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Fuzzy Hierarchical Queueing Models
for the Location Set Covering
Problem in Congested Systems

H. Shavandi1 and H. Mahlooji�

In hierarchical service networks, facilities at di�erent levels provide di�erent types of service. For
example, in health care systems, general centers provide low-level services, such as primary health
care, while specialized hospitals provide high-level services. Because of the demand congestion
at service networks, the location of servers and their allocation of demand nodes can have
a strong impact on the length of the queue at each server, as well as on the response time to
service calls. This study attempts to develop hierarchical location-allocation models for congested
systems by employing a queueing theory in a fuzzy framework. The parameters of each model
are approximately evaluated and stated as fuzzy-numbers. The coverage of demand nodes is
also considered in an approximate manner and is stated by the degree of membership. Using
queueing theory and fuzzy conditions, both referral and nested hierarchical models are developed
for the Location Set Covering Problem (LSCP). To demonstrate the performance of the proposed
models, a numerical example is solved in order to compare the results obtained from the existing
probabilistic models and the new fuzzy models developed in this paper.

INTRODUCTION AND LITERATURE
REVIEW

There exist many hierarchical structures in service
networks, both in the public and private sectors.
Here, some examples of hierarchical service networks
are elaborated on. Public health services are, by
nature, hierarchical structures, as hospitals correspond
to higher-level facilities and primary health care centers
are thought of as at a lower level. Numerous other
examples of hierarchical structures can be found, such
as primary, middle and high schools [1], airports,
computer service centers, day-care centers, health care
systems, emergency medical centers, regional health
facilities, social service centers, police centers, ware-
houses, distribution systems and so on. Due to the
nature of the relationship between the various levels,
both on the demand side as well as the service side, the
analysis of hierarchical service systems is a challenge
waiting to be met.
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This research e�ort is devoted to the development
of fuzzy models for the hierarchical Location Set Cov-
ering Problem (LSCP). LSCP, which was introduced
by Toregas et al. [2], attempts to locate the minimum
number of servers, in order to cover all the demand
nodes within the distance or time standard.

Church and Eaton [3] and Gerrard and Church [4]
provide reviews of early hierarchical models. Serra
and ReVelle [5,6] combined hierarchical location and
coherent districting in a later e�ort. Serra et al. [7]
developed a hierarchical maximum capture model for
location in a competitive environment. Later, Serra [8]
presented his model for a coherent covering location
problem.

The assumption of demand congestion at servers
has not been considered in any of the above models.
Once the demand rate (for service) exceeds the service
rate, congestion occurs and waiting lines emerge. To
enhance the quality of rendering service in congested
systems, it is obvious that resorting to a queueing
theory could be quite helpful. Marianov and Serra [1]
published an article on hierarchical location-allocation
models for congested systems (HIQ-LSCP), in which
they developed a number of hierarchical location mod-
els for LSCP and MCLP, based on the queueing theory.
The probabilistic nature of their approach led to more
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models under crisp conditions. In fact, to make the
models even more realistic, one can consider the fuzzy
conditions. As for the application of fuzzy theory
toward developing location models, most e�orts can
be categorized into a class of qualitative models. In
1999, Canos et al. [9] treated the classical p-median
problem as a fuzzy model and came up with an exact
method of solution. Woodyat et al. [10] presented
an application combining set covering and fuzzy sets
to optimally assign metallurgical grades to customer
orders. A comprehensive review of newly developed
hierarchical location models can be found in [11]. The
very �rst fuzzy model using the queueing theory in
the area of location-allocation in congested systems
was developed by Shavandi and Mahlooji [12]. They
incorporated fuzzy parameters and variables in their
work. In their model, no customer is required to receive
service from a single server; rather, he can select the
appropriate server with priorities from a list of servers,
according to degrees of membership. The �rst fuzzy
model for location-allocation in hierarchical systems
was developed by Shavandi et al. [13]. They introduced
a fuzzy hierarchical queueing location-allocation model
for MCLP in coherent systems. Shavandi and Mahlooji
developed a fuzzy queueing maximal covering location-
allocation model with a genetic algorithm in 2006 [14].
The present work follows the aim of developing fuzzy
hierarchical queueing models for LSCP, in both nested
and referral systems.

