Scientia Iranica, Vol. 15, No. 3, pp 286-294
© Sharif University of Technology, June 2008

A Method for Calculation of Face Gradients in
Two-Dimensional, Cell Centred, Finite Volume

Formulation for Stress Analysis in Solid Problems

N. Fallah!

In this paper, a procedure is proposed for the evaluation of displacement gradients in a two-
dimensional, cell centred, finite volume formulation for stress analysis in linear elastic solid
problems. Temporary elements with isoparametric formulations are used for calculation of the
gradients at the cell boundaries. In this way, stress continuity across the common face of the
two adjacent cells will be guaranteed. The formulation is verified by three test cases, in which

the proposed formulation shows good predictions.

INTRODUCTION

In recent years, there has been growing interest in
developing a finite volume discretization approach for
solving solid mechanics problems. This is due to
the fact that the method is conceptually simple and,
also, in the investigated problems, it is seen that
the method is able to accurately predict structural
behaviours. For instance, it has been observed that
the finite volume formulation, based on the Mindlin-
Reissner plate theory, behaves well in the bending
analysis of thin to thick plates [1]. However, it is known
that, due to the so-called shear-locking phenomena,
the displacement based finite element formulation is
not able to analyze thin Timoshenko plate models
discretized by isoparametric elements with linear shape
functions, in which full integrations are performed.
Hence, in the author’s opinion, the application of
the method will be extended to more solid-structural
problems in the future.

There are different procedures in displacement
Finite Volume (FV) methods for the calculation of
displacement derivatives on cell boundaries. Demirdzic
et al. [2,3] have assumed a linear displacement dis-
tribution function across a cell and all of its neigh-
bouring cells, based on a Cell Centred Finite Volume
Method (CC-FVM). By averaging the derivatives of
the displacement distributions of the two cells with
common cell faces, they calculate strains on cell
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faces. Wheel [4,5] has presented an approach, bhased
on the CC-FVM, in which a linear distribution of
displacements across each cell face has been assumed.
Then, displacement derivatives have been obtained
by applying the central difference scheme in a skew
coordinate system. Bailey and Cross [6] in the
Cell Vertex Finite Volume Method (CV-FVM), also
called as the Finite Element Finite Volume (FE-FV)
method, have used the control volumes formed over
the conventional FE mesh by connecting the element
centres to the midpoints of the element faces. In this
approach, for two-dimensional analysis, the solution
domain is discretized by 3-node triangles or 4-node
quadrilateral isoparametric elements and, for three-
dimensional analysis, 8-node isoparametric hexahedral
elements are used. Bilinear shape functions have been
used for the interpolation of unknown variables and
element geometry within the elements. To approximate
the gradient of displacements at the middle of a given
cell face, the calculation is performed in the natural
space of the enclosing element and then mapped back
to the global coordinate system. Approximating the
gradients in this manner is a well-structured procedure,
which has been applied for the modelling of different
solid problems [7-9]. It should be noticed that, in
the above works, the solution domain is discretized by
using isoparametric elements only. The advantages and
disadvantages of constructing the control volumes in
the ways presented above can be found in [10].

This paper aims to present a procedure for the
calculation of face gradients in a cell centred finite
volume framework. This approach has similarities
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Figure 1. Control volume and an interim element on a control volume’s face.

