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A Meshless Boundary Element Method
Formulation for Transient Heat

Conduction Problems with Heat Sources

M.R. Hematiyan� and G. Karami1

In the boundary element formulation of heat conduction, the heat source e�ect imposes an
additional domain integral term on the system of integral equations. With this term, an
important advantage of the boundary element method as a boundary-only formulation will
be lost. This paper presents an accurate method for the evaluation of heat source domain
integrals, with no need of domain discretization. Transformation of the domain integral into the
corresponding boundary integral is carried out using Green's theorem. Both time-dependent and
time-independent fundamental solutions are considered. The methodology can be implemented
in general and for similar situations. Numerical examples will be presented to demonstrate the
accuracy and e�ciency of the presented method.

INTRODUCTION

The Boundary Element Method (BEM) is an e�cient
and accurate numerical technique for heat conduction
analysis. The BEM formulation of heat conduction
includes several boundary and domain integrals. One
domain integral is associated with time rate formula-
tion in the form of initial conditions, and the other
one includes the contribution due to heat sources. The
direct numerical evaluation of domain integrals neces-
sitates the discretization of the domain into internal
elements. Although domain discretization does not in-
troduce additional unknowns to the �nal equations, an
important advantage of the boundary element method
as a boundary only formulation will disappear. Hence,
a method is required to transform the domain integral
to the boundary. For the transformation of such
integrals in BEM, several schemes have been proposed.

For a steady state analysis of the heat conduction
problem, the Dual Reciprocity Method (DRM) and the
Multiple Reciprocity Method (MRM) were presented
by Nardini & Brebbia [1] and Nowak & Brebbia [2,3],
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respectively. In addition, Tang et al. [4] used the
Fourier series to represent particular solutions in order
to transform integrals to the boundary.

For the transient analysis of heat conduction
problems, two classes of formulation have been con-
sidered. In the �rst class [5-9], a time-dependent
fundamental solution is used, and in the second class
(including DRM [10] and MRM [11], particular in-
tegrals [12] and the radial integration method [13]),
a time-independent fundamental solution is used. In
DRM [10], the domain terms are approximated by a
series of localized particular solutions. This approxima-
tion permits the domain integral to be converted into
boundary integrals by a simple integration by parts.
In MRM [11], high order fundamental solutions are
used. Although DRM and MRM are computationally
cost e�ective for transient analysis, they do not include
the advantages of the time dependent fundamental
solution. In particular, when time steps are selected
to be small, DRM and MRM show unstable behavior.
Yang et. al [12] employed the particular integrals
method for the transformation domain integrals of
a heat conduction problem to boundary integrals.
Gao [13] used the radial integration method (RIM) for
the transformation of domain integrals into boundary
integrals. In RIM, the integrand of the domain integral
is expressed in a radial form. The domain integral
is, then converted to a one-dimensional integral and
a boundary integral.
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In other �elds of analysis, the transformation of
the domain integrals has played an e�cient role. In
elasticity, researchers have introduced several schemes
for transforming the domain integrals. Among these
schemes is the Galerkin tensor method, which was
introduced by Cruse [14] and which was applied to
a limited range of body force problems. Danson [15]
has also presented a uni�ed treatment for the trans-
formation of body force domain integrals into surface
integrals, using the concept of the Galerkin vector.
Rizzo and Shippy [16] and Karami and Kuhn [17]
presented an e�cient method based on replacing body
force and temperature changes by a scalar potential
function. Dual reciprocity and multiple reciprocity
techniques were presented by Nardini and Brebbia [18]
and Neves and Brebbia [19]. A particular integral
concept in boundary element modeling, in conjunc-
tion with employing a global shape function for the
temperature distribution, was presented by Henry &
Banerjee [20]. Other solutions include the exact
transformation of anisotropic domain integrals (see for
example [21]).

In this paper, by using Green's lemma, the
domain integrals associated with non-uniform heat
sources are transformed to the boundary. The method
to be presented here is general enough to be used
by employing both either time-dependent or time-
independent fundamental solutions. The method is
also successful in solving problems with multiple con-
nected regions and can be extended to other two
dimensional problems with arbitrary domain loading
or non-uniform body forces.

It is clear that the method to be presented here is
more complex, from a mathematical point of view, than
conventional BEM. However, because of the meshless
nature of the present approach, the method will be
much simpler from a user's point of view.

