
Scientia Iranica, Vol. 15, No. 3, pp 308{314
c Sharif University of Technology, June 2008

Use of Arti�cial Neural Networks
in Predicting Highway Runo�

Constituent Event Mean Concentration

A. Massoudieh1 and M. Kayhanian�

In this paper, the large amount of highway runo� characterization data that were collected in
California, during a 3-year monitoring season (2000-2003), were assessed in order to develop an
Arti�cial Neural Network (ANN) model for predicting the Event Mean Concentration (EMC)
of the constituent. The initial data analysis performed by a Multiple Linear Regression (MLR)
model revealed that the Total Event Rainfall (TER), the Cumulative Seasonal Rainfall (CSR), the
Antecedent Dry Period (ADP), the contributing Drainage Area (DA) and the Annual Average
Daily Tra�c (AADT) were among the variables having a signi�cant impact on the highway
runo� constituent EMC. These parameters were used as the basis for developing an Arti�cial
Neural Network (ANN) model. The ANN model was also used to evaluate the impact of various
site and storm event variables on highway runo� constituents' EMCs. The ANN model has
proven to be superior to the previously developed MLR model, with an improved R2 for most
constituents. Through the ANN model, one was able to see some non-linear e�ects of multi
variables on pollutant concentration that, otherwise, would not have been possible with a typical
MLR model. For example, the results showed that copper EMC is more sensitive at higher
Annual Average Daily Tra�c (AADT), with respect to ADP, compared with lower range AADT.

INTRODUCTION

Storm water has recently been considered a major
pollution source of many urban waters [1-5] and high-
way runo� has received much attention due to the
appearance of heavy metals, hydrocarbons and fuel
additives [6-8]. Some researchers have speci�cally
concentrated on evaluating the characteristics of runo�,
based on particle size distribution and pollutant ad-
sorption [9-12]. Most of these studies were, however,
performed locally and there is a lack of information
on larger watersheds or on a statewide basis, with
an emphasis on parameters that inuence the runo�
quality. Only few studies have attempted to develop
a relationship between pollutants and some observed
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variables using Multiple Linear Regressions (MLR).
For example, Irish et al. [13] and Wu et al. [14] used
regression modeling to analyze highway storm water
loads. A few studies tried to investigate the possible
relationship between pollutant load and variables (e.g.,
annual average daily tra�c), measured during the
storm events [15-16]. Literature reviewed by Wistrom
and Matsomoto [17], however, concluded that AADT
is not generally expected to be useful as a control
variable for the design, operation and maintenance of
speci�c runo� control structures, as tra�c intensity on
a particular stretch of highway is expected to be fairly
constant from day to day. While, in some cases, a good
correlation coe�cient was obtained, these researchers
caution that predictive equations may not be useful
outside the study regions.

In recent years, an Arti�cial Neural Network
(ANN) has also been used for exploring the relation-
ships between the input and output of environmental
conditions, including water resources and environmen-
tal engineering. ANN is a computational approach
using the theories of massive interconnected and par-
allel processing of biological systems. The massively
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parallel distributed structure of ANN and its ability
to explore non-linear relationships between inputs and
outputs make it a suitable method for complicated
non-linear modeling problems [18]. Some examples of
recent ANN applications include rainfall runo� model-
ing [19], wastewater treatment [20], ecological modeling
in aquatic environments [21], dispersion of atmospheric
pollutants [22], land use and water quality [23], aquifer
parameter estimation [24] and stormwater utility [25].
In this study, a large highway runo� quality data set
has been used that was collected throughout the state
of California in order to (1) use ANN to evaluate the
interdependent relationship between the environmental
variables and constituent EMCs and (2) explore the
capability of ANN in estimating the constituents'
EMC.

METHODS

Data Collection

Storm water runo� characterization data used in this
study were obtained from over �fty highway sites in
California covering a wide range of annual average
daily tra�c levels and environmental conditions [8,26].
As part of this comprehensive monitoring program,
automatic equipment was used to collect ow-weighted
composite samples, measure runo� ow rate and rain-
fall amounts. On average, up to eight storm events
were monitored annually at each highway site during
the wet seasons (October through April) for a 3-year
(2000-2003) period. Depending on the storm intensity
and duration, up to 50 aliquot samples were obtained
to capture a representative composite sample during
each event.

