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Review Article

Sensitivity Based Health Monitoring
of Structures with Static Response

G. Aditya1 and S. Chakraborty�

A sensitivity based parameter identi�cation method is presented to detect the damage of existing
structures, using applied sets of static forces at one subset of degrees of freedom and measured
displacements at a subset of degrees of freedom that may overlap completely, partially, or not
at all. The algorithm follows an output error approach, which minimizes the deviation between
a measured and a theoretical displacement, in lieu of the commonly used force error function.
An iterative scheme is developed utilizing a �rst order Taylor series expansion to linearize the
associated non linear problem. The algorithm automatically adjusts the structural element
sti�ness parameters, in order to improve the comparison between a measured and a theoretical
response in an optimal way. The measured input required in the present study is arti�cially
generated. The e�ect that a noisy displacement measurement has on an identi�cation procedure
is also studied. A procedure is also identi�ed, in order to select the limited number of DOF
required to perform successful parameter identi�cation, reducing the impact of measurement
errors on the identi�ed parameters. The algorithm is elucidated by a numerical example on
frame structures.

INTRODUCTION

Structural damage may be viewed as any deviation in
a structure's original geometric or material properties
that may cause undesirable stresses, displacements
or vibrations, leading to the weakening of the struc-
ture, which adversely a�ects the current or future
performance of the system. This weakening and,
also, deviations may be due to cracks, loose bolts,
broken welds, corrosion and fatigue etc. In all cases,
damage can severely a�ect the safety and serviceability
of the structure. Hence, an early detection of any
damage is paramount. Visual inspection has always
been the most commonly used method for detecting
damage in a structure. But, the increased size and
complexity of today's structures reduce the e�ciency
of visual inspections. There are various methods of
testing to assess the strength of the materials before
construction, but these strengths may reduce, due to
various factors in the proper structure. Di�erent non-
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destructive test methods are available to assess the
material strengths of the structure without damaging
it. However, all these techniques normally assess the
damage qualitatively, but cannot quantify the damage
scenarios.

The need for quantitative damage detection meth-
ods that can be applied to complex structures has led
to extensive research, in the recent past, on parameter
identi�cation, using test data. A detailed review on
system identi�cation and damage detection may be
found in Doebling et al. [1]. System identi�cation
techniques, based on the dynamic data, have been
developed extensively, compared to that of static data.
But, the static responses are more locally sensitive
than the frequency in structural damage detection,
as recognised by Jenkins et al. [2]. It is also well
noted that, in the dynamic method, large amounts
of data need to be implemented, accompanied by
expensive dynamic instrumentation, since it needs
mass, sti�ness and damping properties. The static
damage identi�cation method is usually simpler than
the dynamic method, as it involves sti�ness properties
only. Moreover, the equipment in static testing is
comparatively cheaper and deformation and strain
can be obtained rapidly and economically. There-
fore, these methods are attracting much attention in
the �eld of civil engineering. However, with simple
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static data, the damage in sti�ness can be identi�ed
up to a certain level of accuracy. If the primary
goal of the identi�cation is to �nd element sti�ness
degradation, this can be reasonably achieved by static
parameter identi�cation, which is inherently easy and
simpler than dynamic methods of parameter identi�ca-
tion.

