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Analytical Mode Distributions and Resonant
Frequencies in Ladder Networks Used
in Power Combining Oscillator Arrays

M.H. Akbarpour1, A. Banai1 and F. Farzaneh�

An analysis of resonant modes in ladder networks is performed using di�erence equations. Linear
and loop con�gurations are studied and analytical relations are derived for the mode distributions
and resonant frequencies of these networks, having arbitrary elements. Furthermore, it is shown
that a) Modes with an exponential distribution along network nodes may exist in some cases and
b) The mode distributions in loop networks are independent of network elements. Finally, a simple
criterion is obtained for a loop structure to control the spacing between resonant frequencies.

INTRODUCTION

LADDER networks are used in strongly coupled os-
cillator networks for power combining [1-5]. In these
arrays, oscillators, having nonlinear elements as their
active parts and passive elements as their resonator
and load, are coupled using coupling networks. The
coupling of several oscillators in this manner results in
the multimode oscillation of these arrays.

An analysis of these modes and their stability
has been performed, using averaging and speci�cally
averaged potential [1,6,7], which is a perturbational
method. In this method, mode frequencies and dis-
tribution are determined by the analysis of a linear
lossless network, obtained by removing active and
resistive (lossy) elements of the network, and the sta-
bility of modes is studied using an averaged potential
function. A mode analysis of these networks has been
performed in previous works for some special cases.
For example in [1], the networks having transmission
lines as their coupling networks are studied and, in [7],
two-dimensional networks, having lumped inductors as
coupling elements, are analyzed.

In this paper, a method for determining the
resonant frequencies and mode distribution of ladder
networks is proposed, using di�erence equations. Mode
distributions obtained by this method can be used
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for stability analysis in oscillator networks, obtained
by adding nonlinear and other lossy elements to the
circuit, using the averaged potential method. Using
di�erence equations, analytical relations can be derived
for resonant frequencies and for mode distributions
in networks having arbitrary resonators and coupling
networks.

Linear and loop con�gurations will be studied
and it will be shown that resonant modes with an
exponential mode distribution can exist in networks
having a linear con�guration, which were previously
often neglected.

In [8] these distributions are studied in forced
ladder networks, but in self oscillating networks, these
modes are neglected. Furthermore, it will be shown
that, in networks having a loop con�guration, mode
distributions are independent of resonator type and
coupling elements. Using this property in these net-
works, it is easy to obtain simple criteria for controlling
the separation between mode frequencies for cases
in which single mode oscillation is desired. Also,
having analytical results makes it easier to analyze the
stability of modes in oscillator networks having this
con�guration.

NETWORKS HAVING LINEAR
CONFIGURATION

A ladder network is shown in Figure 1. Suppose that
this network is composed of lossless reactive elements.
This network has n resonators with node voltages,
v1; v2; � � � ; vn. These resonators are elements having
input admittance yr and coupling networks, which are
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Figure 1. Ladder network with linear con�guration.

reciprocal and symmetrical two-port networks with an
admittance matrix as follows:

Y =
�
ys ym
ym ys

�
: (1)

Throughout the analysis, it is supposed that all res-
onators are the same and that coupling networks are
identical. Note that it is not necessary to know
yr, ys and ym, analytically. These parameters may
be obtained from simulation or measurement data.
Supposing ym 6= 0, one can write KCL for network
nodes as follows:

Vp+1 +K2Vp + Vp�1 = 0; p=2; 3; � � � ; n�1;
(2a)

K1V1 + V2 = 0; (2b)

K1Vn + Vn�1 = 0; (2c)

in which:

Kl =
yr + lys
ym

: (3)

Equation 2a is a second order di�erence equation and
is valid for inner network nodes. Equations 2b and 2c
are valid for boundary nodes, which can be used
as a boundary condition for the di�erence equation
system.

To solve the di�erence equation system of Equa-
tion 2a, its characteristic equation is written as [9]:

s2 +K2s+ 1 = 0: (4)

This equation is a polynomial equation of second degree
with real coe�cients, because K2 is equal to the ratio of
two pure imaginary numbers. If one denotes two roots
of Equation 4 as s1 and s2, one must have s1s2 = 1.
Using this and the fact that the coe�cients of the
characteristic equation are real numbers, it is easy to
show that the roots of the characteristic equation can
uniquely be on the locus shown in Figure 2. This locus
contains a real axis and the circle jsj = 1.

Depending on the position of the roots, there are
�ve possible types of mode in the circuit:

Figure 2. Locus of possible values for s1 and s2.

