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Unaxisymmetric Heat Transfer in the
Axisymmetric Stagnation-Point Flow of a Viscous
Fluid on a Cylinder with Simultaneous Axial and
Rotational Movement Along with Transpiration

A.B. Rahimi� and R. Saleh1

The unaxisymmetric heat transfer of an unsteady viscous ow, in the vicinity of an axisymmetric
stagnation-point of an in�nite circular cylinder, with simultaneous axial and rotational movement,
along with transpiration, Uo, is investigated, when the angular velocity, axial velocity and wall
temperature or wall heat ux vary arbitrarily with time. The impinging free stream is steady and
with a strain rate of k. An exact solution of the Navier-Stokes equations and energy equation
is derived in this problem. A reduction of these equations is obtained by the use of appropriate
transformations for the most general case, when the transpiration rate is also time-dependent.
However, results are presented only for uniform values of this quantity. The general self-similar
solution of unsteady unaxisymmetric heat transfer is obtained, in which unaxisymmetry is due to
the sinusoidal variation of the temperature, with respect to the surface position of the rotating
cylinder, and unsteadiness is because of the sinusoidal variation of the temperature of each
point of the cylinder surface, with respect to time and, also the rotation of the cylinder. All
the solutions are presented for Reynolds numbers, Re = ka2=2�, ranging from 0.1 to 10.0 for
di�erent values of Prandtl number and selected values of the dimensionless transpiration rate,
S = U0=ka, where a is the cylinder radius and � is the kinematic viscosity of the uid. The
local coe�cient of heat transfer (Nusselt number) is found to be independent of time and place,
though the cylinder wall temperature or wall heat ux are both functions of time and place.

INTRODUCTION

The problem of �nding the exact solutions of Navier-
Stokes equations is a very di�cult task. This is primar-
ily due to the fact that these equations are nonlinear.
An exact solution of these equations, governing the
problem of a two-dimensional stagnation ow against a
at plate, has been given by Hiemenz [1]. Howarth [2]
and Davey [3] presented results for asymmetric cases
of stagnation ow against a at plate. The �rst exact
solution to the problem of an axisymmetric stagnation
ow on an in�nite circular cylinder was obtained by
Wang [4]. Gorla [5-9], in a series of papers, studied
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steady and unsteady ows and heat transfer over a
circular cylinder in the vicinity of the stagnation-point
for the cases of constant axial movement and the special
case of the axial harmonic motion of a non-rotating
cylinder. In more recent years, Cunning, Davis, and
Weidman [10] have considered the stagnation ow
problem on a rotating circular cylinder with a constant
angular velocity. They have also included the e�ects of
suction and blowing in their study. Takhar, Chamkha
and Nath [11] have investigated the unsteady viscous
ow in the vicinity of an axisymmetric stagnation point
of an in�nite circular cylinder, for the particular case
when both the axial velocity of the cylinder and the free
stream velocity vary, inversely, as a linear function of
time. The study considered by Saleh and Rahimi [12]
presents the axisymmetric stagnation-point ow and
heat transfer of a viscous uid on a moving cylinder,
with time-dependent axial velocity and uniform tran-
spiration. The e�ects of axial and rotational move-
ments, simultaneously, and unaxisymmetric thermal
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loading in an axisymmetric stagnation point ow on
a cylinder have not yet been investigated. These
studies are perhaps of interest in cooling and centrifugal
processes in industry, calcinations of cement and in the
accelerating phases of rocket motors, in which axial
and rotational movements are simultaneously present
etc. Other di�erent types of motion of a cylinder
have applications, for example, in steady state cooling
processes, start up and stopping stages of centrifugal
processes and in sinusoidal blenders in industry.

In the present analysis, the problem of unaxisym-
metric heat transfer in the axisymmetric stagnation-
point ow of a viscous uid on a cylinder with si-
multaneous axial and rotational movement along with
transpiration is considered. An exact solution of the
Navier-stokes equations and the energy equation is
obtained. The general, self-similar solution of unsteady
unaxisymmetric heat transfer is obtained, in which
unaxisymmetry is because of the sinusoidal variation
of temperature, with respect to the surface position
of a rotating cylinder and in which unsteadiness is
because of the sinusoidal variation of the temperature
of each point of the cylinder surface, with respect to the
time and also rotation of the cylinder. The solutions
are presented for di�erent values of Reynolds and
Prandtl number and the velocity component of the ow
and selected values of the dimensionless temperature
function. Particular cases of these results are compared
with the existing results of Gorla [6,8,9].

