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Research Note

Free Water Surface Oscillations in a Closed
Rectangular Basin with Internal Barriers

A.R. Kabiri-Samani� and B. Ataie-Ashtiani1

Thee enclosed basin has certain natural frequencies of seiche, depending on the geometry of
the water boundaries and the bathymetry of water depths. Therefore, the variation in the water
surface at a point becomes irregular, as caused by the combination of several natural frequencies,
which may be considered as the superposition of sinusoidal frequency components of di�erent
amplitude. This paper is mainly concerned with the motion of an incompressible irrotational uid
in a closed rectangular basin with internal impervious barriers. An analytical solution is presented
for predicting the characteristic of generated waves in these types of basin. The equations of free
water surface oscillations and its boundary conditions are reduced to a system of linear equations,
which is solved by applying the small amplitude water wave theory. The ow potential, wave
amplitude, ow patterns and the natural period of waves generated in the basin with impervious
internal barriers are found, based on the basin geometry. It is shown that the natural period of
the basin is strongly dependent on the location of the barriers and the size of the barrier opening.

INTRODUCTION

Standing waves are progressive waves reected back on
themselves and appear as alternating between troughs
and crests at a �xed position. They occur in ocean
basins, partly enclosed bays and seas and in estuaries.
When a standing wave occurs, the surface alternately
rises at one end and falls at the other end of the
container (Figure 1). If di�erent-sized containers are
treated the same way, the period of oscillation increases
as the length or depth of the container increase.
Standing waves in natural basins are called seiches.
Seiches can be generated by tectonic movements or
winds.

The free oscillations are characteristic of the
system and are independent of the exciting force,
except for the initial magnitude. The restoring force is
provided by gravity, which returns the uid surface to
its horizontal equilibrium position after it is displaced
by wind or pressure variations. In lakes and harbours
of small to medium size, the characteristic frequencies
of free oscillations of the water surface (seiches) (Fig-
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ure 1), depend only on the basin geometry. Like water
sloshing in a bathtub, seiches are tide-like rises and
drops in the coastal water levels of great lakes caused
by prolonged strong winds that push the water toward
one side of the lake, causing the water level to rise
on the downwind side of the lake and to drop on the
upwind side. When the wind stops, the water sloshes
back and forth, with the near-shore water level rising
and falling in decreasingly small amounts on both sides
of the lake until it reaches equilibrium. They occur
commonly in enclosed or partially enclosed basins and
are usually the result of a sudden change, or a series of
intermittent-periodic changes, in atmospheric pressure
or wind velocity. The period of oscillation of a seiche
depends on the causative force that sets the water basin
in motion and the natural or free oscillating period of
the basin.

Seiches can inict damage. If the natural period

Figure 1. Formation of seiche.
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of a moored ship matches that of a seiche, then,
considerable motion will result in the moored ship.
Seiches could damage structures along the coastline
and create large vertical accelerations for o�shore
structures, such as boats, barges and oating piers.
Shoreline ooding may be caused by storm surges
or seiches, often occurring simultaneously with high
waves.

A seiche is the free oscillation of the water in
a closed or semi-enclosed basin at its natural period.
Seiches are frequently observed in harbours, lakes, bays
and in almost any distinct basin of moderate size. They
may be caused by the passage of a pressure system over
the basin or by the build-up and subsequent relaxation
of a wind set-up in the basin. Following initiation of
the seiche, the water sloshes back and forth until the
oscillation is damped out by friction.

Seiches are not apparent in the main ocean basins,
probably because there is no force su�ciently coordi-
nated over the ocean to set a seiche in motion. If the
natural period, or seiche period, is close to the period of
one of the tidal species, the constituents of that species
(diurnal or semidiurnal) will be ampli�ed by resonance
more than those of other species. The constituent
closest to the seiche period will be ampli�ed most of all,
but the response is still a forced oscillation, whereas a
seiche is a free oscillation. A variety of seiche periods
may appear in the same water level record, because
the main body of water may oscillate longitudinally
or laterally at di�erent periods. It may also oscillate,
both in the open and closed mode, if the open end
is somewhat restricted, and bays and harbours o�
the main body of water may oscillate locally at their
particular seiche periods. Seiches generally have half-
lives of only a few periods, but may be frequently
regenerated. The largest amplitude seiches are usually
found in shallow bodies of water of large horizontal
extent, probably because the initiating wind set-up
can be greater under these conditions. Seiching is the
formation of standing waves in a water body, due to
wave formation and subsequent reections from the
ends. These waves may be incited by earthquake
motions, impulsive winds over the surface, or due
to wave motions entering the basin. The various
modes of seiching correspond to the natural frequency
response of the water body. There are an in�nite
number of seiching modes possible, from the lowest
(mode 1) to in�nity. Realistically, the lower modes
probably occur in nature, as frictional damping a�ects
the higher modes preferentially (higher frequency). If
the rectangular basin has signi�cant width as well as
length, both horizontal dimensions a�ect the natural
period given in [1]:

Tnm =
�

2p
hg

��n
a

�2
+
�m
b

�2
���1=2

; (1)

where Tnm is the natural free oscillation period, n
and m are the modes of oscillation in longitudinal and
lateral coordinates, respectively and a and b are the
length and width of the rectangular basin. Forces of
such wave motions have been attributed to tsunamis,
surges or seiches, instability of wind, eddy trains
caused by strong currents owing across the harbour
entrance, and surf-beat caused by long swell. However,
the most studied are harbour oscillations caused by
incident waves, which have typical periods of a few
minutes. Due to strong winds or long wave energy, the
water body of a harbour exhibits oscillatory resonant
motions, which can damage moored ships and cause
navigation hazards. A number of theoretical and
numerical investigations of such resonant oscillations
have been carried out, but most of them were limited to
harbours with a constant depth connected to open sea.
The free oscillation in closed rectangular and circular
basins was analyzed by [2]. These solutions clari�ed the
natural periods and modes of free surface oscillations
related to these special con�gurations. McNown [3]
studied the forced oscillation in a circular harbour
connected to the open sea through a narrow mouth.
Since the radiation e�ect was ruled out, the results
showed a harbour resonance, as it does in a closed
basin. The open-sea was important in allowing for
the loss of energy radiated from a harbour (see [4,5]).
The study of wave motion and its characteristics on a
physical model of a small-boat harbour was undertaken
in [6]. A weakly non-linear long internal wave in a
closed basin was modelled by [7]. The free oscillation
of water in a lake with an elliptic boundary was studied
by [8]. Ishiguro [9] developed an analytical model for
the oscillations of water in a bay or lake, using an
electronic network and an electric analogue computer.
The study of harbour resonance has been extended to
take into account the e�ect of bottom friction by [10]
and wave nonlinearity [11,12]. Ippen [1] studied free
oscillation in a simple two-dimensional closed basin.

As an approach to an arbitrary-shaped harbour
with a constant depth, a numerical model, using the
boundary integral element method, was developed
by [13,14]. For application to real depth-varying
harbours, a hybrid �nite element model is provided
in [15] and a �nite di�erence model is developed in [16].
A study of irregular wave incidence was undertaken
by [17,18], viscous dissipation by [19] and porous break-
water by [20]. Lee and Park [21] developed a model
for the prediction of harbour resonance, using the
�nite di�erence approach. Although the application
of numerical models can be used for handling any
complexities in this regard, the development of an
analytical solution for practical cases would be very
useful for the parametric study of the free oscillation
phenomenon. In this work, an analytical solution
for the calculation of free water surface oscillations
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in a rectangular basin with internal barriers will be
presented. This analytical solution could be used to
verify the accuracy of numerical models and calibrate
experimental models, applicable in cases such as the
construction of a causeway in lakes and an expansion
plan for harbours. The water ow is considered as
an ideal and irrotational ow. Therefore, the Laplace
equation governs the velocity potential function of the
ow domain. The free surface boundary condition
is linearized to formulate a linear set of equations
for solving the small amplitude water wave in the
rectangular basin. The ow potential, wave amplitude
and the natural period of waves generated in the basin
with impervious internal barriers are found, based on
the basin geometry. These parameters are presented
for variations in basin and barrier geometries.

FREE OSCILLATION IN CLOSED BASINS
WITH INTERNAL BARRIERS

Figure 2 illustrates a closed rectangular basin with the
width of b, length of a and a constant depth of h,
with two internal barriers of length bu and bd. The
basin is divided into two semi-closed basins and it is
assumed that the thickness of the barrier is small, in
comparison with the other dimensions. There is an
opening between the barriers that connects the sub-
basins. To determine the natural periods of free water
surface oscillations in this basin, an ideal ow �eld
is considered. Therefore, the governing equation for
the velocity potential function is the Laplace equation
(Equation 2). Also, it is assumed that the amplitude
of the water surface waves is small and, therefore, a
linearized form of DFSBC can be applied.

r2� = 0: (2)

The linearized kinematics and dynamic boundary con-
ditions of the free surface for a left semi-closed basin