1. s1 = s2 = 1; in this case, the solution of the
di�erence equation system can be written as a linear
function of node indices:

vp = A+Bp: (5)

Furthermore, using the sum of the roots, one must
have:

K2 = �2; (6)

2. s1 = s2 = �1; the solution of equations in this case
takes the form of a linear function of p, but with an
alternating sign at network nodes i.e.:

vp = (A+Bp)(�1)p; (7)

with:

K2 = 2; (8)

3. s1 = e�; s2 = e�� in which � is a real positive
number. In this case, the solution of the di�erence
equation can be written as:

Vp = A cosh(�p) +B sinh(�p); (9)

with:

K2 = �2 cosh�; (10)

4. s1 = �e�; s2 = �e��; again, � is a real positive
number in this case. The solution under this
condition takes the following form:

Vp = (A cosh(�p) +B sinh(�p)) (�1)p; (11)

with:

K2 = �2 cosh�; (12)

5. s1 = ej� ; s2 = e�j� , in which 0 < � < �. In this
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case, mode distribution takes the sinusoidal form
as:

Vp = A cos(�p) +B sin(�p); (13)

with:

K2 = �2 cos�: (14)

In all the above cases, constants A and B are de-
termined from boundary conditions. Using boundary
conditions obtained from Equations 2b and 2c and
applying the conditions that A and B have nonzero
solutions, another equation is obtained between the
frequency and mode distribution.

The results are summarized in Table 1. In this
table, the parameter, L, is de�ned as follows:

L =
ys
ym

: (15)

It can be seen that this parameter depends only on
coupling networks.

NETWORKS WITH LOOP
CONFIGURATION

The network having a loop con�guration is shown in
Figure 3. In this network, node equations are the same
as equations for the inner nodes in a linear con�gura-
tion. The only di�erence between this con�guration
and the linear con�guration is the boundary condition.
In a loop network, there are no boundary nodes, but
the following condition must be satis�ed:

Vp = Vp+n: (16)

Using this condition with the �ve possible cases men-
tioned for a linear structure, it can be shown that the

Figure 3. The network with loop con�guration.

modes with exponential distribution cannot exist in
these networks.

Another interesting result is that, in the loop
con�guration, mode distributions can be obtained in-
dependent of network elements, because values of �,
which satisfy Equation 16, are only dependent on the
number of nodes in the circuit. The possible modes and
their distributions are summarized in Table 2. In this
case, for sinusoidal modes there are two independent
constants, i.e. A and B. This is because of the
rotational symmetry of the network. This means
that the numbering of network nodes can start from
anywhere in the loop.

This result can be used in power combining arrays
having a loop con�guration. A simple criterion is
obtained for the separation of mode frequencies from
a center frequency. The nearest resonant frequency to
the frequency of a power combining mode is obtained
by solving the following equation:

K2 = �2 cos(�1) = �2 cos(2�=n): (17)

Typical variations of K2 versus frequency are depicted

Table 1. Possible modes in linear ladder network.

Characteristic
Equation Roots Mode Distribution First Equation Second Equation
s2 s1

1 1 A (constant) K2 = �2 L = �1
A
�

1� 2
n+1p

�
K2 = �2 L = 1+n

1�n
-1 -1 A(�1)P K2 = 2 L = 1

A(�1)p
�

1� 2
n+1p

�
K2 = 2 L = n+1

n�1

e�� e� A
�
cosh(�p)� 1+L cosh�

L sinh� sinh(�p)
�

K2 = �2 cosh� L2 sinh(�(n� 1)) + 2L sinh(�n)
+ sinh(�(n+ 1)) = 0

�e�� �e� A(�1)p
�
cosh(�p) + 1�L cosh�

L sinh� sinh(�p)
�

K2 = 2 cosh� L2 sinh (�(n� 1))� 2L sinh(�n)
+ sinh(�(n+ 1)) = 0

e�j� ej� A
h
cos(�p)� 1+L cos �

L sin � sin(�p)
i

K2 = �2 cos� L2 sin(�(n� 1)) + 2L sin(�n)

+ sin(�(n+ 1)) = 0
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Table 2. Possible modes in loop network.