PROBLEM FORMULATION

The unaxisymmetric heat transfer of the unsteady in-
compressible ow of a viscous uid in the neighborhood
of the axisymmetric stagnation-point of an in�nite
circular cylinder with simultaneous axial and rotational
movement with uniform normal transpiration, Uo, at
its surface is considered, where Uo > 0 corresponds
to suction into the cylinder, although the formulation
of the problem is for the more general case of a time-
dependent transpiration rate. The ow con�guration
is shown in Figure 1 in cylindrical coordinates (r; �; z)
with corresponding velocity components (u; v; w). The
cylinder has a simultaneous time-dependent rotation
and axial movement and the wall temperature or the
wall heat ux is also a function of time. A radial
external ow of strain rate k impinges on the cylinder
of radius, a, centered at r = 0. The unsteady
Navier-Stokes and energy equations in the cylindrical
polar coordinates governing the axisymmetric ow and
unaxisymmetric heat transfer are given by:
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Figure 1. Schematic diagram of a cylinder with
simultaneous axial and rotational movement under radial
stagnation ow in the �xed cylindrical coordinates system
(r; �z).
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where P , �, v and � are the uid pressure, density,
kinematic viscosity and thermal di�usivity. Because
of the in�nite length of the cylinder, the variations of
ow quantities are not a function of z. The boundary
conditions for the velocity �eld are as follows:

r = a :

u = �Uo(t); v = a:!(t); w = V (t); (6)

r !1 :

@u
@r

= �k; lim itr!1rv = 0; w = 2kz: (7)
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Here, Relation 6 are transpiration and no-slip boundary
conditions on the cylinder wall, where Uo(t) is the
transpiration rate, !(t) is the angular velocity and V (t)
the axial velocity of the cylinder. Relations 7 show
that the viscous ow solution approaches, in a manner
analogous to the Hiemens ow, the potential stagnation
�eld, as r ! 1 [10]. The presence of the stagnation
ow allows the condition of zero circulation at in�nity
to be imposed on the swirl velocity. This form of
boundary condition is only from the mathematical
point of view, however, from a physical viewpoint, the
ow can usually be considered inviscid, when r is far
enough away from the cylinder surface (r >> a).

For the temperature �eld, one has:

r = a :

i) T = Tw(�; T ) for the de�ned wall temperature;

ii)
@T
@r

= �qw(�; t)
k

for the de�ned wall heat ux;

r !1 : T ! T1; (8)

and the two boundary conditions with respect to � are:

T (r; 0; t) = T (r; 2�; t);

@T
@�

(r; 0; t) =
@T
@�

(r; 2�; t); (9)

where k is the thermal conductivity of the uid, T1 is
a constant and Tw(�; t) and qw(�; t) are temperature
and heat ux at the wall cylinder, respectively.

A reduction of the Navier-Stokes equations is
obtained by applying the following transformations:

u = �k ap� f(�; �); v = 2k
ap�G(�; �);

w = 2kf 0(�; �)z +H(�; �); P = �k2a2p; (10)

where � = 2kt and � = (r=a)2 are dimensionless
time and radial variables and the prime denotes dif-
ferentiation with respect to �. Transformations in
Equations 10 satisfy Equation 1 automatically and
their insertion into Equations 2 to 4 yields a coupled
system of di�erential equations in terms of f(�; �),
G(�; �) and H(�; �) and an expression for the pressure:
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In these equations, the prime indicates di�erentiation,
with respect to �, and Re = ka2

2� is the Reynolds
number. From Conditions 6 and 7, the boundary
conditions for Equations 11 to 13 are as follows:

� = 1 :

f = S(�); f 0 = 0; G = 
(�); H = V (�);

� !1 :

f 0 = 1; G = 0; H = 0; (15)

in which, S(�) = U0(�)
ka

and 
(�) = !(�)
2k

are the
dimensionless wall transpiration rate and dimensionless
angular velocity of the cylinder, respectively.

