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A Methodology for Optimizing
Statistical Multi-Response Problems

Using Fuzzy Goal Programming

M. Amiri� and J. Salehi-Sadaghiani1

This paper presents a method for optimizing statistical multi-response problems. The method
is based on fuzzy goal programming and it enjoys a strong mathematical foundation. In this
method, the decision maker's comments are considered objectively. The LINGO programming
environment is used to test the developed method. The method performance is evaluated by
comparing the results with those of other existing methods.

INTRODUCTION

In multi objective decision making environments, a
problem of interest is to select a set of input conditions
(or independent variables), which results in a product
with a desirable set of outputs (or response variables).
In fact, this problem is about simultaneous optimiza-
tion of the response variables, Y1; � � � ; Ym, each of
which depends upon a set of independent variables,
X1; � � � ; Xn. Here, it is desirable to select the levels
of the independent variables such that all the response
variables are optimized [1].

For example, as mentioned in [1], in quality
control environments, the goal may be to �nd the
levels of the input variables (quality characteristics)
of the process, so that the quality of the product has
the desired characteristics. Also, in Response Surface
Methodology (RSM), the levels of the input variables
are adjusted until the set of outputs are optimized.

Since goods have more than one qualitative at-
tribute, the simultaneous improvement of these quali-
tative attributes is very important. A common problem
in the simultaneous optimization of multi-response
problems is that optimizing one attribute a�ects the
other qualitative attributes. In other words, a set of
conditions which is optimized for one attribute is not
necessarily optimized for other attributes. Therefore,
designing a method, which can o�er an acceptable
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product considering di�erent aspects is important [2].
Multi-response optimization in the framework of RSM
is an attempt to reach this end.

Classic methods, such as bounded objectives or a
combination of bounded objectives and lexicography,
are used in multi-response optimization. Myers and
Carter used the method of bounded objectives for
the �rst time and they proposed optimizing the main
solution [3]. Biles extended this method for more than
two solutions [4]. Myers, Khari and Vining extended
these results by combining Myers and Carter's method
with Taguchi's method. They used deviation and
response e�ects as two independent solutions in their
optimization [5].

The loss function method was used by Tang and
Lo [6], Pignatello [7], Winston [8], Artiles-Leon and
Ross [9,10], Kapur and Cho [11] and Robert and
Richard [12]. The basis of this method is Taguchi's
loss function, in which a second order loss function,
encompassing qualitative attributes and, in some cases,
qualitative attributes variance, is o�ered. Taguchi's
loss function is a second order function of the deviation
of the desirable qualitative attribute from the target
value, as shown by Relation 1:

Loss(Y (X)) = k(Y (X)� T ): (1)

In Relation 1, k is the loss coe�cient factor and T is the
desired value of the qualitative attribute. Extending
Taguchi's loss function, Artiles-Leon o�ered the loss
function shown by Equation 2:

L(Y;X; T ) = 4
kX
i=1

�
Yi(X)� Ti

USLi � LSLi

�2

: (2)
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Derringer and Suich [13] introduced a useful class of
desirability functions. There are two types of transfor-
mation from Yi to di(Yi), namely, one-sided and two-
sided. The one-sided transformation is applied when Yi
is to be maximized and the two-sided transformation
is used when Yi is to be assigned a target value.

In a two sided transformation, assume li and ui
to be the lower and upper limits of the response, Yi,
respectively. Also, assume that ti be the target value
of the response, Yi, respectively, such that li < ti < ui.
The desirability function is de�ned by the following
equation:

di(Yi) =

8>>>>><>>>>>:
0; Yi < li;�
Yi�li
ti�li

�s
; li � Yi � ti;�

Yi�ui
ti�ui

�t
; ti � Yi � ui;

0; Yi > ui;

(3)

In Equation 3, the exponents, s and t, determine how
strictly the target value is desired and the user must
specify their values [1]. Derringer and Suich o�ered
Relation 4 for computing the decision function:

D(Y ) = [d1(Y1):d2(Y2) � � � � � � � � � dk(Yk)]1=k: (4)

Zimmermann o�ered a method for solving multi-
objective linear programming problems using fuzzy
logic [14]. Later, Cheng and his colleagues extended the
Zimmermann method for optimizing statistical multi-
response problems [15]. Keeny and Rai�a presented a
method for multiple objective problems using prefer-
ences and value tradeo�s [16].

Noorossana and his colleagues o�ered a method
for extracting and using the decision function in opti-
mizing multi-response problems [17] and Pasandideh
and Niaki [1] modeled a multi-response statistical
optimization problem through the desirability function
approach, where they applied four GA methods to
solve this model by simulation. They also studied
the performance of each method through di�erent
simulation replications and statistically compared them
via a performance measure.

The solutions of most of the above existing meth-
ods take a long time to generate. This weakness is due
to the rapid increase in solution time, as the number
of qualitative attributes and objectives increase. For

this reason, designing optimization algorithms for sta-
tistical multi-response problems that do not have this
disadvantage is of special importance.

In this paper, a methodology for optimizing
statistical multi-response problems, using fuzzy goal
programming, is presented. Through some examples,
the desirable execution time of the developed algorithm
will be shown when the number of factors and/or
objectives increase. The paper is organized as follows:
First, de�nitions are presented. Next, the model and
the proposed methodology are explained and numerical
examples and comparison with other existing methods
will, subsequently, be shown. Finally, the conclusion
and the nomenclature are given.