Figure 2. Schematic three-dimensional closed basin with
internal barriers.

can be written as Equations 3-1 and 3-2:

� =
1
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on z = 0; (3-1)
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on z = �(x; y; t): (3-2)

The bottom boundary condition is as follows:

w = �@�
@z

= 0 on z = �h: (3-3)

The boundary conditions at the vicinity of barriers are
as follows:

u = �@�
@x

= 0 on x = 0 for 0 � y � b; (3-4)

u = �@�
@x

= 0 on x = al for 0 � y � bd;
(3-5)

u=�@�
@x

=Sl on x=al for bd�y�bd+c;
(3-6)

u = �@�
@x

= 0 on x=al for bd + c � y � b;
(3-7)

v = �@�
@y

= 0 on y = 0; b for 0 � x � al:
(3-8)

In a right semi-closed basin, the linearized bound-
ary conditions can be written as follows:
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on z = �(x; y; t): (4-2)

The bottom boundary condition is as follows:

w = �@�
@z

= 0 on z = �h: (4-3)

The boundary conditions in the vicinity of the barriers
are as follows:

u = �@�
@x

= 0 on x = 0 for 0 � y � b; (4-4)

u = �@�
@x

= 0 on x = al for 0 � y � bd;
(4-5)

u=�@�
@x

=Sr on x=al for bd�y�bd + c;
(4-6)

u=�@�
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=0 on x = al for bd + c � y � b;
(4-7)

v = �@�
@y

= 0 on y = 0; b for al � x � a:
(4-8)
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To solve the di�erential equation, the method of the
separation of variables is applied, hence:

� = X(x):Y (y):Z(z):T (t): (5)

Therefore:

� =
1
g
X(x):Y (y):Z(z):

dT (t)
dt

: (6)

By substituting and dividing the domain in the y
direction to three sub-domains, the solution is:

a) for 0 � y � bd

� =
1X
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1X
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b) bd � y � bd + c

Velocities Sl and Sr are equal and are evaluated by
imposing the condition that the wave velocity at
x = al for a left semi-closed basin is the same as
the wave velocity for a right semi-closed basin, at
this point. Hence:
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c) bd + c � y � b
The boundary conditions of this case are the same as
those presented for Case a. By applying the boundary
conditions for the right basin and dividing the domain
in the y direction to three sub-domains, as below, the
results will be given as:
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c) bd + c � y � b
The boundary conditions of this case are the same as
those presented for Case a. For motion in both x and y
directions, at a closed basin, which is divided into two
semi-closed basins, the continuity for small amplitude
water waves results from equating the change in ow
in the two directions to the change in storage in the
control volume (Figure 3).

h(
@2�
@x2 +

@2�
@y2 ) +

@�
@t

= 0: (15)

Substitution and simpli�cation of results, for left and
right basins, yields to:
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(16)

Figure 3. Selected control volume.
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RESULTS

In this section, the results of the analytical solution
presented above, for a closed rectangular basin with
internal barriers, are discussed. Figure 4 shows the
variation of the normalized water level, �=H, ver-
sus x=a for various values of al=a. As shown, the
wavelength decreases as the ratio of al=a increases.
The results are the same as those for a simple closed
basin without barriers under limiting conditions of al=a
equals 0 and 1. Figure 5 illustrates the variation of
the normalized water level, �=H, versus y=b for various

Figure 4. Variation of normalized water level versus x=a
for various values of al=a.

Figure 5. Variation of normalized water level versus y=b
for various values of c=b, when bu = bd.

values of c=b. The wavelength decreases as the values
of c=b and bu=b (or bd=b) increase. The opening size,
c, has a signi�cant inuence on the normalized water
level (�=H) at various positions in the basin. For the
limiting case of c=b = 1, the results are the same as
those in the case of a simple basin. Also, for the
case of c=b = 0, when there is no opening between
barriers, the results are the same as those for a simple
half basin. Increasing the value of bu=b decreases
the wavelength and its natural period, except under
limiting conditions.

Figure 6 illustrates the variation of the non-
dimensional parameter, an, de�ned as an = (u�=gH)a,
versus x=a for di�erent al=a and mode m = n = 1.
From this �gure and the parameter, an, de�ned here,
the horizontal velocity at the x coordinate is obtained,
knowing the dimensions of the basin. As shown in this
�gure, the signi�cant e�ect of al=a on the parameter,
an, can be seen. Also, the results are symmetrical
(the results of al=a and 1 � al=a are the same). The
amplitude of variation of the velocity component, u, in
an x direction, decreases as the ratio, al=a. increases.
As shown, the increase in the value of al=a causes a
decrease in an and u. Figure 7 shows the variation in
the maximum values of an versus al=a. As shown, the
increase in the value of al=a causes a decrease in an
and u.