The ow-weighted composite samples obtained
from the entire storm event were sent to a laboratory
for analysis. The results of these analytical tests
are assumed to represent Event Mean Concentrations
(EMC) for runo� from a given rainfall event. Con-
stituents and parameters routinely analyzed under
this program include conventionals (pH, temperature,
hardness, conductivity), aggregate (O&G, TSS, TDS,
TOC and DOC), metals (total and dissolved As, Cd,
Cr, Cu, Pb, Ni and Zn) and nutrients (nitrate, TKN,
total and dissolved P).

Extensive �eld and laboratory Quality Assur-
ance/Quality Control (QA/QC) procedures were fol-
lowed. Analytical results were quali�ed as necessary,
based on the results of the QA/QC evaluations using
newly developed data validation software as described
in Kayhanian [27]. Chemical constituents containing
data below a detection limit were analyzed using
regression-on-order statistics described in Shumway et
al. [28]. A routinely analyzed water quality data
and statistical summary report is presented in Ta-

ble 1. Additional detailed information on Caltrans
storm water runo� characterization studies, including
the monitoring site locations and automatic sampling
equipment, can be obtained from Kayhanian et al. [8].

The validated data were then imported into an
access database containing three main tables: Sample
description, event description and site description.
The database was used to extract all analytical data,
precipitation information and site characteristics data
for statistical analysis and ANN model development.

ARTIFICIAL NEURAL NETWORK (ANN)
MODEL

ANN analysis was performed (1) To evaluate the
interdependent characteristics of site and rainfall on
constituents' EMC and (2) To explore its application
as a predictive tool to estimate the highway runo�
constituents' EMC. Wide forms of ANN have been
applied in the �eld of science and engineering. The
most common form of ANN is the feed forward ANN.
A typical feed forward ANN includes an input layer, an
output layer and one or more hidden layers. Each of
these layers contains several nodes or neurons, which
are connected to each other by some multiplication
factors called synaptic weights. Each neuron contains
a function called an \activation function" that can be a
step, linear or non-linear function. The outputs of each
layer are used as the input for the consequent layer.
For each constituent, various con�gurations of ANN
(e.g., di�erent numbers of hidden layers and neurons in
each layer) were evaluated (i.e., R2 and Standard Error
(SE) for estimation and validation subsets) in order
to �nd the most e�cient con�guration of the network
with the most acceptable generalization capability.
Several degrees of complexity for selecting the number
of nodes and layers were tested to determine the most
appropriate network con�guration for each constituent
that could provide the best prediction, as well as
generalized capability. The result of this analysis for
total copper is shown in Figure 1. As can be noted,
the R2 for estimated values greatly improved, as the
number of nodes increased. However, the model loses
its generalization capability by choosing a high level
of complexity (i.e., R2 for validation data decreased).
To achieve a reliable level of generalized R2 , the
values obtained for the estimation data should not be
signi�cantly larger than for the validation data. In case
of total copper, a network with 3 nodes in one hidden
layer was found to provide the best prediction e�ciency
as well as generalization capability. The optimum
node for most other constituents was found to be the
same.

After �nding the optimum node in the hidden
layer, the most useful and e�ective (optimum) input
variables were determined. Optimum input variables
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Table 1. Statistical summary of highway runo� quality in California during 2000-2003.

Constituent Unit Summary Statistics
N % Detecta Range Mean Median SD

Conventional

EC �s/cm 634 100 5-743 96.1 72.7 73.4

Hardness mg/L as CaCO3 635 99 2-400 36.5 26.9 34.2

pH pH unit 633 100 4.5-10.1 7.1 7 0.7

Temp. �C 183 100 4.7-25.4 12.5 12 3.4

Aggregate

DOC mg/L 635 100 1.2-483 18.7 13.1 26.2

O&G mg/L 39 70 1-20 6.6 6 4.2

TDS mg/L 635 97 3.7-1800 87.3 60.3 103.7

TOC mg/L 635 100 1.6-530 21.8 15.3 29.2

TSS mg/L 634 100 1-2988 112.7 59.1 188.8

Metals (Dissolved)

As �g/L 635 40 0.5-20 1.0 0.7 1.4

Cd �g/L 635 42 0.2-8.4 0.24 0.13 0.5

Cr �g/L 635 80 1-23 3.3 2.2 3.3

Cu �g/L 635 100 1.1-130 14.9 10.2 14.4

Ni �g/L 635 79 1.1-40 4.9 3.4 5.0

Pb �g/L 635 60 1-480 7.6 1.2 34.3

Zn �g/L 635 99 3-1017 68.8 40.4 96.6

Metals (Total)