Information on damage detection, based on static
data (both displacement and strain), is reported in
an isolated manner. Various approaches to damage
detection are found, using static displacement data, i.e.
sensitivity based update methods [3,4] with incomplete
measurement [5], a heuristic method to select a limited
number of degrees of freedom [6], force and displace-
ment error minimization [7,8], an adaptive parameter-
grouping scheme [9] and a regularization technique [10]
etc. Structural parameter identi�cation, utilizing el-
emental strain measurements, is also found [11-14].
Sanayei and Onipede [15] presented analytical param-
eter identi�cation, providing the structure's present
load carrying capacity, and applied it to the plate
structure [16]. Sanayei et al. [6] presented the results of
experiments on a small-scale steel frame model in order
to explain \the displacement equation error function",
\the displacement output error function" and \the
strain output error function" methods of structural
parameter estimation. Mahnken and Kuhl [17] pro-
posed a parameter identi�cation algorithm, follow-
ing gradient enhanced damage models, in which the
non-uniform distributions of state variables, such as
stresses, strains and damage variables, were taken
into account. Identi�cation algorithms, using static
data, together with frequencies, are also studied [18-
20]. Chou and Ghaboussi [21] proposed identi�cation
as an optimization problem, using output error and
equation error as objective functions under a static
load. Papadimitriou [22] presented a methodology for
designing optimal sensor con�gurations and excitation
characteristics. Oliver and Vidal [23] adopted the
minimization of the gradient of the gap between test
and simulation applied to a simple case of the bending
of the elastic-viscoplastic beam. Recent studies [24] are
found in determining damage properties from full �eld
displacement measurements. Robert-Nicoud et al. [25]
employed a static response for model calibration, iden-
tifying the cause of the structural behaviour, such as
the support condition and the material properties etc.
Candidate models whose response reasonably matches
the measured static data are identi�ed. A mixed
integer nonlinear least-squares problem, for identifying
the damage in truss structures, is presented by Araki
and Miyagi [26]. The algorithm is applied separately
to the static and the modal data.

The literature indicated three di�erent ap-
proaches to static damage detection, i.e., the dis-
placement equation error function, the output error

function and the strain output error function. Most of
these works involve the formulation of an optimization
problem, to minimize error between the analytical and
measured quantities in a �nite element framework. The
major problem in static identi�cation is the lack of
information available, compared to the dynamic ones.
Moreover, for a particular structure, it is di�cult to
identify the damage components, contributing nothing,
or fairly little, to structural deformation under a
certain load case. This may be partially overcome by
proper pre-analysis for an actual scheme of loading and
measurement.

The focus of the present work is on the sensi-
tivity based damage detection method. Sensitivity
based update methods are based on the �rst order
Taylor series, which minimizes an error function of
the perturbed matrices. The damage identi�cation
algorithm is posed as a determination of the mod-
i�ed parameter vectors. The basic theory is the
minimization of an error function typically the force
error function [3,4,27]. Sanayei and Onipede [15]
used the approach to minimize the applied forces and
the forces produced by applying a static measured
displacement. They also examined the sensitivity of the
noisy measurements [6]. A sensitivity based algorithm
is proposed, where the static forces are applied to a
set of DOF and the displacements are measured at
another DOF. The conventional output error approach
is ill-posed, particularly with noisy data [10]. In the
present study, the parameter identi�cation algorithm
follows the output error approach. But, the error
function is taken as the deviation between the mea-
sured and the theoretical displacements at selected
DOF, instead of the force error function minimization
approach. An iterative procedure is applied to adjust
the structural element sti�ness parameters automati-
cally, in order to improve the comparison between the
simulated and the theoretical response in an optimal
way. A sensitivity analysis is employed at the heart
of this iterative identi�cation procedure for direct
identi�cation of the optimal values of the structural
parameters at the element level. The number and
location of the force application and the displacement
measurement points have an immense impact on the
error in estimates. A procedure is also identi�ed to
select a limited number of DOF to perform success-
ful parameter identi�cation, reducing the impact of
measurement errors on the identi�ed parameters. The
e�ect of the noisy displacement measurement on the
identi�cation procedure is also studied. This pre-
test simulation uses an error sensitivity analysis to
determine the e�ect of measurement errors on the
estimated parameter. It is seen that the measurement
scheme and the level of accuracy in the measured data
can drastically a�ect the accuracy of the identi�ed
parameters. A sample problem, on a frame structure,
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is presented to demonstrate the proposed identi�cation
algorithm.