Figure 8 shows the variation of the non-
dimensional parameter, bn, de�ned as bn = (v�=gH)b,
versus y=b, for di�erent modes. From this �gure and
the parameter, bn, de�ned here, the horizontal velocity
at the y coordinate is obtained, knowing the dimensions
of the basin. From this �gure, the signi�cance of
the modes of oscillation on parameter bn can be seen.
As seen, an increase in the mode number causes an
increase in the amplitude of the horizontal velocity
(v).

As seen, an increase in the mode number causes
an increase in the amplitude of the horizontal velocity

Figure 6. Variation of parameter u�a=(gH) by x=a for
di�erent al=a.
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Figure 7. Variation of maximum values of parameter
u�a=(gH) versus al=a.

Figure 8. Variation of parameter bn = v�b=(gH) versus
y=b for di�erent modes.

Figure 9. Variation of the maximum values of parameter
bn = v�b=(gH) versus di�erent modes.

(v). This result clearly can be seen in Figure 9. In
this �gure, the variation of the maximum values of bn,
versus mode number, m, is presented.

Figure 10 shows the normalized natural period,
Tcl=Ts (or Tcr=Ts), versus al=a (or ar=a) for di�erent
values of b=a. As seen, an increase in the value of b=a

Figure 10. Normalized natural period of coupled basin to
simple basin versus al=a or ar=a for di�erent b=a ratios
and m = n = 1.

causes an increase in the natural period of the coupled
basin. When the basin becomes square, the natural
period becomes the greatest.

Figure 11 illustrates the variation of the dimen-
sionless parameter, Sn = Tc

p
hg=2b, versus b=al, for

di�erent modes. From this �gure, the natural modes by
varying the position of the barrier. As seen, an increase
in the value of b=al, decreases the non-dimensional
parameter, de�ned above.

Figure 12 shows the normalized water level con-
tours for di�erent modes of a simple closed basin and
a closed basin with an internal barrier, where al=a =
0:5 and c=b = 0:2, and a simple closed basin with
an internal continual barrier, where al=a = 0:5 for
di�erent modes. These �gures illustrate the di�erences
of the ow pattern among these three cases. From these
�gures, the signi�cant inuence of internal barriers on
the ow map, the wavelength and, more importantly,
the natural frequency of free oscillation in the basin are
shown.

Figure 11. Non-dimensional parameter Tc(hg)0:5=(2b)
variations by b=al.
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Figure 12. The normalized water level contours for closed simple basin and closed basin with internal barrier; c = 0:2 and
al = ar.

SUMMARY

An analytical solution for free surface oscillations in
a rectangular basin with internal barriers was pre-
sented. The water ow was considered as an ideal ow.
Therefore, the Laplace equation governs the velocity
potential function of the ow domain. The free surface
boundary condition was linearized to formulate a linear
set of equation for solving the small amplitude water
wave in the rectangular basin. The ow potential, wave
amplitude and the natural period of waves generated
in the basin with impervious internal barriers were
found, based on the basin geometry. It was shown
that barrier geometry signi�cantly inuences the ow
map, wavelength and natural frequency of free water
oscillation in the basin.

NOMENCLATURE

H wave height
Tn natural free oscillation period
T the largest period

Tcl; Tcr natural period for left and right semi
basins, respectively

Ts natural period of simple closed basin
Sn non-dimensional parameter, de�ned as

Sn = Tc
p
hg=2b

Sl; Sr velocities in x direction at the station
of the barrier opening for left and right
semi basins, respectively

X(x); Y (y) functions of x and y which demonstrate
ow �eld or amplitude functions

Z(z); T (t) functions of z and t, which demonstrate
ow �eld or amplitude functions

a; b dimensions of simple closed basin
al; ar dimensions of semi basins in x direction
an de�ned as an = (u�=gH)a
anmax the maximum of an
bu; bd the size of up and down barriers,

respectively
bn de�ned as bn = (v�=gH)b
bnmax the maximum of bn
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c the opening size
g gravitational acceleration
h water depth
k wave number
l length of closed basin along the axis
m;n integers show the oscillation mode
t time
u; v velocity components in x and y

directions
x; y; z coordinates
� water level (amplitude)
� wave frequency
� velocity potential function
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