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Research Note

Variable, Step-Size, Block Normalized,
Least Mean, Square Adaptive
Filter: A Uni�ed Framework

M. Shams Esfand Abadi1, S.Z. Moussavi� and A. Mahlooji Far2

Employing a recently introduced framework, within which a large number of classical and modern
adaptive �lter algorithms can be viewed as special cases, a generic, variable step-size adaptive
�lter has been presented. Variable Step-Size (VSS) Normalized Least Mean Square (VSSNLMS)
and VSS A�ne Projection Algorithms (VSSAPA) are particular examples of adaptive algorithms
covered by this generic variable step-size adaptive �lter. In this paper, the new VSS Block
Normalized Least Mean Square (VSSBNLMS) adaptive �lter algorithm is introduced, based on
the generic VSS adaptive �lter. The proposed algorithm shows the higher convergence rate and
lower steady-state mean square error compared to the ordinary BNLMS algorithm.

INTRODUCTION

Adaptive �ltering has been, and still is, an area of
active research that plays an important role in an
ever increasing number of applications, such as noise
cancellation, channel estimation, channel equalization
and acoustic echo cancellation. The least mean square
(LMS) and its normalized version (NLMS) are the
workhorses of adaptive �ltering. In the presence of
colored input signals, the LMS and the NLMS algo-
rithms have extremely slow convergence rates. To solve
this problem, a number of adaptive �ltering structures,
based on a�ne subspace projections [1,2] and multirate
techniques, have been proposed in the literature [3-
5]. In all these algorithms, the selected �xed step-size
can change the convergence rate and the steady-state
mean square error. By optimally selecting the step-size,
during the adaptation, one can obtain the both fast
convergence rate and low steady-state Mean Square
Error (MSE). Important examples of the two new
Variable Step-Size (VSS) versions of the NLMS and the
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A�ne Projection (AP) algorithm can be found in [6].
In [7], the generic adaptive �lter, based on

the weighted, estimated Wiener-Hopf equation, is
proposed. The LMS and the NLMS adaptive
algorithms, the family of A�ne Projection Algo-
rithms (APA), the Transform Domain Adaptive Fil-
ters (TDAF) [8] and the Pradhan Reddy Subband
Adaptive Filters (PRSAF) [9] are the particular ex-
amples that can be covered with this generic adaptive
�lter.

The objective, in this paper, is �rstly to show that
the generic adaptive �lter proposed in [7] can cover the
Block LMS (BLMS) and the Block Normalized LMS
(BNLMS) adaptive �lter algorithms. Secondly, based
on the generic adaptive �lter, the generic variable step-
size update equation is developed. The VSSNLMS
and VSSAPA of [6] can be easily derived from this
generic variable step-size adaptive �lter. The following
proceeds by presenting the VSS version of the BNLMS
adaptive �lter, named the VSSBNLMS, which is char-
acterized by the fast convergence speed and reduced
steady-state MSE, when compared to the ordinary
BNLMS adaptive �lter algorithm.

The paper is organized as follows: In the following
section, the generic variable step-size update equation,
forming the basis of the development of the VSS-
BNLMS, is introduced. Subsequently, the VSSBNLMS
algorithm will be presented. In the next section, the
computational complexity of the BNLMS and VSS-
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BNLMS is calculated and compared. Finally, before
concluding the paper, the advantages of the algorithms
are demonstrated by presenting several experimental
results.

GENERIC VARIABLE STEP-SIZE UPDATE
EQUATION

The generic �lter vector update equation at the center
of this analysis can be stated as [10-12]:

h(n+ 1) = h(n) + �X(n)W (n)e(n): (1)

A notation is used, based on the adaptive �ltering setup
shown in Figure 1 and explained in Table 1.

Note that all vectors are columns, unless explicitly
transposed through the superscript, T , notation. For
more details, please refer to [10-12].