As �g/L 635 62 0.5-70 2.7 1.1 7.9

Cd �g/L 635 76 0.2-30 0.7 0.44 1.6

Cr �g/L 635 97 1-94 8.6 5.8 9.0

Cu �g/L 635 100 1.2-270 33.5 21.1 31.6

Ni �g/L 635 95 1.1-130 11.2 7.7 13.2

Pb �g/L 635 94 1-2600 47.8 12.7 151.3

Zn �g/L 635 100 5.5-1680 187.1 111.2 199.8

Nutrients

NO3-N mg/L 634 90 0.01-48 1.07 0.6 2.4

Ortho-P mg/L 630 64 0.01-2.4 0.11 0.06 0.2

Total P mg/L 631 89 0.03-4.69 0.29 0.18 0.4

TKN mg/L 626 94 0.1-17.7 2.06 1.4 1.9
N = Sample size, SD = Standard deviation,
a = Values below detection limit is denoted as \non-detect". For constituents containing non-detects, the statistical method
outlined by Shumway et al. [28] was used to determine summary statistics.

were determined by including all measured site and
rainfall characteristics, which included Drainage Area
(DA), impervious fraction, landuse, Annual Average
Daily Tra�c (AADT), Total Event Rainfall (TER),
Seasonal Cumulative Rainfall (SER), rain intensity
and Antecedent Dry Period (ADP). After reviewing
the results of this analysis, it was concluded that
�ve variables, including TER, SER, ADP, DA and

AADT, are predominant parameters inuencing most
constituents' EMC. For this reason, the mentioned �ve
parameters were used as input variables for the ANN
model. A schematic of the ANN with two hidden
layers and �ve input variables used in this study is
shown in Figure 2. For the ANN shown in Figure 2,
the expression describing the relationship between the
input and output for ANN with 2 hidden layers can be
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Figure 1. Optimum ANN model for total Cu based on
R2 and number of nodes in the hidden layer.

written, using the following matrix notation:

Output = W3: [W2: (W1:Input +B1) +B2] +B3;
(1)

where:
Wk=[wi;j;k]nk�nk�1 = matrix of synaptic weight

connecting layer k � 1 to
layer k,

Bk = [bik]nk = bias vector for layer k,
 = the activation function.

To use ANN as a predictive tool, it was �rst
trained. The goal in training an ANN is to �nd

the synoptic weights (W ) and bias vectors (B) that
can best represent or predict the relationship between
the inputs and outputs by minimizing the di�erence
between the predicted values by the network and the
observed values. The normalized natural logarithms of
the input variables and the target value were used for
training. As an example, the representative value for
AADT was computed using the following expressions:

AADT =
ln(AADT)�mean[ln(AADT)]p

Var[ln(AADT)]
: (2)

An arti�cial neural network is said to generalize well
when the input-output mapping computed by the
network is correct (or nearly so) for test data that was
never used in creating or training the network [18].
One way to predict the outputs more precisely is by
increasing the number of nodes and hidden layers.
However, the prediction e�ciency for the data that has
not been introduced to the model may become poor.
In this study, the optimum number of nodes and layers
that could provide the most e�cient prediction, while
maintaining the generalization capability of the model,
was determined.

The ANN toolbox of Matlab 6.0 software package
(Wolfram research) was used for the training and
validation of the network. In order to test the gener-
alization capability of the model, the monitoring data
was divided into two subsets: (i) An estimation subset,
which was randomly selected and accounts for two-
thirds of the whole data set and which was used for

Figure 2. Schematic for an ANN with two hidden layers.
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training the model and, (ii) A validation subset, which
was the remaining data and which was used for testing
the generalization capacity of the model.

RESULTS AND DISCUSSION

The inuences of the predictor parameter on the pol-
lutant event mean concentration and their interdepen-
dent variability were �rst examined by ANN analysis.
The interdependent variability is an added advantage
of using the ANN model, which, otherwise, would be
more di�cult or impossible to evaluate with an MLR
analysis. Figure 3 present the relationship between
di�erent predictor variables and their interactions on
EMC values for copper. For producing this �gure, two
of the predictor variables are chosen to vary within
their ranges and the rest of the variables are kept
constant and equal to their geometrical mean. The
choice of the geometric mean as a representative for
the mean of the values is assumed to be reasonable,
since most of the predictor variables follow log-normal
distribution. As can be seen from Figure 3, ANN is
capable of showing the non-linear behavior that exists
between the predictor values and EMCs. For example,
it can be noticed that, for lower ranges of AADT (e.g.
1000-10,000), copper EMC does not vary signi�cantly
with an increase in ADP, while for higher ranges of
AADT (60,000-200,000), EMC increases signi�cantly
with an increase of ADP. Similar behavior can be
observed for TER with a strong negative relationship
between EMC and TER at larger AADT values and a
weaker correlation at smaller AADP values.