THE BOUNDARY INTEGRAL EQUATION
OF TRANSIENT HEAT CONDUCTION

The governing equation of transient heat conduction
with constant material parameters is expressed as
follows:

r2T (X; t) +
1
k
g(X; t) =

1
�
@
@t
T (X; t); (1)

where T (X; t) is the temperature at point X at time
t. The thermal di�usivity, �, is equal to k

�c , in terms
of conductivity, k, density, � and speci�c heat, c,
respectively. g(X; t) is the heat source function and is
considered to be a function of position and time. The
boundary integral form of Equation 1, for a problem
with domain 
 and boundary �, can be expressed as

follows [5]:
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Z

�
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t0
T (Q; �)q�(P; tf ;Q; �)d�d�
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T (Q; t0)T �(P; tf ;Q; t0)d
; (2)

where P and Q are, respectively, source and �eld
points within the domain or on the boundary and
C(P ) is a coe�cient, related to the local geometry at
point P . The initial and �nal time are represented
by t0 and tf , respectively. T � is the time dependent
fundamental solution for the di�usion equation, which
has the following form [22]:

T �(P; t;Q; �) =
1

4��(t��)
exp

� �r2

4�(t��)

�
H(t��);

where H is the Heaviside function. In the above
equation, r is the Euclidian distance between P and
Q. The normal derivative of the fundamental solution
is denoted by q�, where:

q�(P; t;Q; �) =
@
@n

T �(P; t;Q; �)

=
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8��2(t� �)2 exp
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:

There are two domain integrals in Equation 2, which
include the contribution, due to the heat source and ini-
tial conditions. If one assumes that the domain integral
associated with the initial condition vanishes (i.e., the
initial temperature �eld is constant or stationary [7]),
by assuming t0 = 0 and tf = tn+1 (tn: current time,
tn+1: new time), one may obtain the following:
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Z
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In the above equation, the only domain integral is the
third integral that is as follows:

Ign+1 =
�
k

Z



Z tn+1

0
g[Q(x1; x2); � ]

T �[P; tn+1;Q(x1; x2); � ]d�d
; (4)

where (x1; x2) indicate the coordinates of the �eld
point. For a direct numerical evaluation of the domain
integral (Equation 4), the domain under consideration
should be discretized. In such a case, the important
advantage of the boundary element method as a bound-
ary solution technique would be considerably lost. In
this paper, an attempt is made to transfer the domain
integral, Ign+1 , to the boundary, in order to derive a
boundary-only formulation.

EVALUATION OF THE HEAT SOURCE
INTEGRAL

In this section, an accurate and relatively e�cient
method to evaluate the heat source domain integral
is presented. To do so, Green's theorem is used, which
relates the domain integral of a two-dimensional region
to the boundary. Green's theorem is expressed as
follows [23]:Z




@
@x1

R(x1; x2)d
 =
Z
�

R(x1; x2)dx2:

This relation can be applied to simply or multiply
connected regions, provided that the function, S, is
continuous at all points on 
 and on the boundary, �.
By setting R(x1; x2) as follows:

R(x1; x2) =
�
k

Z x1

a

Z tn+1

0
g[Q(x0; x2); � ]

T �[P; tn+1;Q(x0; x2); � ]d�dx;0 (5)

the following relation is obtained:

Ign+1 =
�
k

Z
�

Z x1

a

Z tn+1

0
g[Q(x0; x2); � ]

T �[P; tn+1;Q(x0; x2); � ]d�dx0dx2: (6)

The constant a in Equations 5 and 6 is an arbitrary
constant. As a suitable value for a, one can set the
following:

a =
x1 min + x1 max

2
;

where x1 min and x1 max are, respectively, the minimum
and maximum values of the �rst coordinate of the
boundary points.