DAMAGE IDENTIFICATION

The static equilibrium equation of a structure in a
displacement based �nite element framework can be
expressed as follows:

[K]fug = ffg; (1)

where [K], ffg and fug are the global sti�ness matrix,
force and displacement vector, respectively. In the
parameter identi�cation algorithm, the �nite element
model, the topology of the structure, the element
behaviour and connections details are speci�ed at the
outset. There are two sets of Degrees Of Freedom
(DOF) in measurement: The applied Force Degrees
Of Freedom (FDOF) and the measured Displacement
Degrees Of Freedom (DDOF). These two sets of DOF
may, or may not, overlap. `NSF' sets of forces are
applied at FDOF, one set at a time, and `NSF' sets of
displacements are measured at DDOF, corresponding
to each applied force set. Note that each set of
forces should be neither equal to any other set nor
a linear combination of the previous sets of applied
forces. These sets of applied forces and measured
displacements are concatenated horizontally into a
force matrix, [F ], and a displacement matrix, [U ] as:26666666666664
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i.e. [F ] = [K][U ]: (2)

In fact, not all displacements in [U ] needed to be
measured. Therefore, Equation 2 is partitioned into
[ua] and [ub] i.e. the measured and unmeasured
displacements, respectively as below:�

fa
fb

�
=
�
Kaa

Kba

Kab

Kbb

� �
ua
ub

�
: (3)

The matrix of unmeasured displacements, [ub], is con-
densed out, following static condensation, and Equa-
tion 3 reduces to the following:

[f�a ] = [K�aa] [ua] ; (4)

where:

[f�a ] =
�
[fa]� [Kab][Kbb]�1[fb]

�
;

and:

[K�aa] =
�
[Kaa]� [Kab][Kbb]�1[Kba]

�
: (5)

The matrices [fa] and [fb] are normally known in
a typical test program. The analytical sti�ness
matrices, [Kaa], [Kab], [Kbb] and [Kba], are func-
tions of the structural parameters de�ned in fhgT =
fh1 h2 � � � hNUPg. If the sti�ness parameter
changes, the measured displacement, [ua], will vary
from the displacement, as obtained from Equation 4.
It is to be noted here that Equation 5 is a nonlin-
ear function of the sti�ness parameter, involving the
inversion of [Kbb]. In order to identify the sti�ness
parameters, an error matrix is de�ned as [E(h)] of
size NMD (Number of Measured Dofs,) x NSF, each
element of which, eaij , is:

eaij(h) = uaij(h)� uaij ; (6)

where i = 1; 2; � � � , NMD and j = 1; 2; � � � , NSF. If
the sti�ness parameters, fhg, are the original values
with no damage, then, [E(h)] will be zero, otherwise
it will be non-zero. To adjust the parameters, fhg, in
the displacement vector, a `zero' approximation (initial
value) for the vector, h, as ho and the use of the �rst
order Taylor expansion of uaij , around ho, yields:

uaij(h) = uaij(ho) +
NUPX
k=1

@uaij
@hk

�hk + � � � : (7)

The column elements of fua(h)g and fuag are placed
vertically, one after the other sequentially to form a
vector of size NM (i.e. NMD x NSF). Similar to
fua(h)g and fuag, the elements of [E(h)] are assembled
into an error vector, fE(h)g, of size NM by 1. A scalar
performance error function may be de�ned as:

J(h) = fE(h)gT fE(h)g: (8)

Now, the sti�ness parameters are obtained by mini-
mizing J(h), with respect to the unknown parameters,
fhg, i.e:

@
@fhgJ(h) = 0;

i.e.
@
�fE(h)gT fE(h)g�

@fhg = 0;

i.e. (fua(h)g � fuag) @fua(h)g
@fhg = 0: (9)
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Substituting Equation 7 in Equation 9 �nally yields
(details are elaborated in the Appendix):

[S(h)]T [S(h)]f�hg=�[S(h)]T
nfua(h0)g�fuag

o
:

(10)

If the Numbers of Unknown Parameters (NUP) are
greater than the Number of Independent Measure-
ments (NIM), a unique solution of Equation 11 does
not exist. If NUP is equal to NIM, a direct inversion
solves Equation 10 as follows:

f�hg = �[S(h)]�1fu(h0)� fugg: (11)