with the method used in CV-FVM. In the presented
approach, for the calculation of gradients at a face
of the cell, a 4-node temporary element is formed
that surrounds the face. The temporary element is,
henceforth, referred to as the interim element, since
it is used only as a temporary tool for the evaluation
of displacement gradients at the enclosed face, after
which it is discarded. For a given face, the vertices
of an interim element are the centres of the two
adjacent control volumes lying on either side of the
face and the nodes at each end of the face. The
geometry of an interim element and the unknown
variables are interpolated within the element by using
interpolation functions, which are expressed in the
natural coordinate system of the element. Moreover,
equilibrium equations of a cell are approximated at
the evaluation points, which are located in the interim
elements. In this way, for the two cells lying on either
side of a face, stress continuity will be satisfied at the
common face. This is due to using the evaluation
points at the same locations, using the same shape
functions and using the same nodal values for the
evaluation of gradients across the face. One of the
advantages of the presented method for the calculation
of face gradients is that it can be used for the solution
domain discretized by multi-faceted elements, where
the CV-FVM approach cannot be used. To illustrate
the accuracy and the convergence rate of the proposed
method, three test problems are analyzed by use of the
presented formulation. The results obtained are com-
pared with the reference results, which are available in
the literature. This testing demonstrates the capability
of the proposed method in accurate predictions of the
deformations and stresses in two-dimensional loaded
solids.

FORMULATION

Figure 1 shows a part of a two-dimensional solid body,
where the calculation domain is meshed to elements
with arbitrary shapes. Each element is now considered
a control volume or cell. The control volume’s centre is
considered at the element centre. In a static analysis,
the equilibrium equation expresses the balance of sur-
face and body forces and, for a given internal cell, P,
which is surrounded by the neighbouring cells, it can
be written in the following form:

Todl + / bdQ = 0, (1)
Ta Q

where o is stress vector, matrix T includes components
of the outward unit normal to the boundaries of the
cell and b is the body force per unit volume. The first
integral is a surface integral over the faces bounding the
cell, denoted by I' 4, and the second integral is a volume
integral over the cell’s volume, Q2. In 2-D problems, for
a cell with constant thickness and uniformly distributed
body force, one has:

/To’dL—i—/ bdA =0, (2a)
r A

where the first integral is a line integral and A is the
area of the cell. Stress vector o and matrix T are as
follows:

o= Z T=|% Y M (2b)
o vl 10 ny ng|

Ogy

For a cell enclosed with &k faces, Equation 2a becomes:

k
Z/ TadL+/ bdA = 0. (3)
i1 /T A
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The stress components in Equation 3 can be related to
the strain components, using the constitutive equation,
which is of the following form:

o = De, (4a)

where the entries of matrix D are the elastic coefficients
and ¢ is the elastic strain vector as follows:

du
ox

|
€= dy )

ou v
oy T o2

[

E |'1 v 0 -|

D= T | 0 |(for plain stress problems).
~lo o 5] (4D)
Substituting Equation 4a into Equation 3 gives the
following:

k
> / TDedL+ € t,bdA = 0. (5)
=1 r;

The equilibrium Equation 5 is exact and no approx-
imation has been introduced so far. In order to
evaluate the line integrals in Equation 5, a distribution
of displacement has to be assumed. Here, a bilinear
distribution of displacement is assumed in a temporary
4-node element, which surrounds each face of the cell.
This temporary element is referred to here as the
interim element. For a given face, the vertices of
the interim element are the centres of the two control
volumes lying on either side of the face and the two
remaining vertices are the nodes at each end of the
face (Figure 1a).

The interim element is considered an isopara-
metric element, where the geometry and displacement
within the element are interpolated, using the inter-
polation functions in the same way. The interpolation
functions are defined in the natural coordinate system
of the element [11] in the following form:

Ni(T75) = i(1+rir)(1+3i5)7 1= 17273747 (6)
in which r; and s; are the natural coordinates of the
ith corner (Figure 1b).

A displacement component, u, can be approxi-
mated anywhere within the interim element using the
following:
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or, in the matrix form as follows:
u = Nu, (8)
where u is a vector representing the nodal displace-

ments of the interim element and N includes interpo-
lation functions:

~ T

u=[ur v wx - v,

N[N0 N 0 0
“lo Ny 0O Ny - N,

In order to evaluate the first order derivative of the
displacement components, with respect to the global
coordinate system, wxy, which are presented in the
equilibrium Equation 5, the chain rule of differentiation
is applied as follows:

[%] lé xiNi,r
[ —

= . 9a
2 el

9s Z xiNi,s Z yINl,S 9y

1=1 =1
Or:
17, 0

= J 9h
a’l’i J 8.%’]‘ ( )

where matrix J represents the Jacobean operator for
the interim element.

