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Research Note

On Domination and its

Forcing in Mycielski’s Graphs

D.A. Mojdeh* and N. Jafari Rad'

In this paper, for a given graph, G, some domination parameters and the forcing domination
number of the graph, M(G), obtained from G arising in Mycielski’s construction, are studied.

INTRODUCTION

A vertex in a graph, GG, dominates itself and its neigh-
bors. A set of vertices, S, in a graph, G, is a dominating
set, if each vertex of G is dominated by some vertex
of S. The minimum cardinality of a dominating set
of G is the domination number, v(G), of G and the
maximum cardinality of a minimal dominating set of
G is the upper domination number, I'(G). A dominat-
ing set that is independent is called an independent
dominating set of G. The independent domination
number, i(G), of G is the minimum cardinality of an
independent dominating set of G. A dominating set
that is connected is called a connected dominating set
of G. The connected domination number, v.(G), of G is
the minimum cardinality of a connected dominating set
of G. A dominating set, S, is called a total dominating
set, if each vertex of G is dominated by some vertices
of S. The total domination number, (@), of G is the
minimum cardinality of a total dominating set of G. A
dominating set, S, of G is called a strong dominating
set, if each vertex, z, of V(G) \ S is dominated by
some vertices, y, of S, with deg(y) > deg(x). The
strong domination number, v;(G), of G is the minimum
cardinality of a strong dominating set of G, [2-6]. A
v(G)-set is referred to as a dominating set for G of
size v(G), a i(G)-set to an independent dominating set
for G of size i(G), a v(G)-set to a total dominating
set for G of size v,(G) and a ~.(G)-set to a connected
dominating set for G of size 7.(G).

A subset, F', of a minimum dominating set, S,
is a forcing subset for S, if S is the unique minimum
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dominating set containing F'. The forcing domination
number, f(S5,7), of S is the minimum cardinality
among the forcing subsets of S and the forcing domi-
nation number, f(G,7), of G is the minimum forcing
domination number to be found among the minimum
dominating sets of G [1].

The open neighborhood of a vertex, v, in a graph,
G, denoted by Ng(v), is the set of all vertices of G,
which are adjacent to v. Also, Ng[v] = Ng(v) U {v} is
called the closed neighborhood of v in the graph, G.

In this paper, by GG, one means a connected graph.
From a graph, G, by Mycielski’s construction, one can
get a graph, M(G), with V(M(G)) = VU U U {w},
where:

V=V(G) ={vy,--,vn}t, U={uy,  ,un},
and:
E(M(G)) = E(G)U {u;v : v € Ng(v;) U{w},
i=1,--,n}.

For each 0 < ¢ < n, v; and wu; are called the
corresponding vertices of M (G) and denote C(v;) = u;,
C(u;) = v;. Moreover, for subsets A CU, B CV, one
denotes:

C(A) ={C(u;) : u; € A},
C(B) = {C(v;) : v; € B}.

Also, x < y is denoted, when {z,y} is an edge.
The following is made use of.

Theorem A [3]

For any graph, G, v(M(G)) = 1 +~v(G), (M(G)) =
L+ %(G).
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Some domination parameters are studied with
respect to M(G) and some properties of v(M(G))-
sets. Then, the forcing domination number of M (G) is
studied, with respect to some given properties of v(G)-
sets.

SOME DOMINATION PARAMETERS,
WITH RESPECT TO M (G)

In this section, i(M(G)), ~s(M(G)), ~.(M(G)),
T(M(G)) and By(M(G)) are studied. It is well known
that, for any graph, G, v(G) < i(G). Also, for K, ,,
with min{m,n} > 1, this inequality is strict. In
the following, the relation between the independent
domination number of M(G) and the independent
domination number of G is obtained.

Theorem 1

For any graph, G, i(M(G)) = 1 +i(G).

Proof

For any i(G)—set D, D U {w} is an independent
dominating set of M(G), hence, {(M(G)) <1+ i(G).