When NUP is less than NIM, then, [S(h)] will not be
a square matrix. The method of least squares can be
utilized to compute the unknown parameters for each
iteration, i.e:

f�hg = � �[S(h)]T [S(h)]
��1 [S(h)]T fu(h0)� fugg:

(12)

Equation 12 can be set up as an iterative procedure for
parameter identi�cation, i.e:

fhgi+1 = fhgi + f�hg: (13)

The next iteration starts with Equation 4, where the
updated sti�ness matrix is used (obtained from the
updated parameter through Equation 13). Various cri-
teria may be used for the convergence of the algorithm,
i.e. changes in the error matrix, E(h); parameters,
f�hg, or relative changes in the parameters, compared
to their initial values, f�hg=fhig. The tolerance limits
are set to control the desired accuracy in the identi�ed
parameters.

In order to identify a unique set of parameters
from a given set of measurements, NIM must be greater
than or equal to the number of unknown parameters,
otherwise there may exist an in�nite number of values
of parameters that satisfy the measurements. The
number of independent measurements is the total
number of measurements less the number of redundant
measurements, due to symmetry in the measurements.
The number of independent measurements for single
load cases is NIM = (m1+m2)(m2+m3)� 1

2m2(m2�1),
where m1 is the measured displacement DOF only (no
forces applied), m2 is the measured displacement and
applied force DOF and m3 is the applied force DOF
only (no displacements measured). For the special case
of a complete overlap between FDOF and DDOF, NIM
= 1

2m2(m2 + 1).

EFFECT OF MEASUREMENT ERROR

In an actual measurement setup, no matter how ac-
curate the measurements are, some error is bound to

occur. The performance of the identi�cation algorithm
in the presence of errors must be investigated, in order
to study any potential problems. In particular, even if
the algorithm converges, the magnitude of the errors
in the input measurements and resulting errors in the
identi�ed parameters may not be comparable. It is,
therefore, essential to estimate the relationship between
the errors in the measurements and the errors in the
identi�ed parameters, prior to any testing program.
It may, then, only be possible to establish limits
on measurement errors compatible with the accuracy
requirements in the parameter identi�cation.

The errors associated with di�erent measuring
devices can have di�erent error distributions. Typical
error distributions that are used to simulate test data
are uniform and normal probability density functions
(PDFs). A uniform PDF represents a banded type
of error, with an equal probability of occurrence
throughout the prede�ned limits. A normal PDF
represents an error behavior that is not banded, but
has a higher probability of occurrence closer to the
actual values. Measurement errors may be added to the
simulated measurements, either as proportional errors
or absolute errors. Proportional errors generate the
largest error at the maximum value of the measure-
ments, but absolute errors are added to the simulated
measurements, regardless of their magnitudes. Both
types of error and their error distributions seem to be
insu�cient for modelling various measurement errors in
the �eld. However, any combination of error types and
distributions can be used to study the error behavior of
the identi�cation algorithm. For the presented study,
zero-mean uniform random numbers are generated and
scaled by the corresponding percentage measurement
error and, then, added absolutely to the displacement
measurements. In order to obtain [ua], a set of random
numbers are generated with zero-mean between -1
to +1, for each observation. `NSF' sets of random
numbers are then placed column-wise in a matrix,
[Ru]. The percentage error of each displacement
measurement point is used to scale each element of
[Ru]. All of the NMD percentage errors are placed in
the diagonal matrix, [nEun ]. The correct displacements
are used as the mean value, i.e. [ua0]. The simulated
measured displacements are obtained as follows:

[ua] = [ua0] + [nEun ][Ru]: (14)

Once the simulated displacements with error are ob-
tained, iterative structural parameter identi�cation is
performed following the previous section. The proce-
dure is repeated several times to compute the required
statistical properties of the identi�ed parameters. The
sample size of the simulation should be large enough
for statistically stable results. The uctuations of
the maximum output error have been studied against