Equation 9 can be given in the matrix form as
follows:

o .0
e =5 (10)

To map these local derivatives back to global coordi-
nates, the following transformation is used:

0 ]
—=J1 (11)
ox or

By using Equations 8 and 11, the derivatives 2—37 g—;ﬂ

g—; and % can be evaluated and, then, the strain

displacement relation can be of the following form:
e = Bu, (12)

where matrix B includes derivatives of the shape
functions, with respect to the global coordinate system.
Substituting Equation 12 into Equation 5, in the
absence of body force, gives:

k
Z/ TDBudL = 0. (13a)
i=1 7 Ti
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The equilibrium Equation 13a can be approximated,
corresponding to each face of the cell. To preserve the
simplicity of the method, a uniform strain distribution
is agssumed on each face of the cell. Hence, Equa-
tion 13a becomes:
k

> [(TDBu),pL}; =0, (13b)

=1
where L is the length of the face and the subscript IP
denotes a convenient location within the interim ele-
ment, for the evaluation of Equation 13b. This location
is referred to as the evaluation point corresponding to
each face of the cell. For a given face, which is enclosed
in an interim element, the midpoint of the face and
the centre of the interim element can be considered as
locations for the evaluation point. Of course, the local
coordinates of the evaluation point, i.e. r and s, can be
found by mapping from the global coordinates to the
natural coordinates of the element as follows:

S:fZ(Ivy)' (14)

Equation 13b is evaluated at the selected evaluation
points for all faces bounding the cell. Vector u includes
displacement components, corresponding to the centre
of cell P, the centres of the cells that are adjacent to
the cell faces and the displacements at the corner nodes
of the cell. To represent Equation 13b in terms of the
displacements at the centres of a given cell and the
neighbouring cells, only the corner nodal displacements
must be eliminated. For a given corner node, g, it
can be achieved by assuming a bilinear distribution
of displacement across the region whose vertices are
the centres of those cells surrounding the corner node
(Figure 2). For instance, the variation of the nodal, w,
displacement in this region can be assumed as follows:

r= fl(xa?/)7

uw=azx+by+c, (15)

<« Point cell
Domain boundary

Figure 2. Typical internal and boundary nodes
surrounded by regions connecting the centres of the cells
lying around.
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where the unknown coefficients a, b and ¢ are calculated
by ensuring a fit to a set of sampling points, i.e.
vertices of the corresponding regions shown in Figure 2.
Substituting the coordinates of the sampling points
into Equation 15 gives the following:

Uy 1 oy 1
U T2 Y2 1 |_a-|
. 11 (16)
el
Uy, Tn Yo 1

or in the compact form:
u, = X,a,. (17)

By assuming that the u displacement of the given node,
q, is also expressed by Expression 16, one has:

ug = [rg Yo 1] ﬁ , (18a)

Ug = Xq4. (18b)

Eliminating a, from Equations 17 and 18b gives the
following:

%)%

Ug = Xq<fz u,. (19)
The nodal v displacement component can be repre-
sented in a similar way. The procedure expressed above
is applied for all nodes presented in Equation 13b, i.e.
the nodes forming the typical cell P (Figure la). It
should be mentioned that the above method is applied
in the same manner for the nodes located on the
domain boundaries (Figure 2). It is important to
notice that the displacement relation of a node and
surrounding cell centres depends solely on the mesh
geometrical properties. Hence, for a given mesh, an
evaluation of Equation 19 is performed only once for
each mesh node. The above procedure is similar to the
method presented in [5].