If |V(G)] < 2, the equality, i(M(G)) = 1+ i(G),
is obvious. So, suppose that |V (G)| > 2. Assume that
i(M(G)) < i(G) and S is a i(M(G))-set of M(G).
Clearly, w ¢ S, so, SNU # 0. Tt is easily seen
that SNV # § and, also, for each v, € SNV, one
has u; € SNU. I for each upr € SN U, one has
v € S, then, SNV is an independent dominating
set of G, which is a contradiction. So, suppose that
there is some vertex, uy € SN U, such that v, ¢ S;
let then, A = {u; € SNU :v; ¢ 5}, A" = C(4)
and B =5nNV. Let u,, be a vertex of A, which has
maximum neighbors in A’, then, Dy = (A"\ {v,,})UB
is a dominating set of G. If D; is not independent,
then, choose u;, € A\ {uy, }, with maximum neighbors
in A"\ {v.,} and let Dy = (A" \ {vy,,v:,}) U B. By
continuing this method, there is an integer, m, such
that D,, is an independent dominating set of G with
size less than i(G), which is a contradiction. Hence,
1(M(G)) > 1+ i(G), which implies the equality.l

Similarly, there is the following result, for which
the proof is omitted.

Theorem 2

v(M(G)) =1+ 7(G).

Now, the connected dominating sets can be studied.
Clearly, v.(K,) = 1 and no two vertices of M(K,) can
be a connected dominating set. Also, by considering
{w,u1,v2}, one can verify that:

Ye(M(Kp))=3=7.(K,)+2 for n>2.
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Also, it is easily seen that no m vertex of M (F;),
with m <4, can form a connected dominating set and
by {w,us,v3,ur,vs}, one obtains:

Ve(M(Pg)) = 5 =7e(Ps) — 1.

But, for 7.(G) > 3, let S be a minimum connected
dominating set for G and {vg,vy,v.} C S, with v, <
Vy, vy <> v,. Then, (S'\ {vy}) U {uy, w} is a connected
dominating set for M(G). So, one has the following
bound, which is a strict of equality for many graphs,
for example, P,,C,,n > 7.

Proposition 1

If 7.(G) > 3, then, 7.(M(G)) < 1+ 7.(G).

It is clear that U is a minimal dominating set of
M(G), so T(M(G)) > |V(G)|. Also, for many graphs,
such as Py, the equality, I'(M(G)) = |V(G)|, holds
and for many graphs, such as the following example,
D(M(G)) > [V(G)].

Consider the graph, K , for n > 2. Let x be the
vertex with deg(x) = n and connect z to any vertex of
the graph, K,,,m > 4, to obtain a graph, G*. Then,
by considering the vertices of K1, \ {z}, together with
C(K1,, \ {z}) and also C(K,,), it is concluded that
D(M(GY) > [V(GY)]:

If G has a maximum minimal independent dom-
inating set, D = {vg4,, - ,vq,}, of size T'(G) = t,
then D U {ug,, -+ ,uq,} is & minimal dominating set
of M(G) and, so I'(M(G)) > 2T'(G). So, if G has a
maximum minimal independent dominating set, then
D(M(G)) > max{20(G), [V (G)]}.

The above bound can be strict. For example, see
the above graph, G*.

Similarly, one has SBo(M(G)) > max{|V(G)|,
2830(G)}, whose bound can be strict.

SOME PROPERTIES OF ~(M(G))-SETS

In this section, more conclusions of ~(M(G))-sets
and the relationship between them and ~(G)-sets are
studied. It is seen that, for many graphs, such as K,
Kony Koy ooy Py Co K X Po(n > 5), Py x Py(n >
5), Py X P3pq1 and Ps X Py, 41, every 7(G)-set is either
independent or has just two adjacent vertices.

Proposition 2

If [V(G)| # 2 and v(G) = 1, then the v(M(G))-sets
are precisely {w,v,} and {vg,ur}, where {v;} is a
minimum dominating set of G.

Proof

For each ~v(G@)-set {v;} of G, it is clear that both
{w,v;} and {v;,u;} are y(M(G))-sets. Now, let S be a
v(M(G))-set. The following cases exist as follows:
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1. Ifw e S, then, S = {w, u;} for some k and, clearly,
the vertex, vy, is not dominated by S, so that S =
{w, vy } for some integer k', where {vy.} is a v(G)-
set:

2. fwé¢ S, letu; € SNU for some j. When |V(G)| =
1, clearly v; € S.