As can be seen, the time integral in Equation 6
must be calculated from zero to tn+1, the fact of which
causes too much computation, which, subsequently,
becomes ine�ective and expensive. To overcome this
di�culty, one can use the fact that the fundamental
solution decays with time and, therefore, one can
eliminate several initial time steps. The same pro-
cedure can also be used to evaluate the last integral
in Equation 3 [24]. In the present study, for better
accuracy, all time steps are considered for evaluation of
the time integral. For cases where the heat generation
function is time independent, this di�culty can be
e�ectively eliminated. In this respect, one can write
as follows:
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d�dx0dx2: (7)

By introducing a new variable, w = tn+1 � � , for the
�rst integral and w = tn � � for the second integral in
Equation 7, one can write the following:
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or:

Ign+1 = Ign+
1
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Z
�

Z x1

a
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h�r2(x0;x2)

4�w

i
w

dwdx0dx2:

As seen, the contribution due to the heat generator
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can be computed by integration at only one time
interval.

NUMERICAL IMPLEMENTATION

As T and q vary considerably more slowly than T �
and q�, one can assume that they are constant over a
small interval of time, (�t = tn+1 � tn). Hence, q and
T may be taken out of the time integration. By this
formulation, only the geometrical boundary must be
discretized. If boundary � is discretized into N linear
boundary elements, the integral Equation 3, may be
written as:

C(Pi)T (Pi; tn+1) + �
NX
j=1

Z
�j
T (Qj ; tn+1)

Z tn+1

tn
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Z
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Z
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Z tm
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Z
�j

Z x1

a
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g[Q(x0; x2); � ]T �(Pi; tn+1;Qj ; �)d�dx0dx2: (8)

Subscript i is an index to represent the node number
on the boundary.

The time integrals containing T � and q� can be
evaluated, analytically as follows:

gij=�
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where Ei() is the exponential integral function, i.e. as
follows:

Ei(a) =
Z 1
a

exp(�x)
x

dx:

The last time integral in Equation 8 cannot be eval-
uated by analytical means. To evaluate this integral,
numerically, constant elements over time are used, i.e.
g and T � are set to be constant over tm�1 < � < tm
and are evaluated at midpoint (� = tm � 0:5�t).
Consequently, Equation 6 takes the following form:

C(Pi)T (Pi; tn+1) +
NX
j=1

Z
�j
hijT (Qj ; tn+1)d�j

=
NX
j=1

Z
�j
gijq(Qj ; tn+1)d�j

+
nX

m=1

NX
j=1

Z
�j

�
gmij q(Qj ; tm)� hmijT (Qj ; tm)

�
d�j

+
��t
k

n+1X
m=1

NX
j=1

Z
�j

Z x1

a
g[Q(x0; x2); tm

� 0:5�t]T �(Pi; tn+1;Qj ; tm � 0:5�t)dx0dx2: (9)

Regular boundary integrals in Equation 9 are evaluated
by a standard 6-point Gauss quadrature method. Since
the integrand of the inner integral in Equation 9
may have a severe variation in the integral interval,
(
�
a x1

�
), the integral must be evaluated with special

attention. Here, in this research, this integral is
evaluated using an adaptive version of the Simpson
method. The adaptive Simpson integration method is
described in the next section. By adaptive integration
methods, one can �nd a complicated integral with a
desired accuracy.

The evaluation of singular integrals appearing in
the formulation is not a di�cult task. For this matter,
the treatment given in [25] is employed.

Equation 9 can be written in matrix form as
follows:

HTn+1 = Gqn+1 + Fn+1 + Ln+1;
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where H and G are coe�cient matrices, Tn+1 and
qn+1 are temperature and heat 
ux vectors at time
n+1, respectively, Fn+1 is a vector associated with a
history of the previous steps and Ln+1 represents a
vector associated with heat sources.

For cases where the heat source function is not a
function of time, one can write:

Lin+1 = Lin+
�t
2�k

NX
j=1

Z
�j

Z x1

a
g[Q(x0; x2)]

exp
h �r2(x0;x2)

2�(tn+tn+1)

i
(tn + tn+1)

dx0dx2:

In writing the above equation, the integral over w = tn
to w = tn+1 is approximated by a constant element,
i.e. the integrand is set to be constant over the time
element and is evaluated at midpoint (w = tn+tn+1

2 ).