After the elimination of the nodal displacements,
Equation 13b can be presented in matrix form as
follows:

[Eﬂ [u] =0, (20)

in which each individual equation represents the rela-
tion of displacement components at the centre of cell
P to those at the centres of the surrounding cells.
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Figure 3. A point cell on the boundary.

BOUNDARY CONDITIONS

To incorporate the boundary conditions into the solu-
tion procedures, point cells are used (Figure 3a).

Point cells are considered on the boundaries of
the domain, next to the internal cells. For a given
internal cell, which is adjacent to the boundary, the
corresponding point cell is placed at the middle of the
face lying on the boundary, as shown in Figure 3a.

In this way, if displacement boundary conditions
are applied, the displacement components of the point
cell, Py, in the global coordinate system, can be
obtained from the following:

[u} _ {cgsa —sin a] {un] 7 (21)

v p, sina - cosa | |ut | p

in which w, and wu; are the known normal and

tangential components of the applied displacement,

respectively. The angle, «, is measured between the

outward normal to the boundary face and the = axis.
Moreover, in the case of stress boundary condi-

tions, the applied stress components, o, and o, can be
represented in the global coordinate system as follows:

. . o
cos? a sin® o 2sin avcos a 3
. . A - oy | =
—sinacosa sinacosa cos?a —sinal| Y
Taylp,
o
[ ] , (22a)
gt Py
or:
T'oc=0c". (22b)

Substituting the constitutive Equation 4 into Equa-
tion 22b gives the following:

T*De = o, (23)

where vector € represents strains at the point cell.
The strains in Equation 23 can be approximated
using a 4-node interim element, whose vertices are
the center of adjacent internal cell P, point cell Py
and the nodes lying at either side of the point cell
(Figure 3a). It is noticeable that the 4-node interim
element corresponding to a point cell has three nodes
which are located on a straight boundary face. In
such a node arrangement, one of the internal angles of
the interim element becomes 180 degrees, which is the
upper limit for an internal angle of a linear element [12].
Substituting Equation 12 into Equation 23 gives the
following;:

T'DBu=o0". (24)

Matrix B in Equation 24 can be approximated at
the centre of the interim element in the corresponded
natural coordinate system. It is noticeable that this ap-
proximated evaluation is also utilized in Equation 13b
for the face of an internal cell that lies on the boundary
of the domain. Each individual equation in Equation 24
includes the displacement components of the nodes at
either side of the point cell, which must be eliminated.
The elimination procedure is similar to that used in
Equation 19 for the internal cells. Consequently,
equations, which relate the unknown displacements
at point cell Py, to the displacements at the centres
of the surrounding cells and to the applied stresses,
will be obtained. These equations are also in the
form of Equation 20, with a nonzero right hand side.
Moreover, in the case of mixed boundary conditions, a
proper combination of individual equations taken from
Equations 21 and 24 is used.
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SOLUTION PROCEDURE

As mentioned in the preceding sections, stresses corre-
sponding to the cell faces are approximated, using the
values of the shape functions of the interim elements.
For a given interim element, the natural coordinates
of the evaluation point can be corresponded to the
middle of the enclosed face and the centre of the interim
element. To preserve the simplicity of the method, the
centres of the interim elements, i.e. r = s = 0, are used
as the evaluation points in the following test cases.

Equation 20, corresponding to the internal cells
and equations from the boundary conditions, provides
a system of simultaneous linear equations containing
all of the unknown displacements and can be expressed
in the matrix form as follows:

AX = C. (25)

A is a non-symmetric sparse matrix and contains
the coefficients relating the unknown displacements
associated with the cells. X is a vector including the
unknown variables and vector C represents the known
values on the boundaries. Equation 25 can be solved
by an appropriate solver technique, such as the bi-
conjugate gradient method, which is employed here to
yield the displacements of the solution domain.