To transform the energy equation into a non-
dimensional form, for the case of a de�ned wall tem-
perature, one introduces:

�(�; �; �) =
T (�; �; �)� T1
Tw(�; �)� T1 : (16)

Making use of Equations 10 and 16, the energy equa-
tion may be written as:
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where Pr = �
� is the Prandtl number and the boundary

conditions are:

�(1; �; �) = 1; �(1; �; �) = 0; (18)

�(�; 0; �) = �(�; 2�; �);
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For the case of a de�ned wall heat ux, one introduces:

�(�; �; �) =
T (�; �; �)� T1
aqw(�; �)=2k

: (20)

Now, making use of Equations 10 and 20, the energy
equation can be written as:
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with the boundary conditions as follows:

�0(1; �; �) = �1; �(1; �; �) = 0; (22)

�(�; 0; �) = �(�; 2�; �);
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SEMI-SIMILAR SOLUTIONS

Semi-similar Equations 11 to 13, 17 and 21 for dif-
ferent time-dependent functions for S(�), 
(�), V (�),
Tw(�; �) and qw(�; �) with di�erent choices of Re and
Pr numbers, can be solved numerically. In this paper,
only self-similar solutions are presented, which appear
in the next section.

SELF-SIMILAR SOLUTIONS

Before presenting the self-similar change of variables,
it is noted that, for S(�) = constant, none of the
boundary conditions of Equation 11 are a function of
time and by assuming steady-state initial conditions for
this equation one has:

� = 0! @f 0=@� = 0:

Therefore, in this case, Equation 11 is reduced to the
following form:

�f 000 + f 00 + Re[1� (f 0)2 + ff 00] = 0: (24)

Steady-state solutions are obtained by solving this
equation. Since none of the boundary conditions on f
is time-dependent, then this function does not change
with respect to time, and the result of steady-state
solution (� = 0) is the same as the solution for
all the later times (� > 0). Thus, f(�; �) = f(�)

and, consequently, Equation 11 can be reduced to
Equation 24.

Semi-similar Equations 12 and 13, as in [12],
are reduced to exact di�erential equations, with the
following separation of variables:

G(�; �) = g(�)
(�);


(�) = b1 exp[(�1 + i�1)� ]; (25)

H(�; �) = h(�)V (�);

V (�) = b2 exp[(�2 + i�2)� ]; (26)
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�h00 + h0 + Re[fh0 � f 0h� �2h� i�2h] = 0; (28)

in which i =
p�1 and b, � and � are constants.

The boundary conditions for the Equations 24, 27
and 28 according to Conditions 15 are:

� = 1 :

f = S; f 0 = 0; g = 1; h = 1;

� !1 :

f 0 = 1; g = 0; h = 0: (29)

To reduce the energy equation to a self-similar form,
the following separation of the variable is chosen:

�(�; �; �) = �(�)Q(�; �): (30)

For the boundary Conditions 18, 19, 22 and 23, to
admit this separation of the variable, the following
conditions must be satis�ed:
� = 1 :
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Substituting this result into energy Equations 17
and 21 gives:
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for a de�ned wall heat ux: (34)

In order for Equations 33 and 34 to be self-similar, none
of the terms should be a function of dimensionless time
and angle �. Therefore, one must have:

1. For the case of a de�ned wall temperature:

Tw(�; �)� T1 = C expf�� + n(
� + �)g; (35)

which gives:
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2. For the case of a de�ned wall heat ux:

qw(�; �) = C expf�� + n(
� + �)g; (36)

which gives:
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For the quantities in Equations 35a and 36a to be
constant, the angular velocity of the cylinder, 
, must
be constant. This means that the cylinder must
rotate with a constant angular velocity. Taking the
above relations into consideration, the temperature
distribution function and heat ux of the cylinder wall

have the following changes, with respect to �, n, 
 and
� parameters:

�: Temperature on the cylinder wall changes as
a cosine function,


: The rotational speed of the cylinder is
constant and, thus the position of the surface
temperature alternates because of it,

n: The number of sinusoidal changes on
the surface of the cylinder,

�: The sinusoidal changes of temperature,
with respect to time, on each point of the
cylinder,

Finally, substituting the above relations into Equa-
tions 33 and 34, the following self-similar equation is
obtained for both cases of de�ned wall temperature and
wall heat ux:
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+ iRe:Pr
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�
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+ 1:0
�

+ �
��

� = 0:
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The boundary conditions for this equation are as
follows:

� = 1; � = 1; � !1; � = 0;

for de�ned wall temperature; (38)

� = 1; �0 = 1; � !1; � = 0;

for de�ned wall heat ux: (39)

Equations 24, 27 and 28, along with the boundary
Conditions 29, can be solved by using the fourth-order
Runge-Kutta method of numerical integration, along
with a shooting method.

To solve Equation 37, the following two cases are
considered.

Simple Case of Steady-State Unaxisymmetric
Heat Transfer

Unsteadiness is because of the temperature boundary
conditions (cylinder wall temperature and wall heat
ux functions) being a function of time. To remove
this unsteadiness, all the coe�cients, including � and

, must be zero. Based on this, Equation 37 and
the cylinder wall temperature and wall heat ux are
simpli�ed as follows:

��00 + (1:0 + Re:Prf)�0 � n2

4�
� = 0; (40)
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Tw(�)� T1 = C exp(in�) = C[cos(n�) + i sin(n�)]

= A cos(n�); (41)

qw(�) = C exp(in�) = C[cos(n�) + i sin(n�)]

= A cos(n�): (42)

If n = 0, the very simple cases of constant wall
temperature and constant heat ux of a cylinder are
obtained, which were solved by Gorla [9]. Self-similar
Equation 40, along with the boundary Conditions 38
and 39 and knowing the f(�) function, was solved, us-
ing the fourth-order Runge-Kutta method of numerical
integration, along with a shooting method for di�erent
values of n, Reynolds number and Prandtl number.

More General Case of Unsteady
Unaxisymmetric Heat Transfer

The constant rotational speed, 
, of the cylinder
and the coe�cient, �, presenting the time-dependent
variation of temperature of each point of the cylinder
surface, are the terms causing unsteadiness. In this
case, Equation 37 and boundary Conditions 38 and 39
must be considered with no changes. Considering the
dimensionless temperature as:

�(�) = �1(�) + i�2(�); (43)

gives:8>>>>>>><>>>>>>>:
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The boundary conditions become:

� = 1 : � = 1! �1 = 1; �2 = 0;

� !1 : � = 0! �1 = �2 = 0;

for a de�ned wall temperature case; (45)

� = 1 : �0 = �1! �01 = �1; �02 = 0;

� !1 : � = 0! �1 = �2 = 0;

for a de�ned wall heat ux: (46)

Considering Relations 35a and 36a, n = 0, � =
0, 
 = 0 correspond to the very simple case of
a cylinder with a constant wall temperature and a
constant wall heat ux obtained by Gorla [9] for the

�rst time. n = 0, � 6= 0 and 
 6= 0 correspond to
the axial axisymmetric heat transfer discussed in [12],
in which wall temperature or wall heat ux changes
harmonically with the time. n 6= 0, � = 0 and

 = 0 correspond to a steady unaxisymmetric heat
transfer case, in which the temperature variation and
heat ux variation on the cylinder wall is considered
sinusoidal, as in previous section. n 6= 0, � 6= 0 and

 = 0 correspond to an unsteady unaxisymmetric heat
transfer, in which the unaxisymmetry is because of the
sinusoidal variation of the temperature, with respect
to the surface position of the rotating cylinder, and the
unsteadiness is because of the sinusoidal variation of
the temperature of each point of the cylinder surface,
with respect to time. n 6= 0, � = 0 and 
 6=
0 correspond to an unsteady unaxisymmetric heat
transfer, in which the unaxisymmetry is because of the
sinusoidal variation of the temperature with respect
to the surface position of the rotating cylinder, and
its unsteadiness is because of the constant rotation of
the cylinder and the displacement of temperature of
each point of the cylinder surface with respect to time.
n 6= 0, � 6= 0 and 
 6= 0 correspond to the most general
case of an unsteady unaxisymmetric heat transfer, in
which the unaxisymmetry is because of the sinusoidal
variation of the temperature with respect to the surface
position of the rotating cylinder, and the unsteadiness
is because of the sinusoidal variation of temperature of
each point of the cylinder surface, with respect to time
and, also the rotation of the cylinder.