A REVIEW OF PROBABILISTIC
HIERARCHICAL LOCATION SET
COVERING PROBLEM (HIQ-LSCP)

To lay the foundation for presenting the Fuzzy Hierar-
chical Queuing Location Set Covering Problem (FHQ-
LSCP), it is appropriate to review the HIQ-LSCP
model for referral systems proposed by Marianov and
Serra [1], which is as follows:

minZ =
X
j

CjWj +
X
k

KkZk; (1)

s.t.X
j;k

Xijk = 1; 8i; (2)

Xijk �Wj ; 8i; j; k; (3)

Xijk � Zk; 8i; j; k; (4)

P [low-level server j has � b people in queue] � �;
8j; (5)

P [high-level server k has � b people in queue] � �;
8k; (6)

Xijk;Wj ; Zk = 0; 1; 8i; j; k;
where:

Xijk: The allocation variable that takes a value
of 1, if the population at demand node i
is allocated to the low-level server, j, and
the high-level server, k; otherwise it is zero,

Wj : The location variable, which takes a value
of 1, if a low-level server is located at
node j, otherwise it is zero,

Zk: The location variable that takes a value
of 1, if a high-level server is located at
node k, and zero otherwise,

Cj : The cost of locating a low-level server at
node j,

Kk: The cost of locating a high-level server at
node k,

The objective function (Equation 1) attempts to
minimize the total cost of locating low- and high-level
servers. The �rst constraint (Equation 2) means that
each demand node must be covered by just one server.
Constraints 3 and 4 assume that allocation variables
can take the value 1, only when a low-level server and
a high-level server have already been located at nodes
j and k, respectively. Constraints 5 and 6 are related
to the demand congestion at servers, or the quality of
service, to make sure that the queue length at each
server does not exceed b, with probability at least �.

To write Constraints 5 and 6 in non-probabilistic
form, Marianov and Serra borrow notions from the
queueing theory to arrive at the �nal form for these
constraints as follows:X

i;k

fiXijk � �lj b+2
p

1� �; 8j; (50)

or:X
i;j

�jfiXijk � �hk b+2
p

1� �; 8k; (60)

where the following de�nitions are relevant:

fi: The arrival rate of requests for service at
node I,

�lj : The service rate at low-level server j,

�hk : The service rate at high-level server k,

�j : The percentage of requests referred by the
low-level server, j, to high-level service.

They assume that, at each service center, there
exists just one server. Since each demand node is served
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by just one server, the servers operate independently
and the queueing model at each server functions as
an M/M/1 model. So, by substituting Constraints 50
and 60 for 5 and 6, they arrive at the �nal form of the
HIQ-LSCP model.

FUZZY HIERARCHICAL QUEUEING
LOCATION SET COVERING PROBLEM
(FHQ-LSCP)

This section is devoted to the development of two
types of FHQ-LSCP model. First, a fuzzy hierarchical
queueing location set covering formulation for referral
systems is presented, which can easily be applied to
non-referral systems as well. Then a similar model
is developed for a nested system. In the case of
nested systems, a server providing both high-level and
low-level services is modeled as a low-level server co-
located with a high-level server. First, the parameters,
variables and fuzzy sets are de�ned that are used in
developing such models. In the following discussion,
the convention is adopted of referring to a node in the
service network as a service node (or a server), if a
server is located at that node. Otherwise, the node is
simply referred to as a demand node. The parameters
are as follows:

Cj : The cost of locating alow-level server at node j;
a crisp number,

Kk: The cost of locating a high-level server at node
k; a crisp number,

~bl : (bpl ; b
m
l ; bol ): A triangular fuzzy number, which

stands for the maximum allowable number of
customers at each low-level server,

~bh : (bph; b
m
h ; boh): A triangular fuzzy number, which

stands for the maximum allowable number
of customers at each high-level server,

~fi : (fpi ; fmi ; foi ): A triangular fuzzy number,
which stands for the low-level demand rate at
demand node i,

�: The high-level demand percentage at each
low-level server, a crisp number,

~�lj : (�lpj ; �lmj ; �loj ): Service rate at low-level
server j; a triangular fuzzy number,

~�hk : (�hpk ; �
hm
k ; �hok ): Service rate at high-level

server k; a triangular fuzzy number,
sdlij : The degree of membership for the distance

between demand node i and the low-level
server, j, being almost less than or equal to
the distance standard,

slhjk: The degree of membership for the distance
between the low-level server, j, and
the high-level server,
k, being less than or equal
to the distance standard,

�: The prede�ned truth-value of service quality
constraint at each server,

m: The minimum degree of membership by which
each demand node must be covered; a crisp
number.