Suppose that |V(G)| > 3 and v; ¢ S, then,
N(w;)NnS # 0. If v, € N(v;) NS for some ¢, then,
u; is not dominated by S and, if v; € N(v;) N S for
some %, then, U \ S is not dominated by S. Hence,
v; € S.a

Note that, when G =2 K, and V(G) = {vy, v},
then, the 2-sets are {w,v1}, {v1,u1} and {uq, us}.

Proposition 3

If v(G@) > 2 and every ~(G)-set is independent, then,
every v(M(G))-set is also independent and contains w.

Proof

It may be assumed that w ¢ S. Let S be a v(M(G))-
set, then, SNU # P and SNV # P. Let u, € S for
some k, then the following cases exist:

1. If v, € S and t # k exists, such that u; € S, then,
C(S\ {ug,ut}) NU), together with V' N S, form a
dominating set of G, a contradiction;

2. If v, € S and, for each t # k, u; ¢ S, then, vy €
VNS for some s # k, but u, ¢ S, so N(v, )NV £ (.
Now C(S\{ur}) together with SNV form a v(G)-set
with two adjacent vertices, which is a contradiction;

3. Ifu, ¢ S and w; € N(vp) N S exists for some I,
then, one considers vy € SNV for some I'. If
up € S, then, C(SNU)\ {uk, ur}), together with
SNV, form a dominating set of G with a size less
than (G), which is a contradiction. If wy ¢ S,
then, C(SNU)\ {ux}), together with SNV, form
a dominating set of G with two adjacent vertices,
which is a contradiction;

4. Ifwv, ¢ S and vy € SNN(vy,) exists for some ¢, then,
Nlu NS # B. Now, by considering C'((SNV )\ {ur})
or C((SNV)\ {ug,u}), one gets a contradiction
(see above).l

So, under the hypothesis, Proposition 3, the v(M(G))-
sets have the following forms:

DU {w},

where D is a 7(G)-set.

Proposition 4

I) If v(G) = 2 and every y(G)-set contains just two
adjacent vertices, then, the v(M(G))-sets have one
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of the following forms:

{U.’E71}y7w}7 {uxvuy7w}7 {U.ﬂv7uy7w}7 {U$7Uy7ut}a

where {vg,vy} is a Y(G)-set and vy < uy;

II) If v(G) = 3 and every v(G)-set contains just two
adjacent vertices, then, the v(M(G))-sets have one
of the following forms:

1) {ve,vy,vz,w}, {ve, uy, vz, w}, {ve, uy, vz, w}y
{Va, vy, V2,05 }y

2) {ug, ugr, vy, v, with v, < wgr, when |(V(v;)N
U)\ (N(vy) UN(v2))| < 1.

In both items 1 and 2, {vg,v,,v,} is a y(G)-set
and vy < v..

Proof

I) Clearly, for a ~(G)-set {v;,v;}, all the sets,
{vi,vj,w}, {ws,uj, w}, {vi,uj,w}, {vi,vj,u}, are
~v(M(G))-sets with v; < w;. Suppose that S is
a y(M(G))-set. If w € S, then, by replacing the
vertices of UNS with C(UNS), one gets a y(G)-set,
hence, S is one of the sets, {vy, vy, w}, {ug, uy, w},
{vg,uy, w}, where {v,,v,} is a v(G)-set. Ifw ¢ 5,
then, SNU # 0 and, by Theorems A and 1,
SNV # 0. Let v, € S for some k. If up € S,
then, it is easily seen that S has one of the above
forms. If uy ¢ S, then, N(vp) N SNV # (b and
suppose that vp11 € N(v) NS NV. Also, let g
be the third vertex of S. If u,s is adjacent neither
to v nor to vk41, then, v, is not dominated by S,
which is a contradiction, so that u,s is adjacent to
at least one of the vertices, v, and vj41.