Characteristic
Equation Roots Mode Distribution Mode Equation
s2 s1

1 1 A (constant) K2 = �2

-1 -1 A(�1)p (for even n) K2 = 2

K2 = �2 cos�k

e�j� ej� Vp = A cos(�p) +B sin(�p) �k = 2k�
n ,

8<:k = 1; 2; � � � ; n=2� 1 for even n

k = 1; 2; � � � ; (n� 1)=2 for odd n

Figure 4. The e�ect of the changes of K2 on the
separation of undesired mode frequencies from the power
combining mode frequency.

in Figure 4. In this �gure, the horizontal axis is the
axis of frequency normalized to a power combining
mode frequency. The frequency of the nearest mode
to the power combining mode can be obtained from
the points on the K2 curve, in which Equation 17 is
satis�ed. These points are the intersection of the K2
curves with the horizontal line, which has the value
of �2 cos(�1) on the vertical axis. The dashed curve
changes faster with frequency and, thus, the separation
of modes for this curve is less, compared to the solid
curve. As can be seen from this �gure and by using
Equation 17, a simple criterion can be obtained for
the separation of undesired mode frequencies from the
power combining mode frequency, that is to say, the
slower the change of K2 with frequency, the more the
separation between the undesired mode frequencies and
the power combining mode frequency.

SIMULATIONS AND COMPARISON

The �rst network to be studied is shown in Figure 5.
This network has parallel LC resonators and transmis-
sion lines as its coupling networks. The length of the
transmission lines connecting the resonators is �0 = 2�

Figure 5. Network with LC resonators and transmission
line coupling.

at !0 = 1=
p
L0C0, in which L0 and C0 are the resonant

circuit inductance and capacitance, respectively. This
network can be used for power combining arrays. First,
it is shown that the exponential modes cannot exist
in the array having single transmission lines as their
coupling networks. For this, consider the second
equation for exponential modes. These equations are
polynomial equations of a second degree in L. De�ning
the variable, T , as L = T � 1, for the case in which s1
and s2 have positive values and rewriting the equation
in T , it takes the following form:

T 2[sinh(�(n�1))]+4T [cosh(�(n�1=2)) sinh(�=2)]

+ 4 sinh(�n) sinh2(�=2) = 0: (18)

It is easy to show that the solutions of this equation are
negative numbers and, thus, solutions for the L must
satisfy L1;2 < �1. In the same way and by de�ning
L = T +1 for the case in which s1 and s2 have negative
values, it can be shown that, in this case, the solutions
for the L must satisfy L1;2 > 1.

In the network with transmission line coupling,
one has:

ys = �jY0 cot
�
�0!
!0

�
; (19)

ym = jY0 csc
�
�0!
!0

�
; (20)
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L =
ys
ym

= � cos(�): (21)

By the last equation, it is evident that �1 � L � 1
and, hence, the exponential mode cannot exist in this
network. The only possible modes are the constant
amplitude and sinusoidal modes.

A six element network is analyzed. The values
selected for the network elements are L0 = 159 pH,
C0 = 159 pF and Y0 = 1=70 S, so, the resonant
frequency of the resonators is equal to f0 = !0=2� =
1 GHz.

To verify results obtained from the di�erence
equations, two other methods were used. The �rst
method is a time domain simulation. The network is
excited using an initial condition to excite all modes.
The frequency spectrum of the node voltages has peaks
in the position of resonant frequencies.

As the second method, matrix equations obtained
from KCL at the nodes were used [1]. This matrix
equation takes the following form:266666664

K1 1 0 0 � � � 0 0 0
1 K2 1 0 � � � 0 0 0
0 1 K2 1 � � � 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 � � � 1 K2 1
0 0 0 0 � � � 0 1 K1

377777775
266666664
A1
A2
A3
...

An�1
A2

377777775=

266666664
0
0
0
...
0
0

377777775 ; (22)

in which Ais are the amplitudes of oscillation in
nodes for a speci�c mode. This equation has nonzero
solutions only when the determinant of the coe�cient
matrix is equal to zero. The mode distribution at each
resonant frequency can be obtained by the eigenvector
associated with the zero eigenvalue of the coe�cient
matrix. The zeros of the determinant of the coe�cient
matrix can be found by plotting the determinant of
the matrix as a function of the frequency, as depicted
in Figure 6.

Figure 6. Determinant of coe�cient matrix of
Equation 22 as a function of frequency.

The solution of the equations in Table 1 can be
obtained from the contours of the equation in the f��
plane for sinusoidal modes. These contours are plotted
in Figure 7. The intersections of two contours give the
mode frequencies and the values of � corresponding
to each mode. The results for resonant frequencies
and the mode distributions of the six element network
obtained from the foregoing methods are given in
Table 3. As can be seen from Table 3, excellent
agreement exists between the results of the resonant
frequencies and the mode distribution obtained from
these methods.

Another network is analyzed to con�rm the ex-
istence of exponential modes. In this network, the
resonators are the same as in the previous example,
but the coupling networks are � sections, as shown in
Figure 8. This � section consists of a transmission line
with a length of �0 = 2� at !0 and the characteristic
admittance, Y0, and two open ended stubs at two ends
having a length of �s0 = � at !0 and the characteristic
admittance, Ys0 = Y0. The quantity, L, for this
network is obtained as follows:

L = 1� 2 cos
�
�0!
!0

�
: (23)

Figure 7. Contours of equations for sinusoidal modes.