The variables are categorized into variables and deci-
sion variables. The variables are functions of decision
variables and are only used to model the problem. As
such, the variables do not appear in the �nal model. In
light of this de�nition, the variables are as follows:

~NSl
j : The average number of customers at low-level

server j during the steady state period;
a triangular fuzzy number,

~NSh
k : The average number of customers at

high-level server k during the steady state
period; a triangular fuzzy number,

~�lj : (�lpj ; �lmj ; �loj ): Arrival rate of demand at
low-level server j; a triangular fuzzy number,

~�hk : (�hpk ; �
hm
k ; �hok ): Arrival rate of demand at

high-level server k; a triangular fuzzy number.

The decision variables of the proposed models are as
follows:

Wj : A zero-one variable, which assumes a value
of 1 if a low-level server is located at node
j, otherwise, it is zero,

Zk: A zero-one variable, which assumes a value
of 1, if a high-level server is located at node
k, otherwise, it is zero,

Xij : The degree of membership for demand node
i being covered by the low-level server, j,

Yjk: The degree of membership for referring
high-level services from the low-level server,
j, to the high-level server, k.

The fuzzy sets that are used in the models are as
follows:

~Ndl
j : This discrete fuzzy set represents the distance of

all demand nodes from low-level server j and is de�ned
as follows:

~Ndl
j =

(
sdl1j

1
;
sdl2j

2
; � � � ; s

dl
ij

i

)
; 8j;

where sdlij stands for the degree of membership for
the distance between demand node i and the low-level
server, j, to be approximately smaller than or equal to
the distance standard and is calculated as follows.

Let dij represent the distance between demand
node i and the low-level server, j. Also, let sdl denote
the distance standard for low-level services. Now, the
statement \the demand node i's distance from the low-
level server, j, is approximately less than, or equal
to the distance standard", can be represented by the
following fuzzy notation:

dij
�� sdl: (7)
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Such a de�nition makes it possible to put any demand
node, i, in the set, ~Ndl

j , for the low-level server, j,
according to its degree of membership. The degree of
membership, sdlij , can be calculated as:

sdlij =

8><>:0; dij > udl
udl�dij
udl�sdl ; sdl � dij < udl
1; dij � sdl;

(8)

where udl stands for the acceptable upper bound for
the distance standard. Relation 8 is obtained based on
Figure 1.

Thus, the set, ~Ndl
j , is de�ned as a fuzzy set as:

~Ndl
j =

(
sdl1j

1
;
sdl2j

2
; � � � ; s

dl
ij

i
; � � �

)
; 8j;

where each demand node belongs to set ~Ndl
j , according

to a degree of membership.

~Ndl
k : This discrete fuzzy set represents the distance of

the low-level servers from the high-level server, k, and
is de�ned as:

~N lh
k =

(
slh1k
1
;
slh2k
2
; � � � ; s

lh
jk

j

)
; 8k:

The technicalities in evaluating slhjk are similar to those
in the evaluation of sdlij .

~Cdlj : This fuzzy set includes the demand nodes, which
are approximately covered by the low-level server, j,
i.e:

~Cdlj =
�
X1j

1
;
X2j

2
; � � � ; Xij

i

�
; 8j:

~Clhk : This fuzzy set includes the low-level servers, which
are approximately covered by the high-level server, k,
for referring the high-level services, i.e:

~Clhk =
�
Y1k

1
;
Y2k

2
; � � � ; Yjk

j

�
; 8k:

Figure 1. The membership function of the distance
standard.

In this work, it is intended to develop models, which
cover the demand nodes that are within the distance
standard. Thus, for the case of low-level servers, one
has to �nd the intersection of the fuzzy sets, ~Cdlj and
~Ndl
j , to determine the issue of coverage for the demand

nodes, with respect to the distance standard. As such,
a new fuzzy set is obtained whose elements consist of
the common elements of the two sets. The degree
of membership for each element in this set is equal
to the minimum of the degree of membership for the
same element across the two fuzzy sets. So, if the
condition that Xij never exceeds sdlij is included, then,
the coverage of low-level services will be within the
distance standard. The same conditions are needed
to ensure that the coverage of high-level services stays
within the distance standard, as well. Therefore, the
following constraints must be added to the model:

Xij � sdlij ; (9)

Yjk � slhjk: (10)

~Dl
j : This is the set of demands that are approximately

covered by the low-level server, j, i.e:,

~Dl
j =

�
X1j

~f1
;
X2j

~f2
; � � � ; Xij

~fi

�
; 8j: (11)

Each element of this set is a triangular fuzzy number.
In the following section, this set is employed to deter-
mine the arrival rates of the service demands for the
low-level servers.

