hypothesis and the LR is
constructed. The pdf of the observation signals under
the hypotheses, H0 and H1, are as follows:

f(r[0]; � � � ; r[K � 1];H0)

=
1

(2��)2KN exp

(
� 1
�2

K�1X
k=0

rH [k]r[k]

)
;

(2a)

f(r[0]; � � � ; r[K � 1];H1)

=
1

((2�)2N jRj)K exp

(
�
K�1X
k=0

rH [k]R�1r[k]

)
;
(2b)

where (:)H is the conjugate transpose and j:j is the
determinant of the matrix. In the following, the ML
estimates of the unknown parameters, �2 and R, will
be found. Taking the natural logarithm of both sides
of Equation 2b, one has:

ln f(r[0]; � � � ; r[K � 1];H0)

= �KN ln(4�2�2)� 1
�2

K�1X
k=0

rH [k]r[k]; (3)

and by taking the derivation of the recent equation,
with respect to �2, the ML estimate of the �2 will be
as follows:

c�2 =
1

KN

K�1X
k=0

rH [k]r[k]: (4)

In order to �nd the ML estimate of R, by taking the
natural logarithm of both sides of Equation 2b and
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since one has:

K�1X
k=0

rH [k]R�1r[k] = trace

 
R�1

K�1X
k=0

r[k]r[k]H
!
;

the following is reached:

ln f(r[0]; � � � ; r[K � 1];H1)

= �2NK ln(2�)�K ln(jRj)

� trace

 
R�1

K�1X
k=0

r[k]r[k]H
!
: (5)

If one takes the derivation of the recent equation with
respect to R, from the identities (@=@R) ln(jRj) = R�1

and:

@
@R

trace

 
R�1

K�1X
k=0

r[k]r[k]H
!

= R�1
K�1X
k=0

r[k]r[k]HR�1;

one obtains:

R̂ =
1
K

K�1X
k=0

r[k]rH [k]: (6)

Substituting Equaion 4 in Equation 2a and Equation 6
in Equation 2b, respectively, the likelihood ratio is as
follows:

f(r[0]; � � � ; r[K � 1];H1)j(6)

f(r[0]; � � � ; r[K � 1];H0)j(4)
=

�d�2N
�K

e�N

jR̂jKe�NK

=

0BBBB@
�

1
NK

K�1P
k=0

rH [k]r[k]
�N

1
K

�����K�1P
k=0

r[k]rH [k]

�����
1CCCCA
K

eN(K�1); (7)

where aj(:) means substituting the results of equations
numbered by (:) in the expression of a. After removing
constants and, since xKN is an increasing function
of x, comparing the above likelihood ratio with the
threshold, TKN , is equivalent to comparing:

1
NK

K�1P
k=0

rH [k]r[k] 
1
K

�����K�1P
k=0

r[k]rH [k]

�����!
1
N
;

with threshold T . By dropping the constants (that can
be absorbed in the threshold) and taking the Nth root,
the GLR test rejects H0, if:

LGLR(r) =
trace(S)
jSj 1

N
> �GLR; (8)

where S =
K�1P
k=0

r[k]rH [k] and trace(:) is the trace of the

matrix. Therefore, in order to determine if the received
signal does contain a coded signal or is only noise, one
can construct the matrix, S, and compare the ratio
of Equation 8 with a threshold. The threshold, �GLR,
in this detector is obtained, based on the maximum
allowable value of the probability of false alarm, Pfa;
i.e. the threshold is selected, such that the Pfa does
not exceed a pre-determined value. It must be noted
that the detection threshold is independent of the SNR
and can be obtained by a Monte-Carlo simulation.

The model used in this problem can also be used
for the detection of a signal that is passed through an
ISI channel. In the following section, the corresponding
detector is proposed.

GENERALIZED LIKELIHOOD RATIO
DETECTOR IN THE PRESENCE OF ISI

In this case, in the null hypothesis, H0, one only
receives noise and, in the other hypothesis, H1, he
receives the signal that is passed through an ISI
channel. Assuming that one sample is available at each
symbol interval, the received signal is:

rp =
L�1X
l=0

hlsp�l + np; (9)

where sp are the received symbols and hl; l = 0; � � � ; L�
1 are the unknown channel coe�cients of a Finite
Impulse Response (FIR) channel. The elements of the
covariance matrix of the received signal in hypothesis
H1 are as follows:

E(rprHm) =
L�1X
l=0

L�1X
t=0

hlhHt E(sp�lsHm�t) + �2�[p�m]

=
L�1X
t=0

ht+(p�m)hHt + �2�[p�m]: (10)

For instance, if L = 3, the covariance matrix of the
received signal is as follows:

R=

24jh0j2+jh1j2+jh2j2+�2 h0hH1 + h1hH2
h1hH0 + h2hH1 jh0j2+ jh1j2+jh2j2+�2

h2hH0 h1hH0 + h2hH1

h0hH2
h0hH1 + h1hH2jh0j2 + jh1j2 + jh2j2 + �2

35 : (11)
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It must be noted that the symbols of the received signal
are considered as independent random variables. The
hypothesis testing problem will then be:(H0 : r[k] = n[k];
H1 : r[k] = w[k];

k = 0; � � � ;K � 1; (12)

where n[k] = [n0[k]; � � � ; nN�1[k]]T � N (0; �2IN )
and w[k] = [w0[k]; � � � ; wN�1[k]]T � N (0; R). The
assumption is that w[k] and w[m] for 0 � k 6= m �
K�1 are mutually independent. In order to satisfy this
condition, one can choose the N -vectors, r[k], from the
received signal, such that they are N + L apart. Note
that r[k]; 1 � k � K�1 are used as the secondary data
for the estimation of the covariance matrix and, since
they can be chosen anywhere in the received signal
sequence, they are chosen in such a way that the �rst
components of r[k] and r[k+ 1], i.e. r0[k] and r0[k+ 1]
are, at least, N+L apart from each other in the received
signal sequence.

Since there is no assumption of the interference,
this detector can also detect the coded signals in
unknown interference. Obviously, compared to the
previous situations, the lower performance in this case
is expected, as the number of unknown parameters is
increased.

SIMULATION RESULTS

The performance of the proposed detector is evaluated
by simulations. In the authors' simulations, the
threshold in each test is determined experimentally,
as follows: The decision statistics for 105 independent
trials in the absence of signal were sorted in ascending
order and the threshold was chosen as the %100�Pfa-
percentile of the resulting data. For example, for Pfa =
0:01, the threshold is chosen as the 0:01� 105 = 103th
ordered data; i.e., such that %100�Pfa of the decision
statistics are above the threshold. This threshold is
independent of the unknown parameters. Since the
threshold is obtained in the null hypothesis, H0, and in
this hypothesis, if one divides both the numerator and
denominator by �2, it is as if the received vectors are
divided by � and are of distribution N (0; IN ), which
is independent of the unknown parameters. Such a
detector is called a Constant False Alarm Rate (CFAR)
detector. In Figure 1, it is observed that the proposed
detector (Equation 8) is CFAR, compared with the
energy detector. It is shown that, in contrast to the
energy detector, the performance of the proposed GLR
detector is constant as the noise variance varies.

Other simulation examples are from the high
application problem of the signal detection in ISI. The
channel assumed is a channel with the high interference
of length 3 and the coe�cients h = [1; 0:9; 0:8].
Figure 2 shows the probability of detection versus the

Figure 1. Performance comparison of the proposed GLR
and the energy detector in terms of the probability of false
alarm versus the noise variance.

Figure 2. Performance comparison of the proposed GLR
for the BPSK signal detection in noise and unknown
interference for di�erent values of N = 20, 30 and
Pfa = 0:01.

signal amplitude for some values of N = 20; 30. In
these simulations, Pfa = 0:01 is assumed and the
transmitter uses the Binary PSK (BPSK) modulation.
It is observed that, as N increases, the performance
of the detector improves. Similar simulations are
performed for Quadrature PSK (QPSK) modulations
in Figure 3.

CONCLUSION

In this paper, the presence detection of a coded signal is
studied in cases where there is no knowledge about the
correlation between the received symbols. A proper
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Figure 3. Performance comparison of the proposed GLR
for the QPSK signal detection in noise and unknown
interference for di�erent values of N = 20, 30 and
Pfa = 0:01.

model is proposed for the problem and the GLR
detector is derived by substituting the ML estimates
of the unknown parameters in the likelihood ratio.
In the authors' assumptions, the noise variance, the
received signal amplitude and the coding are unknown.
In addition, the signal detection in ISI is described,
similar to the previous problem, and the GLR detector
is derived. The performance of the proposed detector
is evaluated by some simulation examples. It is shown
that the authors detector is CFAR, compared with the
well-known energy detector.
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