Health Monitoring from Static Response 271

a sample size. When the uctuation is very small,
it is taken as the simulation numbers for the error
sensitivity study. The mean of the parameter estimates
is as follows:

fhg =
1

NOBS

NOBSX
i=1

fhgi; (15)

where NOBS is the total number of simulations. The
bias of the parameter estimates in percentage of the
damaged values is as follows:

BIAS(fhg) =
fhg � fhdg
fhdg (100): (16)

In the above, hd is the actual value of the parameters.
The Grand mean Percentage Error (GPE) is de�ned as
the mean of the bias of the parameters in Equation 16,
as follows:

GPE =
1

NUP

NUPX
j=1

jBIAS(hj)j: (17)

The Grand Standard Deviation percentage error (GSD)
is de�ned as the standard deviation of the bias of
parameters in Equation 16, i.e:

GSD =

vuut 1
NUP

NUPX
j=1

(jBIAS(hj)j �GPE)2: (18)

Prior to actual testing, the input/output error relation-
ship can be used to determine the accuracy limits on
the measurements, in order to achieve an acceptable
error level in the identi�ed parameters. One of the
most important aspects of parameter identi�cation is
the selection of force application locations (FDOF)
and displacement measurement locations (DDOF). The
number and location of FDOF and DDOF can have
an immense impact on the error in the parameter
estimates. For a given percentage error in DDOF,
the error in the parameter estimates can, potentially,
vary from small to medium to large and to extremely
large identi�cation errors, thus totally overshadowing
the identi�ed parameters. So, it is essential to measure
a subset of DOF that is not highly error sensitive. The
uncertainty associated with the set of measurements as
quanti�ed here can be used for each case to choose the
most suitable force application locations and displace-
ment measurement locations.

NUMERICAL STUDY

A two-dimensional frame structure, as shown in Fig-
ure 1, is used to demonstrate the parameter identi�-
cation algorithm. Damage is introduced by reducing

Figure 1. Two-dimensional frame model.

the sti�ness parameters of the elements. The FEM is
utilized to obtain the simulated measured response at
one subset of degrees of freedom, using the damaged
values of the parameters.

The algorithm starts with these simulated mea-
surements, in place of measured data (as no ex-
periments are done in the present study) and the
undamaged values of the parameters as the initial
value. Finally, it is examined whether or not the
values of parameters converged to the pre-introduced
damaged values. Since the frame structure is composed
of elements capable of bending, as well as axial defor-
mation, two parameters, i.e. the cross sectional area,
A, and the moment of inertia, I, are considered here
for identi�cation. The modulus of elasticity of all the
elements is assumed as unity. The undamaged and
damaged values of the parameters are given in Table 1.

These unknown parameters are numbered as 1 to
12, corresponding to elements 1 to 6 (e.g., parameters 3
and 4 are the area and the moment of inertia of element

Table 1. Undamaged and damaged values of the
parameters.

Element PU
Initial

Undamaged
Values hud

Final
Damaged
Values hd

1 A1 2 1
I1 0.667 0.0833

2 A2 3 2
I2 2.25 0.667

3 A3 3 2
I3 2.25 0.667

4 A4 3 2
I4 2.25 0.667

5 A5 2 1
I5 0.667 0.0833

6 A6 3 2
I6 2.25 0.667
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Table 2. Parameter identi�cation of frame model.

Case FDOF DDOF NUP PU NIM Iteration Results

1 4-6, 9-12,18-21 4-6, 9-12, 18-21 12 1-12 66 2 Converged

2 4, 5, 10, 11, 19 4, 5,10,11,20 12 1-12 19 4 Converged

3 19, 20 4, 5, 10, 11, 19, 20, 21 12 1-12 13 5 Converged

number 2). In each case, a unit force is applied to
FDOF and a set of displacements is measured at the
selected DDOF. Three di�erent cases are presented
in Table 2. In all cases, all the 12 parameters are
assumed to be unknown. Case 1 is an example of the
complete overlap of FDOF and DDOF. Cases 2 and 3
are examples of partial overlap.