~Dh
k : This is the set of high-level services referred to by

the low-level servers; services which are approximately
covered by the high-level server, k, i.e:

~Dh
k =

(
Y1k

��l1
;
Y2k

��l2
; � � � Yjk

��lj
;

)
; 8k: (12)

Mathematical Model for Referral FHQ-LSCP

The FHQ-LSCP mathematical model for the referral
systems, which is a mixed integer programming model,
is as follows:

minZ =
X
j

CjWj +
X
k

KkZk; (13)

s.t.:
nX
j=1

Xij � m; 8i; (14)

nX
k=1

Yjk � mWj ; 8j; (15)
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Xij �Wj ; 8i; j; (16)

Yjk � Zk; 8j; k; (17)

Yjk �Wj ; 8j; k; (18)

Xij � sdlij ; 8i; j; (19)

Yjk � slhjk; 8j; k; (20)

~NSl
j � ~bl; 8j; (21)

~NSh
k � ~bh; 8k; (22)

0�Xij � 1; 0�Yjk � 1; Wj =0; 1; Zk=0; 1:

The objective Function 13 attempts to minimize the
cost of locating the low- and high-level servers for
approximately covering all the demand nodes. Con-
straint 14 guarantees that all demand nodes must
be covered by the low-level servers having the least
degree of membership, m, while Constraint 15 ensures
that high-level services must be covered by the high-
level servers having the least degree of membership,
m. The purpose of Constraints 16 to 18 is to assure
that, unless a server is located at a node, the other
demand nodes cannot be covered by that node's server.
Constraints 19 and 20 have been explained before.
Finally, Constraints 21 and 22 have to do with the
quality of rendering service by the low- and high-level
servers. They enforce the condition that the average
number of customers for each server stays less than, or
equal to a given value (~bl or ~bh).

The average number of customers for each server
is obtained as a triangular fuzzy number; an issue
which will be elaborated on later. The maximum
permissible number in the system is also a triangular
fuzzy number. Accordingly, in Constraints 21 and 22,
a triangular fuzzy number must be less than or equal
to another triangular fuzzy number. To include such
a constraint, the method proposed by Dubois and
Prade [15] is adopted. According to this method, the
correctness of the intended inequality holding true must
be calculated. In fact, for any two fuzzy numbers, ~I and
~J , the correctness of ~I � ~J holding true is calculated
as:

T (~I � ~J) = supfminf�~I(x); � ~J(y)gg; (23)

where �~I(x) and � ~J(y) represent the membership
functions for x belonging to ~I and y belonging to ~J .
Following this convention, Constraints 21 and 22 are
converted into:

T ( ~NSl
j � ~bl) � 1� �; (24)

and:

T ( ~NSh
k � ~bh) � 1� �: (25)

Now the procedure for calculating ~NSl
j for low-level

servers is presented and, then, using the results, the
average number of customers at high-level servers,
( ~NSh

k ), is obtained. In order to calculate ~NSl
j , one

begins with calculating the arrival rate of service
demand to the low-level servers.

The set of service calls covered by server j was
initially de�ned as:

~Dl
j =

�
X1j

~f1
;
X2j

~f2
; � � � ; Xij

~fi

�
; 8j:

Since ~fi, in this fuzzy set, is covered by the low-
level server, j, with a degree of membership equal
to 1 and the set itself is convex, then, ~Dl

j becomes a
discrete fuzzy number. To evaluate ~�lj , the centroid
method [16,17] is employed, which is intended for
transforming a fuzzy number into a classical (crisp)
number. This method, however, will transform ~Dl

j to
a triangular fuzzy number, because the elements of ~Dl

j
are all triangular fuzzy numbers.