ADAPTIVE SIMPSON METHOD

Assume that it is desired to compute I =
R b
a f(x)dx,

with tolerance ". This integral can be expressed by
Simpson's rule with an interval size, h = (b�a)=2 (two
intervals, n = 2) as follows:

I = S(a; b)� h5

90
f (4)(!); ! 2 [a; b]; (10)

where:

S(a; b) =
h
3

[f(a) + 4f(a+ h) + f(b)]: (11)

Integral I with four intervals (n = 4) can be expressed
by the following relation:

I=S
�
a;
a+ b

2

�
+S

�
a+ b

2
; b
�
� 1

16

�
h5

90

�
f (4)(!);

! 2 [a; b]: (12)

As an approximation, one assumes f (4)(!) �
f (4)(!) [26]. By considering this assumption, one can
show the following:

h5

90
f (4)(!) � 16

15

"
S(a; b)� S

�
a;
a+ b

2

�
� S

�
a+ b

2
; b
�#

: (13)

Now, the error of Simpson's rule, with 4 intervals, can
be estimated as follows:

Error =
����I � S �a; a+ b

2

�
� S

�
a+ b

2
; b
�����

� 1
15

����S(a; b)�S
�
a;
a+b

2

�
�S

�
a+b

2
; b
����� :

(14)

If the error computed by Equation 14 is greater than ",
the procedure is applied separately to intervals

�
a; a+b

2

�
and

�a+b
2 ; b

�
, with a tolerance of "2 for each subinterval.

This halving procedure is continued until each portion
is within the required tolerance.

EVALUATION OF THE HEAT SOURCE
INTEGRAL IN OTHER FORMULATIONS
WITH A TIME INDEPENDENT
FUNDAMENTAL SOLUTION

As mentioned previously in the introduction, in some
boundary element formulations of heat conduction
analysis, a time-independent fundamental solution is
employed [10-13]. In such cases, the heat source
integral may be expressed as follows:

Ig =
1
k

Z


g(x1; x2)T �[P ;Q(x1; x2)]d
; (15)

where P and Q are, respectively, source and �eld points
within the domain or on the boundary and T � is the
time independent fundamental solution, which has the
following form:

T �(P ;Q) =
1

2�
ln
�

1
r(P ;Q)

�
;

in which r is the Euclidean distance between P and Q.
By applying Green's lemma to Integral 15, the

associated boundary integral is obtained as follows:

Ig =
1
k

Z
�

Z x1

a
g(x0; x2)T �[P ;Q(x0; x2)]dx0dx2:

For special cases, where heat generation function, g, is
to be considered uniformly distributed (g = g0) over
the domain, the integral takes the following form:

Ig=
g0

2�k

Z
�

Z x1

a
ln

 
1p

(x0�xs1)2+(x2�xx2)2

!
dx0dx2;

where (xs1; xs2) are coordinates of the source point.
In this case, the inner integral can be evaluated,
analytically. For a = 0, it can be expressed as follows:

Ig =
�g0

2k�

Z
�
[(x1 � xs1) ln r

+ (x2 � xs2) tan�1
�
x1 � xs1
x2 � xs2

�
�(x1 � xs1)]dx2:

(16)

When the boundary, �, is discretized by linear ele-
ments, the boundary integral (Equation 16) can also
be computed analytically. This would enhance the
accuracy of the solutions, especially when the body
is thin or the geometric boundary of the domain is
complex.
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If one assumes Igj to be the heat source integral
over a linear boundary element, �j , with starting and
ending points, P1(x11; x12) and P2(x21; x22), then Igj
can be written as follows:

Igj =
�g0(x22 � x12)

2k�

1Z
0

h
(x1 � xs1) ln r

+ (x2 � xs2) tan�1
�
x1 � xs1
x2 � xs2

�
� (x1 � xs1)

i
d�;

where � is a local coordinate associated with the
element and:

x1 = x11(1� �) + x21�; x2 = x12(1� �) + x22�;

r =p
[x11(1��)+x21��xs1]2+[x12(1��)+x22��xs2]2:

(17)

Now, one can write as follows:

Igj =
�g0(x22 � x12)

2k�
(Igj1 + Igj2 + Igj3):

The integrals, Igj1 , Igj2 and Igj3 are evaluated as
follows:

Igj1 =
1Z

0

(x1 � xs1) ln rd�

=
1Z

0

(a1 + b1�) ln
p
c1�2 + d1� + e1d�; (18)

where:

a1 = x11 � xs1; b1 = x21 � x11; c1 = r2
P1P2

;

d1 = r2
sP2
� r2

P1P2
� r2

sP1
; e1 = r2

sP1
:

rsP1 and rsP2 are Euclidian distances from source point
to P1 and P2, respectively, and rP1P2 is the length of
the element. The analytical evaluation of Integral 18
is described in the Appendix.