In Table 2, all cases lebelled `converged' implied
that the algorithm identi�es the damage values of the
unknown parameters accurately. In Case 1, forces are
applied and displacements are measured at all FDOF
and DDOF. When all DOF are measured, there are
66 independent measurements and only 12 unknown
parameters. The rapid convergence is achieved, due to
the extra number of measurements. Since no errors are
introduced in the measurements, there are no errors in
the identi�ed parameters. In Case 2, there is a partial
overlap between the measured DOF. In this case,
there are 12 unknown parameters and 19 independent
measurements converged in four iterations. Case 3 has
two applied forces and seven measured displacements.
This induces 13 independent measurements, one more
than the 12 required for identi�cation purposes, and
convergence is achieved in �ve iterations.

The identi�cation results presented so far are
based on simulated displacement data having no error.
An error sensitivity analysis is also performed, as
described in the following section, for the selection of an
error tolerant subset of DOF. The results of such two
simulation cases are presented here. In the �rst case,
there are 2 FDOF and 7 DDOF for measurement and,
in the second case, 5 FDOF and 5 DDOF. For each
case, a Monte Carlo experiment is performed assum-
ing a uniform distribution of errors in the measured
response. The Grand mean Percentage Error (GPE)
of the parameters and the Grand Standard Deviation
error (GSD) of the parameters are presented in Table 3.

From the table, it can be observed that Case B has
the smallest identi�cation error and that Case A has
the larger identi�cation error. In this example, Case

Table 3. Identi�cation error percentage for extreme cases.

Case Measured
FDOF

Measured
DDOF

GPE GSD

A 19,20 4,5,10,11,19,20, 21 11.65 23.64

B 4,5,10,11,19 4,5,10,11,20 1.04 1.96

B is taken for further investigation of the statistical
properties of the parameters. As for small GPE and
GSD, the error in the identi�ed parameter will be small.
Di�erent percentages of error have been introduced in
Case B to observe the e�ect of errors in the identi�ed
parameters. The sample size of the simulation is taken
as 1000, based on observations of the statistical uctu-
ations of the maximum output error against the sample
size. This is done for the worst case (i.e. 4% error case)
and stability will be much better for lower values of
random error. The results of the simulations are shown
in Figure 2. The maximum and minimum values of the
parameters for all simulations are realistic, i.e. they are
neither negative nor abnormally high. It is clear from
the identi�ed parameters, that when the magnitude of
the input error is very small, the errors in the identi�ed
parameter are identical to the input error. However, if
errors increase, the output error propagates. It is also
experienced that, for large input error, the algorithm
diverges. Thus, the proposed algorithm works well
when the error in input measurement is comparatively
small. For larger errors, modi�cations may be needed
in the proposed algorithm.

CONCLUSIONS

The parameter identi�cation methods presented here
used a limited number of applied forces at some DOF
and measured static displacements at other DOF.
The algorithm developed is capable of detecting large

Figure 2. Maximum C.O.V. in identi�ed parameters with
varying error in measured input data.
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changes in structural elements correctly, including
element failure. The number of linearly independent
measurements must be, at least, equal to the number
of unknown parameters. This is a necessary condition,
but not a su�cient condition for parameter identi�ca-
tion. It is observed that, sometimes, for a particular
set of FDOF and DDOF, although NIM is equal to
NUP, the algorithm does not converge. However,
the algorithm converges faster when more independent
measurements are made. In order to identify a speci�c
subset of parameters, the measured degrees of freedom
should be chosen to facilitate the unique identi�cation
of the desired parameters. Though any subset can be
chosen for measurement, maintaining NUP<NIM, the
algorithms do not converge in all the cases. A pre-test
error sensitivity analysis will result in the selection of
a set of error tolerant DOF for the measurement that
can be used for parameter identi�cation and damage
assessment. A better location of measurement can
be decided from the values of GPE and GSD. The
precision of the measurements can be selected, so that
the errors in the identi�ed structural parameters are
within the speci�c limits. For example, in the present
study, Case B is taken for further investigation of the
statistical properties of the parameters as the GPE and
GSD are less compared to case A. However, one should
consider the error sensitivity of other cases for a better
understanding and it is understood that this aspect
needs further consideration in future studies.