NUMERICAL EXAMPLES

The procedure proposed in this paper has been imple-
mented in the FORTRAN computer code and applied
to three test cases, including an internally pressur-
ized thick-walled cylinder, a tapered panel, known as
‘Cook’s membrane problem’ and a cantilever beam
subjected to a uniformly distributed direct load. The
method’s accuracy has been assessed by comparing the
predicted results with analytical and numerical results
reported in the literature. The convergence behaviour
towards the analytical solution has been studied in the
first test problem to show the convergence rate of the
present discretization method.

Test Case-1

The first test concerns a thick-walled cylinder loaded
by a uniform internal pressure. The ends of the
cylinder are unconstrained and open, which experiences
a symmetric deformation about the axial axis. A unit
length, with a 3 mm inner radius and a 6 mm outer
radius, is considered. The material properties are
given in Figure 4. The problem is considered under a
plane stress condition. Due to the symmetric nature
of the problem, only one quarter of the cylinder is
modelled and meshed to the quadrilateral elements and
symmetric boundary conditions are applied. Figure 4
shows one quarter of the cylinder, which is meshed to
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Figure 4. One quarter of the thick-walled cylinder
meshed to 3 x 4.

3x4,i.e., three elements in the circumferential direction
and four elements in the radial direction. Hoop and
radial stresses are calculated, which are the principal
stresses, due to symmetry in the cylinder.

The effect of mesh refinement on the accuracy of
the results is illustrated in Figure 5. The refinement is
performed at two levels and the cylinder is analyzed.
The principle stresses, along a central line that passes
through the thickness of the cylinder, are compared
with the analytical solutions. As Figure 5 shows, the
results converge to the analytical solutions, as the mesh
gets finer. Furthermore, the radial displacements are
evaluated at the cells centres, corresponding to the 6 x
8 mesh density. The results are compared with the
analytical solutions given by Ugural and Fenster [13]
in Figure 6. This figure depicts the capability of the
presented formulation in prediction of the displacement
field.

A convergence study for stress error is performed
on the same cylinder test problem. One quarter of the
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Figure 5. Distribution of principle stresses in a
thick-walled cylinder subjected to internal uniform
pressure.
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Figure 6. Distribution of radial displacement in a
thick-walled cylinder subjected to internal uniform
pressure.

cylinder is meshed to N = 3 x4, N =6x8 N =
12 x 16, N =24 x 32 and N = 48 X 64 elements, using
quadrilateral elements. The normalized L, stress error
norms are calculated for the radial and hoop stresses,
using the following equation:

totface

> (o — ot
Ly(err), = |2 (26)

totface

i=1

where ¢ and ¢/? denote the analytical and the finite
volume solutions corresponding to the cell faces, re-
spectively. The parameter, ‘totface’, in Equation 26,
indicates the total number of cell faces of the model. A
characteristic mesh size, s, is obtained in the following
form:

1

/N?
where N is the total number of elements. Figure 7
shows the convergence rate towards the analytical
results for the meshes used. As seen in this figure,

the convergence rate for the solutions obtained is
comparable with the second order behaviour.

s =

(27)

Test Case-2

As a second test, a tapered panel, clamped at one
end, is considered. This problem is often referred to
as ‘Cook’s membrane problem’, and was proposed to
assess the distortion capability of the formulations.
The geometry and the material properties are shown
in Figure 8. The right end of the panel is subjected
to a unit load, which is uniformly distributed along the
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Figure 7. Convergence of the stress error norms for the
thick-walled cylinder.