An important goal for all adaptive �lters is
the rapid convergence to an accurate solution of the
Wiener-Hopf equation in a stationary environment.
The Wiener-Hopf equation is:

Rht = r; (2)

where ht is the unknown true �lter vector, R is the
autocorrelation matrix of the �lter input signal, R =
Efx(n)xT (n)g, and r is the crosscorrelation vector

Figure 1. Adaptive �lter setup.

de�ned by r = Efx(n)d(n)g:d(n) is commonly referred
to as the desired signal that arises from the linear
model, d(n) = xT (n)ht + v(n), where v(n) is the
measurement noise. Since one cannot expect the exact
knowledge of R and r of Equation 2 and, because it
is reasonable to assume those quantities to be time
dependent, it makes sense to formulate the adaptive
�ltering problem as the problem of �nding the time
dependent solution, h(n), to:

R̂(n)h(n) = r̂(n); (3)

where R̂(n) and r̂(n) denote estimates of the correla-
tion quantities of Equation 2. By de�ning the M �K
data matrix, as follows:

X(n)=[x(n); x(n�1); x(n�2); � � � ; x(n�K+1)];
(4)

and, being given some K � K full rank symmetric
weighting matrix W (n), one could reasonably state the
estimated Wiener-Hopf equation (Equation 3) as:

X(n)W (n)XT (n)h(n) = X(n)W (n)d(n); (5)

where d(n) is a K � 1 vector of desired signal samples,
de�ned as:

d(n)=[d(n); d(n�1); d(n�2); � � � ; d(n�K+1)]T ; (6)

that can be obtained from the following equation:

d(n) = XT (n)ht + v(n); (7)

where v(n) = [v(n); v(n� 1); � � � ; v(n�K + 1)]T is the
measurement noise vector. It is noticed that, if W (n) =
I, where I is the identity matrix, the estimates used are
standard sample estimates of the correlation quantities
involved. The larger the value of K is selected, the
better estimates one would expect. Selecting W (n)
di�erent from the identity matrix makes it possible to

Table 1. Explanation of notation.

h(n) Length M column vector of �lter coe�cients to be adjusted at each time instant n

x(n) Length M vector of input signal samples to adaptive �lter,

x(n) = [x(n); x(n� 1); � � � ; x(n�M + 1)]T

e(n) Length K vector of error samples,

e(n) = [e(n); e(n� 1); � � � ; e(n�K + 1)]T

X(n) M �K signal matrix whose columns are given by:

[x(n); x(n� 1); � � � ; x(n�K + 1)]

W (n) K �K symmetric weighting matrix

� Step-size
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use weighted estimates of the correlation quantities.
For the case when W (n) = [XT (n)X(n)]�1, or some
function of this quantity, it is common to refer to the
associated estimates as the data normalized estimates.

Applying a stationary iterative linear equation
solver [13] to Equation 5 entails a splitting of the
coe�cient matrix, X(n)W (n)XT (n):

X(n)W (n)XT (n) = (�:I)�1 � [(�:I)�1

�X(n)W (n)XT (n)]; (8)

where � is step-size and I is the identity matrix,
therefore, �:I is a M � M full rank matrix. Fur-
thermore, performing only one iteration, according
to the splitting above for each time index, n, the
generic update equation, Equation 1, will be obtained,
when one makes use of the fact that e(n) = d(n) �
XT (n)h(n). Based on the above, several adaptive
�lter algorithms, given by speci�c choices of K and
W (n) corresponding to the LMS, the NLMS and the
AP algorithms, can be derived [10]. One can also
incorporate the BLMS and BNLMS algorithms in this
generic update equation. The particular choices and
their corresponding algorithms are summarized as the
top �ve lines in Table 2. The last two entries in
Table 2 will be explained in the following sections. It
is interesting to note that the most common adaptive
�ltering algorithms can be interpreted as some sort
of Richardson iteration [12]; the simplest of all iter-
ative linear equation solvers, applied to a particular
estimated Wiener-Hopf equation.

One now proceeds by determining the optimum
step-size, �o(n), instead of using � in the VSS version of
Equation 1. The latter equation can be stated in terms
of weight error vector, "(n) = ht � h(n), as follows:

"(n+ 1) = "(n)� �X(n)W (n)e(n): (9)

Taking the squared norm and expectations from both
sides of Equation 7, one obtains:

E
nk"(n+ 1)k2o = E

nk"(n)k2o
+ �2E

�
eT (n)BT (n)B(n)e(n)

	
� 2�E

�
eT (n)BT (n)"(n)

	
; (10)

where B(n) = X(n)W (n). Equation 10 can be
represented in the form of Equation 11:

E
nk"(n+ 1)k2o = E

nk"(n)k2o���; (11)

where �� is given by:

�� =� �2E
�
eT (n)BT (n)B(n)e(n)

	
+ 2�E

�
eT (n)BT (n)"(n)

	
: (12)