REFERENCES

1. Doebling, S.W., Farrar, C.R., Prime, M.B. and She-
vitz, D.W. \Damage identi�cation and health monitor-
ing of structural and mechanical systems from change
in their vibration characteristics: a literature review",
LA-13070-MS, UC-900 (1996).

2. Jenkins, C.H., Kjerengtroen, L. and Oestensen, H.
\Sensitivity of parameter changes in structural damage
detection", Shock Vib., 4(1), pp 23-37 (1997).

3. Chen, J.-C. and Garba, J.A. \Analytical model im-
provement using modal test results", AIAA Journal,
18(6), pp 684-690 (1980).

4. Hauge, E.F. and Choi, K.K. \Structural design sen-
sitivity analysis with generalized global sti�ness and
mass matrices", AIAA Journal, 22(9), pp 1299-1303
(1984).

5. Sanayei, M. and Nelson, R.B. \Identi�cation of struc-
tural element sti�ness from incomplete static test
data", Society of Automotive Engineers Inc., pp 1237-
1248 (1987).

6. Sanayei, M., Onipede, O. and Suresh, R.B. \Selection
of noisy measurement locations for error reduction in
static parameter identi�cation, AIAA Journal, 30(9),
pp 2299-2309 (1991).

7. Banan, M.R., Banan, M.R. and Hajelmstad, K.D.
\Parameter estimation of structures from static re-
sponse. I: Computational aspects", ASCE, J. of Struct.
Engng., 120(11), pp 3243-3258 (1994a).

8. Banan, M.R., Banan, M.R. and Hajelmstad, K.D. \Pa-
rameter estimation of structures from static response
II: numerical simulation studies", ASCE, J. of Struct.
Engng., 120(11), pp 3259-3283 (1994b).

9. Hjelmstad, K.D. and Shin, S. \Damage detection and
assessment of structures from static responses", ASCE,
J. of Struct. Engng., 123(6), pp 568-576 (1997).

10. Yeo, I., Shin, S., Lee, H.S. and Chang, S.-P. \Statistical
damage assessment of framed structures from static re-
sponses", ASCE, J. of Engineering Mechanics, 126(4),
pp 414-421 (2000).

11. Liu, P-L. and Chain, C.C. \Parametric identi�cation
of truss structures using static strain", J. of Struct.
Engng, ASCE, 123(7), pp 927-933 (1997).

12. Reich, G.W. and Park, W.L. \A theory of strain-based
structural system identi�cation", J. Appl. Mech.,
68(4), pp 521-527 (2001).

13. Sanayei, M. and Saletnik, M.J. \Parameter estimation
of structures from static strain measurements. I: For-
mulation", ASCE, J. of Struct. Eng., 122(5), pp 555-
562 (1996a).

14. Sanayei, M. and Saletnik, M.J. \Parameter estimation
of structures from static strain measurements. II: Error
sensitivity analysis", ASCE, J. of Struct. Eng., 122(5),
pp 563-572 (1996b).

15. Sanayei, M. and Onipede, O. \Damage assessment
of structures using static test data", AIAA Journal,
29(7), p 9 (1991).

16. Sanayei, M. and Scampoli, S.F. \Structural element
sti�ness identi�cation from static test data", ASCE,
J. of Struct. Engng., 117(5), pp 1021-1036 (1991).

17. Mahnken, R. and Kuhl, E. \Parameter identi�cation
of gradient enhanced damage models with the �nite
element method", European J. of Mech. A/Solids, 18,
pp 819-835 (1999).

18. Hajela, P. and Soeiro, F.J. \Structural damage de-
tection based on static and modal analysis", AIAA
Journal, l28(6), pp 1110-1115 (1989).

19. Oh, B.H. and Jung, B.S. \Structural damage as-
sessment with combined data of static and modal
tests", ASCE, J. of Struct. Engng., 124(8), pp 956-
965 (1998).