To employ the centroid method, let ~Z stand for a
discrete fuzzy number, such as:

~Z =
�
�~c(z1)
z1

;
�~c(z2)
z2

; � � � ; �~c(zi)
zi

�
;

where crisp numbers, zi, are elements of ~Z and �~c(zi)
represents zi's degree of membership in ~Z. Using the
centroid method, the fuzzy number, ~Z, is transformed
to the crisp number, Z�, as:

Z� =

P
i
�~c(zi)ziP
i
�~c(zi)

: (26)

Now, using Equation 26, the fuzzy number, ~Dl
j , is

transformed to a triangular fuzzy number, (~�lj), as:

~�lj =

P
i

~fiXijP
i
Xij

; 8j: (27)

Since ~fi's are triangular fuzzy numbers, the fuzzy
number obtained from Equation 27 is also a triangular
fuzzy number in the form of:

~�lj = (�lpj ; �
lm
j ; �loj ); 8j; (28)

where:
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�lpj =

P
i
fpi XijP
i
Xij

; �lmj =

P
i
fmi XijP
i
Xij

; �loj =

P
i
foi XijP
i
Xij

:

In a similar manner, using Equation 26, the fuzzy
number, ~Dh

k , is transformed into a triangular fuzzy
number, (~�hk), as:

~�hk =

P
j
�~�ljYjkP
j
Yjk

; 8k;

that is the arrival service rate to high-level server k.
There is also:

~�hk = (�hpk ; �
hm
k ; �hok ); 8k; (29)

where:

�hpk =

P
j
��lpj YjkP
j
Yjk

; �hmk =

P
j
��lmj YjkP
j
Yjk

;

�hok =

P
j
��loj YjkP
j
Yjk

:

Due to the fact that the demand for service at each
demand node follows a Poisson process, the service
calls' arrival rate to server j also obeys a Poisson
process. It is assumed that server j's service time
follows an exponential distribution with parameter ~�lj .
Since the parameters of such distributions are fuzzy in
nature, the queueing model at each server will be an
FM/FM/1 model (FM � Fuzzy Markovian). Now, to
evaluate ~NSl

j , the fuzzy Little relations are used, which
are proposed by Jo et al. [18], i.e:

~NSl
j =

~�lj
~�lj � ~�lj

: (30)

Since ~�lj and ~�lj are triangular fuzzy numbers, ~NSl
j ,

obtained from Equation 30 also be a triangular fuzzy
number, i.e:

~NSl
j = (NSlp

j ; NSlm
j ; NSlo

j ); (31)

where:

NSlp
j =

P
i
fpi Xij

�loj
P
i
Xij �P

i
foi Xij

;

NSlm
j =

P
i
fmi Xij

�lmj
P
i
Xij �P

i
fmi Xij

;

NSlo
j =

P
i
foi Xij

�lpj
P
i
Xij �P

i
fpi Xij

:

Reasoning in a similar manner, the average number in
the system for high-level servers, ~NSh

k , is obtained as:

~NSh
k = (NShp

k ; NShm
k ; NSho

k ); (32)

where:

NShp
k =

P
j
��lpj Yjk

�hok
P
j
Yjk �P

j
��loj Yjk

;

NShm
k =

P
j
��lmj Yjk

�hmk
P
j
Yjk �P

j
��lmj Yjk

;

NSho
k =

P
j
��loj Yjk

�hpk
P
j
Yjk �P

j
��lpj Yjk

:

By writing Constraints 21 and 22 in deterministic form,
the model is converted to a mixed integer programming
model. To make this possible, the following lemma is
used that is proven in [12].

Lemma
Given two triangular fuzzy numbers, ~I = (Ip; Im; Io)
and ~J = (Jp; Jm; Jo), one has:

a) T (~I � ~J) = 1, Im � Jm; (33)

b) T (~I � ~J)�1��,Im�Jo�(1��)(Jo�Jm): (34)

On the basis of Relation 34, one can transform Con-
straint 21 to a linear form as:

T ( ~NSl
j �~bl)�1���NSlm

j �bol �(1��)(bol �bml ):
(35)

By substituting the equivalent of NSlm
j from Equation

31 and doing appropriate mathematical manipulations,
one will arrive at the following linear form:

nX
i=1

('li � 
lj)Xij � 0; 8j; (36)

where:

'li = fmi + bol f
m
i � (1� �)(bol � bml )fmi ; 8i; (37)


lj = bol �
lm
j � (1� �)(bol � bml )�lmj ; 8j: (38)
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Constraint 22, in turn, will be transformed into the
following form:

nX
j=1

('hj � 
hk )Yjk � 0; 8k; (39)

where:

'hj = ��lmj + boh��
lm
j � (1� �)(boh � bmh )��lmj ; 8j;

(40)


hk = boh�
hm
k � (1� �)(boh � bmh )�hmk ; 8k: (41)

Therefore, the �nal referral FHQ-LSCP model can be
written as:

minZ =
X
j

CjWj +
X
k

KkZk;

s.t.:

nX
j=1

Xij � m; 8i;

nX
k=1

Yjk � mWj ; 8j;

Xij �Wj ; 8i; j;
Yjk � Zk; 8j; k;
Yjk �Wj ; 8j; k;
Xij � sdlij ; 8i; j;
Yjk � slhjk; 8j; k;
nX
i=1

('li � 
lj)Xij � 0; 8j;

nX
i=1

('hi � 
hk )Yik � 0; 8k;

0 � Xij � 1; 0 � Yjk � 1; Wj =0; 1; Zk=0; 1:

FHQ-LSCP for the Nested Systems

In the nested hierarchical systems, the high-level
servers are capable of rendering service at lower levels
as well, while the low-level servers o�er low-level
services only. Since, for the purpose of developing the
model, all the parameters de�ned, previously, are still
valid, just the variables and the fuzzy sets are de�ned.

The decision variables for the nested FHQ-LSCP are
as follows:

Xij : The degree of membership for the demand
node, i, to be covered by the low-level
server, j.

Vik: The degree of membership for the demand
node, i , to be covered by the high-level
server, k.

The variables Wj and Zk have the same interpretations
as before. Likewise, except for the fuzzy sets of
demands covered by the high-level servers, the other
sets are de�ned as before. To de�ne the fuzzy set of
demands covered by the high-level servers in the nested
system, the reasoning is as follows.

From each demand node i, two calls for service
with di�erent degrees of membership arrive at the high-
level server, k. The low-level service, with rate ~fi, is
covered by the high-level server, k, with the degree of
membership, Xik. The high-level service, with rate
�i ~fi, is covered by the high-level server, k, with the
degree of membership, Vik. On the basis of the fuzzy
algebraic relations, these rates can be added together
with the sum having a degree of membership equal to
the minimum of (Xik, Vik). Thus, one needs to de�ne
the variable, Zik, as follows:

Zik: The degree of membership for demand node i to be
covered by the high-level server, k, which covers both
low-level and high-level services, i.e:

Zik = min(Xik; Vik): (42)

The fuzzy set of demands, which are approximately
covered by the high-level server, k, is de�ned as follows:

~Dh
k =

�
z1k

~f1 + �1 ~f1
;

z2k
~f2 + �2 ~f2

; � � � ; zik
~fi + �i ~fi

�
:

One can, equivalently, write Equation 42 in the form of
the following two constraints, which will be added to
the model:

Zik � Xik; (43)

Zik � Vik: (44)

The fuzzy queueing constraint on the high-level servers
will change to:

nX
i=1

(�hi � 
hk )Zik � 0; (45)

where:

�hi =b1+boh�(1��)(boh�bmh )c(1+�i)fmi ; 8i; (46)


hk = bboh � (1� �)(boh � bmh )c�hmk ; 8k: (47)
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Therefore, the ultimate FHQ-LSCP model for the
nested systems can be presented as follows:

minZ =
X
j

CjWj +
X
k

KkZk;

s.t.:
nX
j=1

Xij � m; 8i;

nX
k=1

Vik � m; 8i;

Xij �Wj + Zj ; 8i; j;
Vik � Zk; 8i; k;
Wj + Zj � 1; 8j;
Xij � sdlij ; 8i; j;
Vik � sdhik ; 8i; k;
Zik � Xik;

Zik � Vik;
nX
i=1

(�li � 
lj)Xij � 0; 8j;

nX
i=1

(�hi � 
hk )Zik � 0; 8k;

0 � Xij � 1; 0 � Vik � 1; 0 � Zik � 1;

Wj = 0; 1; Zk = 0; 1:

A COMPUTATIONAL EXPERIMENT

In this section, the results obtained from solving a
typical problem for the probabilistic HIQ-LSCP, as well
as the FHQ-LSCP in referral systems, is presented.
To solve the problem, the branch and bound method
and IBM OSL v3, on a Pentium 2, 333 MHZ are
used. The IBM OSL package is very strong software,
which can solve large size problems. Since this software
requires the problems to be in MPS format, one
needs supplementary software for this purpose. Lingo
software was used for generating problems in MPS
format and, then, the IBM OSL software was used
to solve the problems. Due to Lingo's restriction on
the number of constraints, sample problems up to
16 nodes were solved. In this section, the results
obtained in solving a sample problem with 15 nodes

are presented. The runtime for solving this problem
by IBM OSL was 3 seconds (versus 66 seconds using
Lingo). Table 1 illustrates the parameter values for
the problem and Tables 2 and 3 display the results of
solving the probabilistic HIQ-LSCP and FHQ-LSCP,
respectively.