If �� is maximized, then, Mean-Square Deviation
(MSD) will undergo the largest decrease from iteration
n to iteration n + 1. The optimum step-size will be
found with a derivation of ��, with respect to �, equal
to zero, d��

d� = 0;

�o(n) =
E
�
eT (n)BT (n)"(n)

	
E feT (n)BT (n)B(n)e(n)g : (13)

Introducing the a priori error vectors:

ea(n) = XT (n)"(n); (14)

it is found, from Equation 7, that the error vector is
related to an a priori error vector, via Equation 15:

e(n) = ea(n) + v(n): (15)

Assuming the noise sequence, v(n), is identically and
independently distributed and statistically indepen-
dent of the regression data, and by neglecting the
dependency of "(n) on the past noises, the following
two sub equations are established from the two parts
of Equation 13:

Part I:

E
�
eT (n)BT (n)"(n)

	
= E

��
"T (n)X(n) + vT (n)

� �
BT (n)"(n)

�	
= E

�
"T (n)X(n)BT (n)"(n)

	
: (16)

Table 2. Correspondence between special cases of Equation 1 and various adaptive �ltering algorithms.

Algorithm K W (n)

LMS 1 1

NLMS 1 kx(n)k�2

AP 1 < K < M [XT (n)X(n)]�1

BLMS L <=> M , K = L, X(k) I

BNLMS L <=> M , K = L, X(k) �(k)
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Part II:

E
�
eT (n)BT (n)B(n)e(n)

	
= E

�
"T (n)X(n)BT (n)B(n)XT (n)"(n)

	
+ E

�
vT (n)BT (n)B(n)v(n)

	
= E

�
"T (n)X(n)BT (n)B(n)XT (n)"(n)

	
+ �2

vTr
�
E
�
BT (n)B(n)

	�
: (17)

Finally, by de�ning C(n) = B(n)XT (n), the optimum
step-size in Equation 13 becomes:

�o(n) =
E
�
"T (n)CT (n)"(n)

	
E f"T (n)CT (n)C(n)"(n)g+ C

; (18)

where:

C = �2
vTr

�
E
�
BT (n)B(n)

	�
: (19)

Substituting the �o(n) of Equation 18, instead of �,
in Equation 1, the generic variable step-size update
equation that covers VSSNLMS and VSSAPA of [6],
as special cases, will be obtained. One must now
focus on the development of the VSSBNLMS adaptive
algorithm.

VARIABLE STEP-SIZE BLOCK
NORMALIZED LMS ADAPTIVE FILTER
ALGORITHM

The �lter coe�cients update equation for BNLMS can
be stated as:

h(k + 1) = h(k) + �X(k)�(k)e(k); (20)

where k is the block index, h(k) the length, M column
vector of �lter coe�cients to be adjusted once after the
collection of every block of data samples. X(k) is an
M � K input signal matrix, d(k) is an K � 1 vector
of desired signal samples and e(k) is the error signal
vector which are de�ned by:

X(k)=[x(kL); x(kL�1); x(kL�2); � � � ; x(kL�K+1)];
(21)

d(k)=[d(kL); d(kL�1); d(kL�2); � � � ; d(kL�K+1)];
(22)

e(k)=[e(kL); e(kL�1); e(kL�2); � � � ; e(kL�K+1)];
(23)

where L is the block length and the error signal vector
is calculated by;

e(k) = d(k)�XT (k)h(k): (24)

There are three possible choices for selecting L:

1. L = M , which is the optimal choice from the
viewpoint of computational complexity;

2. L < M , which o�ers the advantage of reduced
processing delay. Moreover, by making the block
size smaller than the �lter length, one still has an
adaptive �ltering algorithm computationally more
e�cient than the conventional LMS algorithm;

3. L > M , which gives rise to redundant operations in
the adaptive process, the estimation of the gradient
vector (computed over L points) now uses more
information that the �lter itself.

Selecting L = M is more practical in di�erent applica-
tions. For the BLMS adaptive �lter algorithm �(k) =
I. In the case of the BNLMS adaptive algorithm,
the K � K matrix, �(k), is a diagonal matrix with
the elements, �(k) = kX(k)Iik�2, i = 0; 1; � � �K � 1,
on the diagonal, where Ii is the column number, i,
of the K � K identity matrix, I. Note that terms
kX(k)Iik2are the signal power estimates.