The coupled system of Equations 44, along with
the boundary Conditions 45 and 46, have been solved
by using the fourth-order Runge-Kutta method of nu-
merical integration, along with a shooting method [13],
for known values of f(�) and g(�) functions and
di�erent values of n, �, 
, Reynolds number and
Prandtl number. The results are presented in later
sections.

HEAT TRANSFER COEFFICIENT

The local heat transfer coe�cient and the rate of heat
transfer for the case of a de�ned wall temperature are
given by the following:

h =
qw

Tw � T1 =
�k �@T@r �r=a
Tw � T1 = �2k

a
�0(1; �; �);

for a semi-similar case;

h = hr + ihi = �2k
a

[�01(1) + i�02(1)];

for a self-similar case: (47)
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Or, in terms of Nusselt number, Nu = ha
2k gives:

Nu = ��0(1; �; �) for a semi-similar case; (48)

Nu = Nur + iNui = �[�01(1) + i�02(1)];

for a self-similar case: (49)

And, �nally, the heat ux through the cylinder wall is:

qw = �2k
a

�0(1; �; �):(Tw � T1);

for a semi-similar case; (50)

qw = �2k
a
C exp[if�� + n(
� + �)g][�01(1) + i�02(1)];

for a self-similar case: (51)

And, for a de�ned wall heat ux case:

h =
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2k
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1
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;

for a semi-similar case; (52)
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for a self-similar case: (53)

And, in terms of Nusselt number,

Nu =
1

�(1; �; �)
; for a semi-similar case; (54)

Nu =
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2k

=
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�2

1(1) + �2
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�
;

for a self-similar case: (55)

And, �nally, the temperature distribution is:

Tw � T1 =
a
2k

�(1; �; �):qw;

for a semi-similar case; (56)

Tw�T1=
a
2k
C: exp[if��+n(
�+�)g][�1(1)+i�2(1)];

for a self-similar case: (57)

From Relations 47 and 53, it is clearly seen that for self-
similar cases of unsteady unaxisymmetric heat transfer,
the local heat transfer coe�cient (Nusselt number) is
neither a function of time nor place, contrary to the
fact that the cylinder wall temperature and wall heat
ux are both functions of time and place.

PRESENTATION OF RESULTS

In this section, the results obtained from solving the
self-similar Equation 40, along with boundary Con-
ditions 38 and 39, for di�erent values of Reynolds
number, Re, Prandtl number, Pr, and n for known
values of function, f(�), are presented. A fourth-order
Runge-Kutta method along with a shooting method
has been used. This equation is a somewhat simpler
form of Equation 37, in which the heat transfer is
unaxisymmetric. Interesting results, regarding the
uid ow in this problem, have been discussed in detail
in [12-14]. Here, merely the heat transfer results are
discussed and presented.

Sample pro�les of the non-dimensional tempera-
ture, �(�), and temperature gradient, �0(�), in terms
of � are presented in Figure 2, for wall temperature
function, Tw � T1 = A cos(n�), and for a non-
dimensional transpiration rate of S = �1:0; 0:0; 1:0. As
is clear, these pro�les are for n = 0:0; 1:0; 2:0; 5:0, where
n is the cycle number of the wall temperature cosine
function and n = 0 expresses the state of constant
wall temperature. From Figure 2a, the increase of
the suction rate of uid into the cylinder and the
increase of n reduce the depth of di�usion of the
temperature into the uid. From this �gure, when
n ! 1, the thickness of the thermal boundary layer
tends toward zero. From Figure 2b, the increase
of n and S cause the increase of the absolute value
of the pro�le of the initial temperature and, there-
fore, the coe�cient of heat transfer increases and,
thus, the thickness of the thermal boundary layer
decreases.