Let it be supposed that this example relates to
health care services where the low-level servers provide
primary services and the high-level servers provide
high-level health care services. In this problem, there
is a network with 15 nodes that represent di�erent
regions; estimation of the approximate demand rate
for low-level services is given by ~fi = (fpi ; fmi ; foi ). The
distance between two nodes is measured and treated
in terms of the distance standard for low-level and
high-level services and on the basis of such treatment,
the degrees of membership are determined. In this
problem, it is assumed that the distance standards
are the same for low-level and high-level services, so
that the membership degrees for the distance between
nodes are identical for both low-level and high-level
services, i.e., sdlij = slhjk = sdhik . The maximum allowable
number of customers is determined, approximately, for
both levels and are assumed to be ~bl = (2; 3; 4) and
~bh = (1; 2; 3). The service rate at each level of servers
is determined by ~�l = (30; 40; 50) and ~�h = (10; 20; 30).
The percentage of low-level service demands, which are
referred to the high-level centers, is � = 0:2 for all
demand nodes.

So, under these circumstances, one seeks to locate
the servers and allocate the demand nodes to the
servers in such a way that all demand nodes be covered
by a predetermined minimum degree of membership
with the minimum cost of locating the servers. To
achieve this purpose, the branch and bound method
is used to solve a small-scaled typical problem. The
optimal solutions, obtained for the probabilistic model
proposed by Marianov and Serra [1], as well as the fuzzy
model are compared.

On the basis of the results obtained, a comparison
of the probabilistic and fuzzi�ed models is appropriate.
Table 2 shows the optimal solution for the probabilistic
HIQ-LSCP. In this problem, the low-level servers are
located at nodes 1, 2 and 8 and the high-level servers
are located at nodes 5 and 10. In the probabilistic
version, demand node i, can be covered by the low-
level server, j , and the high-level server, k, only when
its distance from the servers is less than, or equal to,
the distance standard. For example, demand node 6
is covered by low-level server 8. Therefore, in the
probabilistic HIQ-LSCP, each demand node can be
covered by just one server. So, one demand node
cannot select a server from the available list of servers
and must ask for service from the speci�ed server
designated for this purpose.

In reality, it does not sound that acceptable to
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Table 1. Parameter values for the example.

Number of Nodes (n) = 15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fp 2 3 7 6 5 2 4 1 1 7 9 8 4 3 5

fm 4 5 9 8 7 4 6 3 3 9 11 10 6 5 7

fo 5 8 11 12 9 6 8 5 5 13 13 12 9 8 10

Cj 100 120 110 980 850 760 950 115 125 102 130 90 80 92 105

Kk 250 220 185 159 145 220 200 215 198 212 211 196 168 175 185

sdlij = slhjk = sdhik
1 1 1 .2 .5 1 0 .6 1 0 .9 .7 .14 .51 .3 0

2 1 .2 0 .5 .14 .32 1 .25 .64 .9 .15 .62 0 .7

3 1 0 .3 .5 .18 .51 .61 .71 .2 .02 0 1 .9

4 1 .21 .51 .54 .61 .12 .15 0 1 .29 .84 .17

5 1 1 .9 .8 .14 .21 .51 .3 0 1 .24

6 1 .2 1 0 .3 .6 .9 .4 .7 .6

7 1 .2 0 .9 .4 .61 .72 .1 .2

8 1 .6 0 .9 .8 .4 .7 .61

9 1 1 .3 .8 .47 .16 .92

10 1 .2 .7 .8 .14 .61

11 1 .9 .2 .4 .31

12 1 .2 .1 .09

13 1 .8 .12

14 1 0

15 1
~bl = (2; 3; 4) ~bh = (1; 2; 3) ~�l = (30; 40; 50) ~�h = (10; 20; 30)

� = 0:05 � = 0:2 m = 1

Table 2. The optimum solution for the referral HIQ-LSCP.