Based on the above and by comparing Equa-
tion 20 to Equation 1, which in turn, was identi�ed
as an iterative solution strategy for Equation 5, it is
immediately observed that the BNLMS update can be
interpreted as an iterative solution strategy applied
to the weighted Wiener-Hopf-type equation, according
to the selecting parameters from Table 2. To get
a better performance in a BNLMS adaptive �lter,
the VSSBNLMS adaptive �lter algorithm is presented,
based on the generic VSS update equation, which was
described in the previous section. It is pointed out that
this is a block adaptive algorithm, i.e. one �lter vector
update is performed each time that L new samples have
entered the system. It means that the step-size will be
updated for every block.

To simplify the formulation �0(k) is de�ned as a
diagonal matrix with elements �0(k) = kX(k)Iik�1,
i = 0; 1; � � � ;K � 1 on the diagonal. Therefore, �T0 (k)
is also a diagonal matrix with elements �T0 (k) =
kX(k)Iik�T , i = 0; 1; � � � ;K � 1 on the diagonal. It
is obvious that �0(k) = �T0 (k).

Also, by introducing the p(k), q(k) and, by using
the results from Equation 18;

p(k) = �T0 (k)XT (k)"(k); (25)

q(k) = X(k)�(k)XT (k)"(k); (26)

the optimum step-size for the BNLMS adaptive �lter
is given by:

�o(k) =
E
np(k)

2
o

E
nq(k)

2
o

+ C
; (27)
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where C is a positive constant and can be approximated
from Equation 19:

C = �2
vTr

�
E
�
�(k)XT (k)X(k)�(k)

	�
: (28)

In calculating the optimum step-size from Equation 27,
the main problem is that p(k) and q(k) are not
available, since ht is unknown. Therefore, one needs
to estimate these quantities.

By taking expectation from both sides of Equa-
tions 25 and 26,

E
�
p(k)

	
= E

�
�T0 (k)XT (k)"(k)

	
; (29)

E
�
q(k)

	
= E

�
X(k)�(k)XT (k)"(k)

	
; (30)

and by substituting ea(k) = e(k)�v(k) in Equations 29
and 30, one yields:

E
�
p(k)

	
= E

�
�T0 (k)ea(k)

	
= E

�
�T0 (k) (e(k)� v(k))

	
= E

�
�T0 (k)e(k)

	
; (31)

E
�
q(k)

	
= E

�
X(k)�(k)XT (k)"(k)

	
= E fX(k)�(k) (e(k)� v(k))g
= E fX(k)�(k)e(k)g : (32)

These quantities can be estimated with the recursions,
presented in the following equations:

p̂(k) = �p̂(k � 1) + (1� �)
�
�T0 (k)e(k)

�
; (33)

q̂(k) = �0q̂(k � 1) + (1� �0) (X(k)�(k)e(k)) ; (34)

where � and �0 are smoothing factors, (0 < �, �0 < 1).

Finally, the recursion for the variable step-
size BNLMS (VSSBNLMS) adaptive algorithm (VSS-
BNLMS) is given by:

h(k + 1) = h(k) + �(k)X(k)�(k)e(k); (35)

where:

�(k) = �max

p̂(k)
2q̂(k)

2 + C
: (36)

The step-size changes with the
p̂(k)

2,
q̂(k)

2 and
the constant, C, which can be approximated from
Equation 28. It is clear that C is inversely proportional
to SNR. To guarantee the update stability, �max is
selected less than 2.

COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the
BNLMS and the VSSBNLMS is compared. In Ta-
ble 3, the number of real multiplications and real
additions that are required in the evaluation of speci�c
terms for both BNLMS and VSSBNLMS adaptive
�lter algorithms are shown. The only di�erence in
the computational complexity between BNLMS and
VSSBNLMS is in the �(k) term. Table 4 shows the
number of real multiplications and real additions that
are required in the evaluation of this term. The
only di�erence is 4K + 3M + 2 multiplications and
2K + 2M � 1 additions per iteration. It is seen that
the cost of BNLMS and VSSBNLMS adaptive �lter
algorithms is O(MK) operations per iteration.

SIMULATION RESULTS
The theoretical results presented in this paper are
justi�ed by several computer simulations in a channel
estimation setup. The unknown channel has 8 taps

Table 3. Computational cost of BNLMS and VSSBNLMS adaptive �lter algorithms per iteration in terms of the number
of real multiplications and real additions.