The second integral, Igj2 , is expressed as follows:

Igj2 =
1Z

0

(x2 � xs2) tan�1
�
x1 � xs1
x2 � xs2

�
d�:

By substituting x1 and x2 from Equations 17 to the
above integral, it takes the following form:

Igj2 =
1Z

0

(a2 + b2�) tan�1
�
c2� + d2

e2� + f2

�
d�; (19)

where:

a2 = x12 � xs2; b2 = x22 � x12;

c2 = x21 � x11; d2 = x11 � xs1;
e2 = x22 � x12; f2 = x12 � xs2:

An analytical evaluation of Integral 19 is given in the
Appendix.

The integral, Igj3 , is expressed as follows:

Igj3 = �
1Z

0

(x1 � xs1)d� = xs1 � 1
2

(x21 + x11);

when the source point coincides with any nodes of the
element, Igj can be expressed as follows:

Igj = �
g0(x12 � x22)

2k�

nx21 � x11

8

�
ln rP1P2 � 1

2

�
+

1
2

(x22�x12) tan�1
�
x21�x11

x22�x12

�
� 1

2
(x21�x11)

o
:

In the above equation, � = +1, when the source point
coincides with node P1, and � = �1, when the source
point coincides with node P2.

EXAMPLES

Three di�erent examples are presented to show the
accuracy of the proposed method. Two examples
are concerned with a transient analysis with a time-
dependent fundamental solution and the third example
is focused on an analysis with a time-independent
fundamental solution. The results are compared with
those of analytical or Finite Element Method (FEM)
solutions. Whenever FEM is employed, the domain of
the problem is discretized by a large number of ele-
ments (�ne mesh) and the Crank-Nicolson scheme [27]
is used.

Example 1: Non-Uniform Time-Independent
Heat Source

The domain shown in Figure 1 is considered to be
subjected to a time-independent heat source, with
a distribution of g(x; y) = 106(1 + sin 40x + 10y).
The initial temperature �eld is equal to 0.0�C and
the boundary condition is of a Robin type, with an
ambient temperature of 0.0�C and a heat transfer
coe�cient of 200 W

m2�C . Thermal conductivity and
thermal di�usivity are set to be k = 80:2 W

m�C and
� = 2:28� 10�5 m2

s , respectively.
Results for the temperature variation, with re-

spect to time, are presented at three di�erent points,



354 M.R. Hematiyan and G. Karami

Figure 1. The geometrical domain of the problem.

A, B and C. Points A, B and C are, respectively, a
boundary point, an internal point and a corner point.
The obtained results are compared with the FEM
solution.

For FEM analysis, the domain of the problem
is discretized by 512 quadrilateral elements and 559
nodes (Figure 2). For BEM analysis, the boundary
of the problem is discretized by 46 linear elements
(Figure 3). Figures 4 to 6 compare the FEM solution
(�t = 10 sec) with results of the present work (�t = 20
sec) at the three points, A, B and C. As can be
seen, there is a small di�erence between the solutions
of the BEM analysis and FEM. In problems with a
strong variation in heat source function, the FEM
can produce an acceptable solution, only with a large
number of elements, whereas the solutions obtained by
BEM will be acceptable, even with a moderate number
of boundary elements.

Example 2: Non-Uniform Time-Dependent
Heat Source

In this example, the geometry of the problem, the ini-
tial conditions and material properties are considered

Figure 2. FEM discretization of the domain.

to be identical to the previous example. The only
di�erence is the form of heat generation function, which
is assumed to be as follows:

g(x; y) = 106(1 + sin 40x+ 10y)f(t):

Figure 3. BEM discretization of the domain.

Figure 4. Temperature variation at point A, Example 1.

Figure 5. Temperature variation at point B, Example 1.
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Figure 6. Temperature variation at point C, Example 1.