The agreement between the predicted ANN
model, the observed concentrations of DOC and the
total Cu for both estimation and validation subsets
are shown in Figure 4. Due to the complexity of the
relationships generated by the ANN method, it is not
possible to present them in an explicit form (e.g. in
form of an equation). However, a user friendly tool can
be developed for an estimation of EMC values by the
ANN method using Microsoft Visual Basic.

Constituent EMC predicted by the ANN model
was compared with the prediction values, using the
previous MLR model developed by Kayhanian et
al. [29]. Comparison of MLR with the ANN model was
mostly evaluated through R2 values. For consistency
in this comparative analysis, the same �ve variables,
including AADT, TER, ADP, SCR and DA, were
considered as the input variables for both ANN and
MLR models. The R2 values for both models, for
selective constituents, are shown in Table 2. As can
be noted, for most constituents, the R2 values obtained
from the ANN model have been shown to be superior to
the R2 obtained from the MLR model. For instance,
the improvement made in ANN model R2 for DOC
and total Cu, relative to the R2 found in the MLR

Figure 3. Variation of total Cu event mean concentration
versus predictive variables.

model, is about 28 and 34 percent, respectively. For
some constituents (e.g., dissolved Pb and Ortho-P), the
improvement in R2 was over 100%.

The ANN analysis has been able to successfully
identify the environmental and site-speci�c factors that
signi�cantly a�ect the runo� quality. Knowledge of
these factors and their e�ects on the runo� quality is
useful in evaluating storm water management issues,
such as in planning future monitoring e�orts and in
designing studies of pollutant removal e�ectiveness.
The ANN model developed herein has been shown to
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Figure 4. ANN model performance based on measured
and predicted values.

predict the EMCs of certain constituents better than
others for speci�c sites and storm events. The ANN
model can also be used to provide improved estimates
of long-term average concentrations or loads from
highway facilities as a whole. Developing ANN models
for runo� quality has a number of other practical
applications. For instance, the modeling of runo�
quality within a watershed allows better comparisons
with relevant water quality discharge limits rather than
the simple statistical estimates of percent exceedance.
Additionally, neural networks can be used to determine
the weighted averaged EMC from a sub-watershed to a
better estimate of the constituent's load on a watershed
basis. Based on the �ndings of this study, the ANN
model may be used as a predictive tool for computing
the constituent EMC, as well as being used as a \big
picture" management decisions tool.

CONCLUSIONS

Major conclusions drawn from this study include:

Table 2. Comparison of R2 values for MLR and ANN
models.

Constituent MLR R2 ANN R2 Percent
Improvement

DOC 0.41 0.52 27%

TSS 0.25 0.44 76%

Cu-d 0.51 0.60 18%

Cu-t 0.52 0.70 35%

Pb-d 0.08 0.39 388%

Pb-t 0.36 0.69 92%

Zn-d 0.32 0.41 28%

Zn-t 0.51 0.63 24%

NO3-N 0.37 0.47 27%

Ortho-P 0.15 0.38 153%

P-t 0.10 0.20 100%

TKN 0.39 0.41 5%

t = total and d = dissolved; example: Cu-d = dissolved Cu

1. Through the ANN analysis, the sensitivity of con-
stituent's EMC, with respect to a predictor vari-
able, has been examined. For example, for copper,
the sensitivity with respect to ADP is high for
AADT = 60,000 to 200,000, whereas, it may not
be as sensitive or less sensitive in other ranges of
AADT = 1,000-10,000;

2. The performance of ANN model prediction against
measured values was evaluated with R2. The ANN
analysis performed in this study resulted in superior
R2 values compared to the previously developed
MLR model. In general, R2 improvements in the
range of 7 to over 100 percent were observed;

3. A relatively good agreement between the ANN
model prediction and the measured concentration
of most constituents was observed. This good cor-
relation could not be presented through an explicit
equation form. However, a user friendly tool can
be developed for estimation of EMC values by the
ANN method using Microsoft Visual Basic;

4. Aside from constituent EMC estimation, AADT
and other variables evaluated as part of the ANN
analysis can also be used as follows: As a predictive
planning tool for decision-making and load mod-
eling and for prioritizing e�orts for managing the
runo� quality in highly urbanized area.
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