IT) Clearly, for a v(G)-set {v;,vj, v} with v; < vy,
all of the above sets are v(M(G))-sets. Now, let
S be a y(M(G))-set. If w € S, then, by replacing
the vertices of S N U by C(S N U), one obtains
a v(G)-set D = {v,,v,,v.} with v, < v.. Since
the vertex, v,, is dominated by some vertex in 5,
hence, v, € S. I w ¢ S, then, SNU # 0, so
by Theorem A, SNV # 0. Let uy € SNU. By
deleting u; and replacing the other vertices of S'N
U by C(S N U\{u}), one gets a y(G)-set D =
{vg, 04,0, } G with vy, < v,. If v, € S, then,
Uy = uy and it is easily seen that {v,,v.} C S.
If v, ¢ S, then, u, € S and u; < v, so that
[(N(v.) NU) \ (N(vy) U N(v:))] < 1. Now, it is
easily seen that {v,,v.} C S.H

Proposition 5

If (@) > k+2 for some k and every v(G)-set induces a
Py + (v(G) — k) Ky, then, the v(M(G))-sets have one of
the forms (D\ M)UC(M)U{w}, where D is a y(G)-set
and M C V(Fy).
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Proof

Let D be a y(G)-set and D induces a P, +(v(G)—1)K;,
in which V(P;) = {v1,ve,---,vr}. For any subset,
M CV(Py), (D\M)uC(M)U{w} is a dominating
set of M(G), which is minimum by Theorem A. Now,
suppose that S is a M (G)-set. There are two cases:

1. fw e S then, D = C(SNnU)U(SNV)is
a dominating set for G, which is minimum by
Theorem A. So, D induces a P, + (v(G) — 1)K,
and one may let V(Pr) = {vi1,vi2, -+ , v} and
D\V(Pk) = {Ujl, Vj2,* 711]'(7(6*),1)}. If there is an
integer, ¢, such that v;; € D\S, then, u;; € S. But,
then, v;¢ is not dominated by S and this contradicts
the fact that S is a minimum dominating set of
M(G). Hence, {vj1,v2,  ,vj(y(@)-1)} € 5. Now,
since there is no integer, ¢/, such that {uy, vy} C 5,

there is a subset, M’ C {wvi1,vi2, -+ , v}, such
that:
({Ui17vi27 e 7vi1€}\M’) U C(MI) =

S\{vj1,v52, Vi) -1 }-

2. Ifw ¢ S, then, SNU # P and SNV # 0.
Moreover, |S N U| > 2 and there is no integer I,
such that {u;,v;} € 5. Let w; € SNU, then, D =
C((SNUN\{w;})U(SNV) is a minimum dominating
set for G, which induces a Py, + (7(G) — k)K;. Let
{vi1,vi2} € D\V(Fy), then, {ver,ve0, us1, w2} is
not dominated by S. This is a contradiction.H

Corollary 1

If v(G) > 4 and v(G)-set has just two adjacent vertices,
then, the v(M (G))-sets have one of the following forms:

Du{w}, (D \{vg}) U {ug, w},
and:
(D\ vk, vi}) U{w, ug, wr},

where D is a y(G)-set and v, and v; are the two
adjacent vertices of D.

FORCING DOMINATION NUMBER

In this section, the forcing domination number of M (G)
is studied. Tt is well known that f(K,,v = 1) =1
and, for n > 2, f(Ki,,v = 1) = 0. Also, for
each i = 1,--- ,n, {u;,v;} and {w,v;} are minimum
dominating sets of M (K,,), so f(M(K,)) > 1forn > 1.
On the other hand, {uy, v} is the only dominating set
of M(K,) containing F' = {u,}, hence:

JIM(Ey),v(M(Ky)) =1 = f(EK,y(Ky)).
Similarly:

f(M(Ifl,n)7’Y(M(Arl,n))) =1=1+ f(Arl,nm ’V(Ifl,'n))~
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Theorem 3

Let v(G) > 2, D be a y(G)-set and F be a minimum
forcing set of D with |F| = f(G,v(G)). If D is
independent, then, f(M(G),y(M(G))) < f(G,7(G)).

Proof

It is clear that S = D U {w} is a v(M(G))-set. It is
shown that this is the unique v(M(G))-set containing
F. Suppose that S’ is another dominating set of M (G)
containing F'. There are two cases as follows:

1. If w € S, by replacing the vertices of S" N U with
C (8" N U) one obtains a v(G)-set that is equal to
D, so, there is a vertex, vy € D, such that u, €
S'. If v, ¢ S, then, N(vp) N S’ # B, which is a
contradiction. If not, C((S'\ {w,ur})NU) form a
dominating set of G, which is a contradiction;