Low-Level Servers Location: 1, 2, 8

High-Level Servers Location: 5, 10

Demand Nodes Covered by the Low- and High-Level Servers (Xijk)

Low-Level Nodes

Servers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0

High-Level

Servers

5 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

10 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0

Optimal objective function value : 692
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Table 3. The optimum solution for referral FHQ-LSCP.

Low-Level Servers Location: 8, 10, 13
High-Level Servers Location: 5, 13

Demand Nodes Covered by the Low-Level Servers (Xij)

Low-Level Nodes
Server 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 0 1 .3 .56 .8 1 0 1 0 0 .8 .3 0 0 .4

10 .5 0 .7 .15 .2 0 .3 0 1 1 .2 .7 .8 .2 .6

13 .5 0 0 .3 0 .4 .7 0 0 0 0 0 1 .8 0

The Degree of Membership for Referring the High-Level Services from Low-Level Servers to
High-Level Servers (Vjk)

Low-Level High-Level Servers
Servers 5 13

8 .6 .4

10 .2 .8

13 0 1

Optimal objective function value : 610

restrict each demand node to receive service from just
one server. Besides, it does not seem real to deprive a
demand node from receiving service, on the basis that
its distance from a server is somewhat larger than the
distance standard.

In the fuzzi�ed hierarchical models that are de-
veloped in this paper, each demand node can be
covered by any low- or high-level server with a degree
of membership. On the other hand, the models are
equipped to consider priorities, in order to ask for
and render services. In fact, in these models, each
server provides service on the basis of its own priorities
(degree of membership), in the same way that each
demand node chooses to receive service from servers
according to its own priorities. When the conditions of
rendering service are identical for all servers, distance
becomes the measure, on the basis of which a demand
node assigns priorities to servers. In this way, each
demand node prefers to go to its nearest server and if
this server is occupied, to the next nearest server and
so on.

In the FHQ-LSCP model, each demand node
assigns a priority to each low- and high-level server
on the basis of the degree of membership for its own
distance from each server (sdlij , slhjk, sdhik ). As Table 3
indicates, low-level servers for FHQ-LSCP are located
at nodes 8, 10 and 13 and high-level servers are located
at nodes 5 and 13. All of the demand nodes are covered
by servers according to the degrees of membership. For
example, the demand node 6 is covered by the low-level
servers 8 and 13, with degrees of membership 1 and
0.8 and, for high-level services, is covered by the high-
level servers 5 and 13, with the degrees of membership

0.6 and 1. This means that node 6 gives the highest
priority to the low-level server 8 and less priority to the
low-level server 13. The FHQ-LSCP model makes it
possible for servers to assign their own priorities as well.
This is accomplished by X l

ij , and Xh
ik, which stand for

the degrees of membership for covering demand nodes.
For instance, for the low-level server 8, demand nodes
1, 6 and 8 have the highest priority for receiving service,
demand nodes 5 and 11 have the second highest priority
and so on. As can be seen in Table 3, each demand
node may be covered by various servers and there is a
possibility that none of the demand nodes is deprived
of receiving service. This obviously is the advantage of
a fuzzy treatment of the problem.

CONCLUSIONS AND FUTURE
EXTENSIONS

This work presents two new fuzzi�ed queueing location
set covering models for referral and nested hierarchical
systems, which are code named referral FHQ-LSCP
and nested FHQ-LSCP. The parameters of these mod-
els are estimated approximately and are de�ned as
fuzzy numbers. The constraints of service quality are
also assumed to be fuzzy numbers. The allocation
variables are assumed as the degrees of membership
and the demand nodes can set their own priorities
to select the appropriate server from a list, according
to the degrees of membership. So, it seems that the
models developed in this paper are closer to the real
situation.

The �nal models are transformed into mixed
integer programming models. Since the LSCP model is
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NP-Hard [19] and the derived 0-1 integer programming
model in this paper can be reduced to the LSCP model
in polynomial time, it is also NP-Hard. Heuristic
methods can be developed for the solution of these
problems as an extension. Other extensions include
the developing of models for coherent LSCP fuzzy
hierarchical queueing systems. It is also possible to
develop similar models for the Maximal Covering Loca-
tion Problem (MCLP), Maximal Availability Location
Problem (MALP) and other location models. Finally,
the development of hierarchical models with more than
two service levels can be investigated.
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