20. Wang, X., Hub, N., Fukunaga, H. and Yao, Z.H.
\Structural damage identi�cation using static test data
and changes in frequencies", Engng. Struct., 23, pp
610-621 (2001).

21. Chou, J-H. and Ghaboussi, J. \Genetic algorithm in
structural damage detection", Computers and Struc-
tures, 79, pp 1335-1353 (2001).

22. Papadimitriou, C. \Applications of genetic algorithms
in structural health monitoring", Proc. of the Fifth
World Congress on Computational Mechanics, Vienna,
Austria (2002).



274 G. Aditya and S. Chakraborty

23. Oliver, A. and Vidal, P. \A new multi-solution ap-
proach suitable for structural identi�cation problem",
Computer Methods in Applied Mechanics and Engng.,
191(25-26), pp 2727-2758 (2002).

24. Claire, D., Hild, S. and Roux, S. \A �nite element
damage �elds: the equilibrium gap method", Int. J. for
Numerical Methods in Engng., 61, pp 89-208 (2004).

25. Robert-Nicoud, Y., Raphel, B., Bardet, O. and Smith,
I.F.C. \Model identi�cation of bridge using measure-
ment data", Computer-Aided Civil Infrastructure En-
gng., 20, pp 118-131 (2005).

26. Araki, Y. and Miyagi, Y. \Mixed integer nonlinear
least-squares problem for damage detection in truss
structures", ASCE, J. of Engng. Mech., 131(7), pp
659-667 (2005).

27. Norris, M.A. and Meirovitch, L. \On the problem of
modeling for parameter identi�cation in distributed
structures", Int. J. for Numerical Methods in Engng.,
28, pp 2451-2463 (1989).

APPENDIX

Maximization of the scalar performance error function
J(h) = fE(h)gT fE(h)g gives:

@(fE(h)gT fE(h)g)
@fhg = 0;

with Equation 6, which becomes:

(fua(h)g � fuag)@fua(h)g
@fhg = 0:

Substituting Equation 7 in the above yields:" 
fua(h0)g+

NUPX
k=1

@fuag
@hk

�hk

!
�fuag

#
@fuag
@fhg =0;

i.e.:"
NUPX
k=1

@fuag
@hk

�hk+(fua(h0)g � fuag)
#
@fuag
@fhg = 0;

(A1)

or:

[S(h)]T [[S(h)]f�hg+ ffua(h0)g � fuagg] = 0;

or:

[S(h)]T [S(h)]f�hg=�[S(h)]T
nfua(h0)g�fuag

o
:

(A2)

The sensitivity matrix, [S(h)], is formed by di�erentiat-
ing Equation 4, with respect to each parameter, where
[f�a ] is the force applied and [ua] is the displacement
measured. The jth column of the sensitivity matrix
can be obtained as follows:�

@ff�ag
@hj

�
= [K�aa]

�
@fuag
@hj

+
�
@[K�aa]
@hj

�
fuag

�
:

Thus:

fS(hj)g =
�
@fuag
@hj

�
= �[K�aa]�1

(�
@[K�aa]
@hj

�
fuag

�
�
@ff�ag
@hj

�)
; (A3)

where:�
@[K�aa]
@hj

�
=
@[Kaa]
@hj

� @[Kab]
@hj

[Kbb]�1[Kba]

+ [Kab][Kbb]�1 @[Kbb]
@hj

[Kbb]�1[Kba]

� [Kab][Kbb]�1 @[Kba]
@hj

;

and:�
@ff�ag
@hj

�
=� @[Kab]

@hj
[Kbb]�1ffag

+ [Kab][Kbb]�1 @[Kbb]
@hj

[Kbb]�1ffbg:

The sensitivity coe�cient in Equation A3 is evaluated
for j = 1 to NUP. Since sets of forces are applied
and sets of displacements are measured, the Number
of Independent Measurements (NIM) may be di�erent
from the Number of Unknown Parameters (NUP).