2. Ifw ¢ S, then, it is easily seen that |S'NU| > 2. If
there exists an integer, j, such that {u;,v;} C §’,
then, u; and another vertex, u; of S’ N U are
omitted, so C((S" N U) \ {u;,u; }), together with
S' NV, form a dominating set of G, which is a
contradiction. Otherwise, similarly, contradiction
is obtained.l

Corollary 2

If a graph, G, satisfies the conditions of Proposition 3,
then:

F(M(G),v(M(G))) = f(G,2(G)).
Similarly, for any graph:

G, f(M(G),i(M(G))) = f(G,i(G)).
As an example, for each m > 3:

f(M(K2),2) = f(M(M(K>),3))

== f(M™ T (Ky),m) = 2.

It is well known that every pair, a, b, of integers,
with b positive and 0 < a < b, can be realized as the
forcing domination number and domination number,
respectively, of some graph [1]. Now, for each pair of
integers, a, b, with 0 < a < b, if G is a graph satisfying
the hypotheses of Proposition 3 and v(G) = m <
b, f(G,~v(@)) = a, then, using Mycielski’s construction
b—m times, one can obtain a graph, G', satisfying the
above fact. The following can also be seen:

1. If |V(G)| # 2 and v(G) = 1, then for each integer,
m?
f(M(G)72) == f(Mmil(G)vm) =1
2. If v(G) = 2 and every (G)-set contains just two
adjacent vertices, then:
FM(G),/(M(G))) =2
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Proposition 6

Let (@) = 3 and every minimum dominating set of G
contains just two adjacent vertices. If G has a minimum
dominating set {v,, vy, v, }, where v, < v, and:

[(N (v2) NU)\ (N(vy) UN(0:))] > 1,

then, f(M(G),v(M(G))) = 1; otherwise, f(M(G),
Y(M(G))) = 2.

Proof

By Proposition 4, one has:
F(M(G),~(M(G))) = 1.

Let {vg,vy,v,} be a v(G)-set with v, « v,. If:
[(N(ve) NUY\ (N(vy) UN(v:))| > 1,

then, F' = {u,} is a forcing dominating set for M(G).
Otherwise, F' = {u,,v,} is a forcing dominating set
for M(G). Also, if, for any v(G)—set {v;,v;, v} with
v vk, [(N(vi)NU)\ (N (v;) UN (vg))| < 1, then, it is
easily seen that no two vertices can uniquely determine
a minimum dominating set.ll

Theorem 4

If the hypothesis of Corollary 1 holds for G, then;
H(GA(@)) < fF(M(G),v(M(G))) <2+ f(G,%(G)).

Proof

Let F' be a minimum forcing dominating set of M(G)
and S be the unique minimum dominating set contain-
ing it, then, by Corollary 1, S has the form D U {w},
(D {vr}) U {ug,w} and (D \ {vg, v }) U {w, ug,u}y
where D is a v(G)-set and vy, < v; are the two adjacent
vertices of D. Clearly, one of {u,w;}, {vg,v} or
{vg,u;} is contained in F. If {ug,u;} C F, then,
(F\{ug,u; })I{vg, v } is a minimum forcing dominating
set of G. If {vg,v} C F, then, F is a minimum
forcing dominating set of G, and if {vy,u;} C F, then
(F\{w})U{v} is a minimum forcing dominating set
of G. Hence:

NG (@) < F(M(G), v (M(G))).

On the other hand, let F’ be a minimum forcing
dominating set of G and S’ be the unique minimum
dominating set containing it with two adjacent vertices,
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v, v;. If {w;,v;} C F', then, F' is a minimum forcing
dominating set of G. Hence:

FIM(G),v(M(G))) < f(G,~(G)).
If one of the two adjacent vertices, say v;, belongs to
F', then, F" U {u;} is a minimum forcing dominating
set of M(G). Hence:

FIM(G),v(M(G))) <1+ f(G,~(G)).

Finally, if none of the above two vertices belong to F”,
then, F' U {u;,u;} is a minimum forcing dominating
set of M(G). Hence:

FM(G),~(M(G))) <2+ f(G,A(G)).

CONCLUSION

In this paper, the domination number and forcing
domination number of M (G) is studied, with respet to
some given properties of v(G)-sets. However, there are
other properties of (G)-sets and y(M(G))-sets which
can be studied.
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