Term � +
BNLMS VSSBNLMS BNLMS VSSBNLMS

XT (k)h(k) MK MK K(M � 1) K(M � 1)

d(k)�XT (k)h(k) - - K K

�(k) K(M + 1) K(M + 1) K(M � 1) K(M � 1)

�(k)e(k) K K - -

X(k)�(k)e(k) MK MK M(K � 1) M(K � 1)

�(k) - 4K + 3M + 2 - 2K + 2M � 1

�(k)X(k)�(k)e(k) M M - -

h(k + 1) - - M M

Total per iteration 3MK + 2K +M 3MK + 6K + 4M + 2 3MK �K 3MK +K + 2M � 1
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Table 4. Computational cost of the step-size in VSSBNLMS per iteration in terms of the number of real multiplications
and real additions.

Term � +

�T0 (k)e(k) K -

(1� �)�T0 (k)e(k) K -

(1� �0)(X(k)�(k)e(k)) M -

p̂(k) K K

q̂(k) M Mp̂(k)
2 K K � 1q̂(k)
2 M M � 1

�(k) 2 1

Total per iteration 4K + 3M + 2 2K + 2M � 1

and selected at random. Two di�erent types of signal,
Gaussian and uniformly distributed signals, are used in
forming the input signal, x(n):

x(n) = �:x(n� 1) + w(n); (37)

which is a �rst order autoregressive (AR) process
with a pole at �. For the Gaussian case, w(n) is a
white, zero-mean, Gaussian random sequence, having
unit variance, and � is set to 0.9. As a result, a
highly colored Gaussian signal is generated. For the
uniform case, w(n) is a uniformly distributed random
sequence between -1.0 and 1.0 and � is again set to 0.9.
Measurement noise, v(n), with �2

v = 10�3, was added
to the noise-free desired signal generated through
d(n) = hTt x(n). The adaptive �lter and the unknown
channel are assumed to have the same number of
taps. All the simulations are obtained by ensemble
averaging over 200 independent trials. Figures 2 to 7
show the learning curves of BNLMS and VSSBNLMS
adaptive �lter algorithms. Figures 2 to 4 compare the
learning curves of BNLMS and VSSBNLMS adaptive
algorithms with di�erent block length (L = 4; 8; 16)
and for highly colored Gaussian input. The ensemble
averaged learning curves for VSSBNLMS were obtained
with � = 0:99, �0 = 0:99, C = 0:001 and �max = 1. In
the ordinary BNLMS case, the simulation results were
obtained for di�erent step-sizes. Figures 5 to 7 show
the learning curves for a highly colored uniform input
signal. It can clearly be seen that the VSSBNLMS has
a fast convergence rate and a low steady-state mean
square error, when compared to the ordinary BNLMS
algorithm for both highly colored and uniform input
signals.

CONCLUSIONS

In this paper, the generic, variable, step-size adaptive
�lter was presented. This generic VSS adaptive �lter
can cover VSSNLMS and VSSAPA adaptive �lter

Figure 2. Learning curves of BNLMS with various
step-sizes and VSSBNLMS adaptive �lter algorithms for
L = 4. Input: Highly colored Gaussian (Gaussian AR(1)
with � = 0:9).

Figure 3. Learning curves of BNLMS with various
step-sizes and VSSBNLMS adaptive �lter algorithms for
L = 8. Input: Highly colored Gaussian (Gaussian AR(1)
with � = 0:9).
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Figure 4. Learning curves of BNLMS with various
step-sizes and VSSBNLMS adaptive �lter algorithms for
L = 16. Input: Highly colored Gaussian (Gaussian AR(1)
with � = 0:9).

Figure 5. Learning curves of BNLMS with various
step-sizes and VSSBNLMS adaptive �lter algorithms for
L = 4. Input: Highly colored uniform (uniform AR(1)
with � = 0:9).

Figure 6. Learning curves of BNLMS with various
step-sizes and VSSBNLMS adaptive �lter algorithms for
L = 8. Input: Highly colored uniform (uniform AR(1)
with � = 0:9).

Figure 7. Learning curves of BNLMS with various
step-sizes and VSSBNLMS adaptive �lter algorithms for
L = 16. Input: Highly colored uniform (uniform AR(1)
with � = 0:9).

algorithms. Following this, the variable step-size
BNLMS, named the VSSBNLMS adaptive �lter algo-
rithm, was developed, based on the generic, variable,
step-size adaptive �lter. The algorithm exhibits fast
convergence, while reducing steady-state mean square
error, as compared to the ordinary BNLMS adaptive
algorithm.
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