Sample pro�les of the non-dimensional temper-
ature, �(�), and the temperature gradient, �0(�), in
terms of �, are given in Figure 3 for the wall heat
ux function, qw = A cos(n�), and for the non-
dimensional transpiration rate of S = �1:0; 0:0; 1:0.
Here, again, the value of n = 0:0; 1:0; 2:0; 5:0 has
been used, when n is the cycle number of the cylinder
wall heat ux and n = 0 expresses a constant wall
heat ux. From Figure 3a, again, the increase of
the suction rate of the uid into the cylinder and the
increase of n reduce the cylinder wall temperature and,
naturally, the depth of di�usion of the temperature
�eld of the uid adjacent to the cylinder wall de-
creases. Also, the distribution of the non-dimensional
temperature in the uid, which is in the form of a
cosine function, is going to tend to zero in a faster
trend as n and S increase. Here, again, as n ! 1,
the thickness of the thermal boundary layer tends
to zero. From Figure 3b, as n and S increase, the
depth of di�usion of the temperature �eld decreases
and, thus, the thickness of the thermal boundary layer
decreases.

Sample pro�les of the non-dimensional temper-
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Figure 2. Pro�les of (a) �(�) and (b) �0(�) for sinusoidal
wall temperature function for S = �1:0; 0:0; 1:0, Pr = 1,
Re = 1 and di�erent values of n.

ature, �(�), and the temperature gradient, �0(�), in
terms of �, are depicted in Figure 4 for the wall
temperature function, Tw � T1 = A cos(n�), and
for Prandtl numbers, Pr = 0:5; 1:0; 2:0. Here, the
values of n = 0:0; 1:0; 2:0; 5:0 have been used. From
Figure 4a, the depth of di�usion of the wall temper-
ature adjacent to the cylinder decreases by increasing
Prandtl number and value of n, and the variation of
the cosine form of the wall temperature is omitted at a
lower radial distance. From Figure 4b, the absolute
value of the initial slope of the temperature pro�le
increases by increasing the values of nand Prandtl
number and, therefore, the coe�cient of heat transfer
increases and the thickness of the thermal boundary

Figure 3. Pro�les of (a) �(�) and (b) �0(�) for sinusoidal
wall heat ux function for S = �1:0; 0:0; 1:0, Pr = 1,
Re = 1 and di�erent values of n.

layer decreases.
Sample pro�les of the non-dimensional tempera-

ture, �(�), and temperature gradient, �0(�), in terms of
� are shown in Figure 5 for the wall heat ux function,
qw = A cos(n�) and for Pr = 0:5; 1:0; 2:0. As can
be seen from both of these �gures, increasing values
of Prandtl number and n causes a reduction in the
cylinder wall temperature and its depth of di�usion in
the uid near the cylinder wall, therefore, the thickness
of the thermal boundary layer decreases.

The e�ects of the variation of ow Reynolds
number on non-dimensional temperature pro�les, �(�),
and temperature gradient, �0(�), in terms of � for
wall temperature and wall heat ux, are presented
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Figure 4. Pro�les of (a) �(�) and (b) �0(�) for sinusoidal
wall temperature function for S = 0:0, Pr = 0:5; 1:0; 2:0,
Re = 1 and di�erent values of n.

in Figures 6 and 7, respectively. These pro�les are
for Reynolds number Re = 0:1; 1:0; 10:0 and selected
values of n from zero to �ve. From these �gures, the
e�ect of an increase in Reynolds number is like the
e�ect of an increase of Prandtl number in previous
cases, which causes a reduction of uid temperature
adjacent to the cylinder wall and, thus, the variation
of a cosine form of the wall temperature tends to
zero at a lower radial distance. Also, the increase of
Reynolds number increases the absolute value of the
initial value of the wall temperature (Figure 6), which
on the one hand, increases the coe�cient of the heat
transfer and on the other hand, decreases the thickness
of the thermal boundary layer in the case of a wall heat

Figure 5. Pro�les of (a) �(�) and (b) �0(�) for sinusoidal
wall heat ux function for S = 0:0, Pr = 0:5; 1:0; 2:0,
Re = 1 and di�erent values of n.

ux in cosine form (Figure 7).
In Figure 8, variations of the Nusselt number,

in terms of the Prandtl number for wall temperature
function Tw(�)�T1 = A cos(n�) and selected values of
Reynolds number for (a) n = 1, S = 0, and (b) n = 5,
S = 0, are shown. It is interesting to note that the
value of the Nusselt number is a constant, though the
wall temperature or heat ux changes with time and
position.