Mesh II
Ng=4

Figure 8. Cook’s membrane problem with unit load
uniformly distributed along right edge.

edge. The panel is meshed to 2x2, 4x4 and 16x 16, two
of which are shown in Figure 8. The presented method
and the CV-FVM method were used for the plane stress
analysis of the problem. The results obtained for the
vertical displacement at B are shown in Table 1. The
results of the finite element analysis are also shown in
Table 1, which is taken from [14]. The results of the
CV-FVM approach are obtained from a code, which
was originally developed at Greenwich University by
Professor Bailey [6] and which was, then, extended by
Fallah [7] to include the geometric non-linearity effects.
It can be seen that the results of the presented method
are comparable to the results predicted by the finite
elements. It is also seen that the CV-FVM predictions
are less than the predictions of the presented method
in coarse meshes. However, the results of CV-FVM are
in good agreement with the Q4 finite element results.
It should be noted that the presented method involves
more degrees of freedom, shown in Table 1 as ‘dof’ in
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Table 1. Finite element and finite volume predictions for the vertical displacement at B in Cook’s problem.

Element Ng =2 Ng =4 Ng = 16
HL 18.17 22.03 23.81
Finite HG 22.32 23.23 23.91
Element [14] Q4 11.85 18.30 23.43
Q6 22.94 23.48 -
QM6 21.05 23.02 -
Finite CV-FVM | 11.23 (dof=18) | 17.66 (dof=50) | 23.34 (dof=578)
Volume CC-FVM | 18.34 (dof=24) | 20.71 (dof=64) | 23.95 (dof=640)

the parenthesis, than the CV-FVM counterpart for the
models of the same mesh.

The amount of CPU time used by the FV methods
is very small in this test and their use is not conve-
nient for comparison purposes. However, due to the
non-symmetric nature of the coefficient matrix, it is
expected that the FV methods spend more CPU time
than its FE counterpart. In [6,15], the CPU time
comparisons have been performed in favour of the FE
method.

Test Case-3

As the final test, a cantilever beam, subjected to a uni-
formly distributed transverse load, is considered for the
analysis. The geometry of the beam and the material
properties are given in Figure 9. The presented for-
mulation and a standard, in-house displacement based,
finite element code are used in this test, where the plane
stress conditions are assumed. The beam is meshed
to 4-node quadrilateral elements, where the linear
displacements were considered as unknown variables in
both methods. It is well known that the modelling
of a beam with a dominated bending deformation, by

P
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v=0.3

Error in displacement (%)
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Number of degrees of freedom
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Figure 9. Error in prediction of tip displacement of a
cantilever beam subjected to a uniformly distributed
direct load.

such quadrilateral elements, is inefficient. However, the
purpose of the test is a comparison between the ability
of the presented method and the ability of the standard
finite element method in this modelling.

Isoparametric formulation is used in the finite
element method and, also, full integration is performed
for the computation of element matrices. The beam
is meshed to rectangular elements and progressively
refined along the length and height of the beam.
Moreover, the same meshes are used in both meth-
ods.

Using the same mesh density, finite volume has
more degrees of freedom than the finite element coun-
terpart, due to the introduction of point cells on the
boundaries. Error in the value of tip displacement,
predicted by both methods, is illustrated in Figure 9.
The error is normalized, with respect to the analytical
solution given by Timoshenko and Gere [16], which
includes the shear effects on the tip displacement.
The figure reveals that the finite volume results are
as accurate as the finite element results, although,
as expected, the finite volume presents slightly more
accurate results than the finite element, due to using
more degrees of freedom in the same mesh density.

CONCLUSION

In this paper, a method has been developed for approx-
imating the displacement gradients at the cell faces of
control volumes in a cell centred, finite volume frame-
work, by use of an isoparametric element formulation.
The procedure has been fully described in the matrix
form and has been applied to three test cases. The
capability of the proposed method in good prediction
of stresses and deformations has been demonstrated
by comparing the results obtained with the analytical
and numerical results. Furthermore, the convergence
rates towards the analytical solutions have been studied
in the first test problem. The results have revealed
behaviour comparable with the second order rate of
convergence. While the proposed approach concerns
two-dimensional linear elastic problems, on-going work
is being undertaken to investigate the extension of this



294

approach to complex structural problems, i.e. complex-
ity in terms of geometry and governing equations.
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