The function, f(t), is chosen to have a variation over
time as shown in Figure 7. The results are presented
for the temperature at the three points, A, B and
C. Figures 8 to 10 compare the FEM solution (512
quadrilateral elements, �t = 2:5 sec) with the results of
the present work (46 linear boundary elements, �t = 5
sec) at the three points, A, B and C. The temperature
variations along the lower edge at two di�erent times
(t = 50 sec, t = 100 sec), are also shown in Figure 11.
As seen, the obtained results by the proposed method
are in good agreement with the accurate �nite element
solution.

Example 3: Uniform Heat Source with Time
Independent Fundamental Solution

In the two previous examples, the temperature dis-
tribution was studied through a simply connected
domain, whereas in the example under consideration
here, the steady temperature will be studied within a
multiply connected domain.

Figure 7. Variation of f(t) with respect to time.

A hollow cylinder, with internal and external radii
of ri and ro, is subjected to a uniform heat source with
intensity g0. The boundary surfaces at r = ri and
r = ro are kept at temperatures Ti and To, respectively.

Figure 8. Temperature variation at point A, Example 2.

Figure 9. Temperature variation at point B, Example 2.

Figure 10. Temperature variation at point C, Example 2.
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Table 1. Results of analytical and boundary element solutions.

Distance from
Center

Analytical
16

Elements
24

Elements
32

Elements
1.1 1. 644 1.764 1.689 1.661

1.2 2.136 2.239 2.169 2.150

1.3 2.492 2.569 2.509 2.500

1.4 2.727 2.776 2.726 2.727

1.5 2.847 2.876 2.831 2.842

1.6 2.864 2.877 2.833 2.852

1.7 2.782 2.792 2.741 2.765

1.8 2.608 2.631 2.562 2.589

1.9 2.346 2.409 2.309 2.331

Figure 11. Temperature variation along the lower edge,
Example 2.

The governing equation of this problem has the
following form:

1
r
d
dr

�
r
dT
dr

�
+
g0

k
= 0:

This has an exact solution as follows:

T =
�g0

4k
r2 + c1 ln r + c2;

where:

c1 =
[To � Ti + g0

4k (r2
o � r2

i )]
ln ro

ri
;

c2 = Ti +
g0

4k
r2
i � c1 ln ri:

This problem is solved with di�erent numbers of
boundary elements with Ti = 1�C, To = 2�C, ri = 1 m,
ro = 2 m, k = 1 W

m�C and g0 = 10 W
m3 . For boundary

element analysis, both outer and inner boundaries must

be discretized. Table 1 compares the analytical solution
at several points with the numerical results obtained
when the boundary of the domain is discretized into
16, 24 and 32 linear boundary elements, respectively.
As seen, the obtained results are satisfactory.

CONCLUSION

In this paper, a meshless boundary element method
for the analysis of heat conduction problems was
presented. The method can be implemented for various
kinds of BEM heat conduction formulations, includ-
ing time-dependent or time-independent fundamental
solutions. Although it cannot be used for three-
dimensional problems, it can be e�ciently employed
for the treatment of body-force or domain loading in
other related two-dimensional �elds of analysis.

For stationary and for transient analysis with
time-independent heat sources, the method is com-
pletely cost e�ective, however, it will introduce a com-
putational load for the treatment of time-dependent
heat sources. An attractive advantage of the present
method is its excellent accuracy, especially for the
treatment of domain sources, which have severe varia-
tions inside the domain.

In conventional BEM, domain integrals are eval-
uated by internal discretization and the accuracy of
calculated values for domain integrals is directly depen-
dent on the size of internal cells. In the present method,
domain integrals are evaluated by a boundary integral
and a simple 1-D integral, which is evaluated by an
adaptive integration method. By using the adaptive
integration method, the integrals can be evaluated with
a desired and controllable accuracy.
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APPENDIX

Analytical Evaluation of Integrals Igj1 and Igj2

Igj1 and Igj2 are expressed in terms of two other
integrals, I1 and I2. I1 is introduced as follows:

I1(a; b; c; d; e) =
1Z

0

a� + b
c�2 + d� + e

d�;



358 M.R. Hematiyan and G. Karami

when d2 � 4ce = 0, one can write:

I1(a; b; c; d; e) =
a
c

1Z
0

� + b
a�

� + d
2c

�2 d�
=
a
c

24 1Z
0

1�
� + d

2c

�d� +
�
d
2c
� b
a

� 1Z
0

1�
� + d

2c

�d�35
=
a
c

"
ln
�
� +

d
2c

�
+
�
d
2c
� b
a

�
1�

� + d
2c

�#������=1

�=0

;

and, when d2 � 4ce < 0, one has the following:

I1(a; b; c; d; e) =
a
2c

1Z
0

2� + 2 ba
�2 + d

c � + e
c
d�

=
a
2c

24 1Z
0

2� + d
c

�2 + d
c � + e

c
d� +

1Z
0

2 ba � d
c

�2 + d
c� + e

c
d�

35
=

a
2c

"
ln
�
�2 +

d
c
� +

e
c

�������=1

�=0

+
�

2b
a
� d
c

� 1Z
0

1�
� + d

2c

�2 +
� e
c � d2

4c2
�d�#

=
a
2c

"
ln
�
�2 +

d
c
� +

e
c

�
+
�

2b
a
� d
c

�
1q

e
c � d2

4c2

tan�1 � + d
2cq

e
c � d2

4c2

#������=1

�=0

:

I2 is introduced as follows:

I2(a; b; c; d; e; f) =
1Z

0

a�2 + b� + c
d�2 + e� + f

d�:

By integration by part, one obtains the following:

I2(a; b; c; d; e; f) =
a
d
�

������=1

�=0

+
1Z

0

�
b� ae

d

�
� +

�
c� af

d

�
d�2 + e� + f

d�

=
a
d

+ I1
�
b� ae

d
; c� af

d
; d; e; f

�
:

Now, Igj1 can be evaluated as follows:

Igj1 =
1Z

0

(a1 + b1�) ln
p
c1�2 + d1� + e1d�:

One can write Igj1 = I 0gj1 + I 00gj1 , where:

I 0gj1 = a1

1Z
0

ln
p
c1�2 + d1� + e1d�

= a1� ln
p
c1�2 + d1� + e1

������=1

�=0

� a1

1Z
0

�(2c1� + d1)
2(c1�2 + d1� + e1)

d�

= a1� ln
p
c1�2 + d1� + e1

������=1

�=0

� a1

2
I2(2c1; d1; 0; c1; d1; e1):

and:

I 00gj1 = b1

1Z
0

� ln
p
c1�2 + d1� + e1d�

=
b1
2
�2 ln

p
c1�2 + d1� + e1

������=1

�=0

� b1
4

1Z
0

�2(2c1� + d1)
(c1�2 + d1� + e1)

d�

=
b1
2
�2 ln

p
c1�2 + d1� + e1

������=1

�=0

� b1
4

1Z
0

24�2�� c1
d1

�
+

�
d2

1
c1 �2e1

�
�+ d1e1

c1

(c1�2 + d1� + e1)

35 d�
=

"
b1
2
�2 ln

p
c1�2 + d1� + e1 � b1

4
�2+

b1d1

4c1
�

� b1
4
I1
�
d2

1
c1
� 2e1;

d1e1

c1
; c1; d1; e1

�#������=1

�=0

:

Another integral, which was introduced previously, is
Igj2 , which is expressed as follows:
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Igj2 =
1Z

0

(a2� + b2) tan�1
�
c2� + d2

e2� + f2

�
d�:

By applying integration by part, one obtains the
following:

Igj2 =
�
a2�2

2
+ b2�

�
tan�1

�
c2� + d2

e2� + f2

�������=1

�=0

� (c2f2 � e2d2)
1Z

0�a2
2 �

2 + b2�
�

(e2
2 + c22)�2 + 2(e2f2 + c2d2)� + (f2

2 + d2
2)
d�:

When 0 < �f2
e2 < 1, one would confront a singularity

(denominator in argument of tan�1 becomes zero at
� = � f2

e2 ), which might be easily removed and, thus
the solution to Igj2 becomes as follows:

Igj2 =
�a2

2
+ b2

�
tan�1

�
c2 + d2

e2 + f2

�
+ �

� (c2f2 � e2d2)I2
�a2

2
; b2; 0; e2

2 + c22; 2e2f2

+ 2c2d2; f2
2 + d2

2

�
;

where:

� = �
�
a2�2

2
+ b2�

�
tan�1

�
c2� + d2

e2� + f2

�������=
�� f2e2 �+

�=
�� f2e2 ��

for 0 < �f2

e2
< 1 and 0 for other cases.