Nusselt number variations, in terms of Prandtl
number for wall heat ux function qw(�) = A cos(n�)
and selected values of Reynolds number for (a) n =
1, S = 0, and (b) n = 2, S = 0, are presented
in Figure 9. Again, though the wall temperature
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Figure 6. Pro�les of (a) �(�) and (b) �0(�) for sinusoidal
wall temperature function for S = 0:0, Pr = 1:0,
Re = 0:1; 1:0; 10:0 and di�erent values of n.

or heat ux changes with respect to time and po-
sition the value of the Nusselt number is a con-
stant.

CONCLUSIONS

In this paper, the unaxisymmetric heat transfer of a
cylinder for two types of function as an unaxisymmetric
wall temperature and an unaxisymmetric wall heat
ux in an axisymmetric radial stagnation-point ow,
on a cylinder with simultaneous rotational and axial
movement, along with transpiration, has been studied.
Here, the exact solution has been obtained for the
energy equation, for the case of an unaxisymmetric

Figure 7. Pro�les of (a) �(�) and (b) �0(�) for sinusoidal
wall heat ux function for S = 0:0, Pr = 1:0,
Re = 0:1; 1:0; 10:0 and di�erent values of n.

heat transfer for some speci�c functions for an un-
axisymmetric wall temperature distribution and an
unaxisymmetric wall heat ux. The general, semi-
similar equations have been formulated to present semi-
similar solutions for di�erent thermal functions and
cylinder movements by use of numerical techniques.
The e�ects of suction and blowing, Reynolds number,
Prandtl number and di�erent forms of unaxisymmetric
thermal functions on the heat transfer rate have been
discussed, for selected cases in a self-similar case. It
is interesting to note that, in the case of self-similar
solutions, the Nusselt number is a constant value,
though wall temperature or wall heat ux change with
respect to time and position.
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Figure 8. Nusselt number in terms of Pr. number for
wall temperature function Tw(�)� T1 = A cos(n�) and
selected values of Reynolds numbers for (a) n = 1, S = 0
and (b) n = 5, S = 0.

NOMENCLATURE

a cylinder radius (m)
A;B;C constants
f(�; �) function related to u-comp. of velocity
G(�; �) function related to v-comp. of velocity
g(�) function, Equation 25
H(�; �) function related to w-comp. of velocity
h heat transfer coe�cient (w/m2-�C)
h(�) function, Equation 26

i
p�1

Figure 9. Nusselt number in terms of Pr. number for
wall heat ux function qw(�) = A cos(n�) and selected
values of Reynolds numbers for (a) n = 1, S = 0 and (b)
n = 2, S = 0.

k strain rate (1/sec)
n number of sinusoidal changes
Nu Nusselt number
P uid pressure (pa)
Pr Prandtl number
Q(�; �) function, Equation 30
qw wall heat ux (J/kg)
r; �; z cylindrical coordinates
Re Reynolds number
S transpiration rate
t time (sec)
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T temperature (�C)
T1 ambient temperature (�C)
Tw wall temperature (�C)
u r-component of velocity (m/sec)
v �-component of velocity (m/sec)
w z-component of velocity (m/sec)
U0 transpiration (m/sec)
V (t) axial velocity of cylinder (m/sec)

Greek
�; � constants
� thermal di�usivity (m2/hr)
� sinusoidal change of temperature
� dimensionless radial variable
� uid density (kg/m3)
� kinematic viscosity (m2/sec)
!(t) angular velocity of cylinder (rad/sec)

(t) dimensionless transpiration
�(�) function, Equation 30
�(�; �; �) nondimensional temperature
� dimensionless time variable
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