Figure 8. � section as coupling network.
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Table 3. Simulation results for a 6-node linear structure.

Resonant Frequencies (GHz) Matrix Equation Di�erence Equation

Di�erence
Equation

Matrix
Equation

Time
Domain

Simulation
Mode Amplitude Distributions Mode Amplitude Distribution �

0.9364 0.9365 0.9363 0.1539 -0.4090 0.5559 -0.5559 0.4090 -0.1539 0.1538 -0.4086 0.5556 -0.5559 0.4095 -0.1550 2.622

0.943 0.943 0.943 0.2954 -0.5752 0.2861 0.2861 -0.5752 0.2954 0.2952 -0.5751 0.2865 0.2854 -0.5751 0.2963 2.101

0.9534 0.9534 0.9535 0.4140 -0.4024 -0.4082 0.4082 0.4024 -0.4140 0.4140 -0.4024 -0.4082 0.4083 0.4024 -0.4141 1.578

0.967 0.967 0.967 0.5026 0.0054 -0.4973 -0.4973 0.0054 0.5026 0.5026 0.0053 -0.4974 -0.4972 0.0056 0.5027 1.0535

0.9829 0.9829 0.9826 0.5570 0.4090 0.1499 -0.1499 -0.4090 -0.5570 0.5570 0.4090 0.1498 -0.1499 -0.4090 -0.5570 0.5272

1.000 1.000 1.000 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082 ||

1.0175 1.0173 1.017 0.5570 0.4090 0.1499 -0.1499 -0.4090 -0.5570 0.5570 0.4090 0.1499 -0.1499 -0.4090 -0.5570 0.5272

1.0335 1.0336 1.0333 0.5027 0.0056 -0.4972 -0.4972 0.0056 0.5027 0.5027 0.0056 -0.4972 -0.4974 0.0053 0.5026 1.0535

1.048 1.0477 1.0473 0.4143 -0.4021 -0.4082 0.4082 0.4021 -0.4143 0.4146 -0.4018 -0.4088 0.4077 0.4029 -0.4135 1.578

1.059 1.0587 1.0583 0.2958 -0.5751 0.2859 0.2859 -0.5751 0.2958 0.2959 -0.5751 0.2858 0.2861 -0.5751 0.2956 2.101

1.0655 1.0657 1.0653 0.1542 -0.4090 0.5558 -0.5558 0.4090 -0.1542 0.1541 -0.4089 0.5557 -0.5558 0.4092 -0.1546 2.622

Table 4. Frequencies and mode distributions of exponential modes for network having �-section coutpling networks.

f (GHz) Mode Distribution
Matrix Equations Di�erence Equations

0.49601 -0.6685 0.2207 -0.0663 0.0000 0.0663 -0.2207 0.6685 -0.6707 0.2214 -0.0665 0.0002 0.0660 -0.2200 0.6663

0.49602 -0.6648 0.2238 -0.0818 0.0490 -0.0818 0.2238 -0.6648 -0.6690 0.2252 -0.0822 0.0490 -0.0814 0.2224 -0.6607

As can be seen, the exponential modes would exist in
this network. An analysis of this network con�rms
the existence of this mode. The contour for the
exponential mode equations in Table 1 is shown in
Figure 9 for a 7-element network. This contour shows
that these modes exist at two close frequencies. The
frequencies and mode distributions obtained from the
di�erence equations are compared with the matrix
equation results shown in Table 4. Although this mode

Figure 9. Existence of two exponential modes in network
having coupling networks as in Figure 6.

is far away from the center frequency in this case, this
example shows that the exponential modes are physical
modes and can exist in some circuits. The existence of
these modes can a�ect the stability of other modes in
some cases.

CONCLUSION

A new method was proposed for the analysis of res-
onant modes in ladder networks intended for linear
and loop structure power combiners. It is shown that
modes having exponential distributions can exist in
linear structures and it is shown that these modes are
physical modes and must be considered in the stability
analysis of the oscillator networks in certain cases.

In the case of the loop structure, it was shown
that the mode distributions are dependent only on
the number of oscillator elements. The resonant fre-
quencies are dependent upon the elements themselves.
Using this fact, a criterion was obtained to evaluate
the separation of undesired mode frequencies from the
power combining mode frequency.

Using this method, analytic relations were ob-
tained to evaluate the resonant frequencies and the
mode amplitude distributions. These distributions
were compared with the numerical results obtained
from the matrix equation method.
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