DEFINITION 1

The mathematical model of the multiobjective problem
is de�ned as follows:

maxZj = Yj(X1; X2; � � � ; Xn); j = 1; 2; � � � ;m
�1 � Xj � 1; j = 1; 2; � � � ; n:

DEFINITION 2

If, in a multi objective problem with m objectives, each
objective function is solved independently, then, one
has m independent optimal solutions. By replacing
each optimal solution in the other objective functions,
a lower and upper limit for each objective function will
be gained.

For the ith objective function, the following prob-
lem is solved separately (i = 1; 2; � � � ;m). The results
are shown in Table 1, in which Zij is the value of the
jth objective function, in terms of optimal variables of
the ith objective function problem; Xij is the optimal
value of variable Xj in the ith objective function.

DEFINITION 3

For any objective function, there is a fuzzy membership
function (shown in Figure 1) as follows:

�(Zj) =

8><>:
0 Zj < Uj ��j = Lj
Zj�(Uj��j)

�j
Uj ��j � Zj � Uj

1 Zj � Uj
(5)

Table 1. The range of objective functions.

Z1 Z2 � � � Zm X1 X2 � � � Xn
max(Z1) Z11 = Z�1 Z12 � � � Z1m X11 X12 � � � X1n

max(Z2) Z21 = Z1 Z22 = Z�2 � � � Z2m X21 X22 � � � X2n

...
...

...

max(Zm) Zm1 = Z1 Zm2 � � � Zmm = Z�m Xm1 Xm2 � � � Xmn
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Figure 1. Membership function of Zj function.

where:

Uj = Z�j ; Lj = min
i

(Zij); �j = Uj � Lj :

THE MODEL AND THE PROPOSED
METHODOLOGY

In this paper, the following assumptions are made:

1. All the factors that make up the input of the prob-
lem, are the independent variables X1; X2; � � � ; Xn;

2. The lower and upper bounds of the independent
variables are -1 and 1, where Xj is a coded variable,
such that �1 � Xj � 1;

3. The output of the problem is the response variables
denoted by Y1; Y2; � � � ; Yk;

4. For every objective function Zj , one has:

Lj � Zj � Uj :
5. The one-sided or two-sided transformation for each

response depends on the nature of the objective of
the problem.

The mathematical model of the problem becomes:

max : Zj = Yj(X1; X2; � � � ; Xn);

j = 1; 2; � � � ;m;
s.t:

�1 � Xj � 1; j = 1; 2; � � � ; n:
Theorem 1

Consider the following response variable problems:

max : Zj = Yj(X1; X2; � � � ; Xn);

j = 1; 2; � � � ;m;
s.t:

�1 � Xj � 1; j = 1; 2; � � � ; n:

Assuming an identical importance for the objectives
and an identical access level to the optimal point of
each objective, the decision maker's desirable solution
is found by solving the following mathematical pro-
gramming model:

max : �;

s.t:

Zj
�j

+ nj � pj =
Uj
�j

; j = 1; 2; � � � ;m;

�+ nj � 1; j = 1; 2; � � � ;m;
�1 � Xj � 1; j = 1; 2; � � � ; n;
� 2 �0 1

�
;

nj � 0; pj � 0; j = 1; 2; � � � ;m; (6)

where:

pj : the function positive deviation, Zj=�j ,
nj : the function negative deviation, Zj=�j ,
�: access level to the optimum of any objective

function.

Proof
In Figure 1 there is:

�(Zj) =

8><>:
0 Zj < Uj ��j = Lj
Zj�(Uj��j)

�j
Uj ��j � Zj � Uj

1 Uj � Zj
;

� = min
j
�(Zj)) max : �;

(a)

� � Zj
�j
� Uj

�j
+ 1;

Uj
�j
� 1 � Zj

�j
� Uj

�j
;

for some j (nj : negative deviation);

(b)

Uj
�j
� Zj

�j
� Uj

�j
+ 1; for some j:

For the constraints of section (a), suppose that:

Zj
�j

=
Uj
�j
� nj :

Now, one has:

�+ nj � 1;
Zj
�j

+ nj =
Uj
�j

: (7)
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For the constraints of section (b), suppose that:

Zj
�j

= pj +
Uj
�j

; (pj : positive deviation):

Now, one has:

Zj
�j
� pj =

Uj
�j

: (8)

Now, Constraints 8 and 9 are combined and, �nally:

max : �

Zj
�j

+ nj � pj =
Uj
�j

; j = 1; 2; � � � ;m;

�+ nj � 1; j = 1; 2; � � � ;m;
�1 � Xj � 1; j = 1; 2; � � � ; n;
� 2 �0 1

�
; nj � 0; pj � 0; j = 1; 2; � � � ;m:

Corollary 1

If the access level to the optimum state of each objec-
tive is di�erent and the objectives are not identically
important from the viewpoint of the decision maker,
then, the desirable solution of the decision maker is
obtained by solving the following mathematical model:

max :
mX
j=1

Wj�j ;

Zj
�j

+ nj � pj =
Uj
�j

;

�j + nj � 1;

�1 � Xj � 1;

�j 2 �
0 1

�
;

nj � 0; pj � 0: (9)

Proof
This is the result of Theorem 1, with the following
assumptions (shown in Figure 2):

�j � �(Zj):

Figure 2. Membership function of Zj objective function.

Corollary 2

If the response variables have the best nominal value
(two-sided transformation), the objectives are not iden-
tically important from the view point of the decision
maker and the access level to the optimum status of
each objective is di�erent, then, the decision maker's
desirable solution is obtained by solving the following
mathematical model:

max :
mX
j=1

Wj�j ;

Zj
�j

+ nj � pj =
Tj
�j

;

�j + nj + pj � 1;

�1 � Xj � 1;

�j 2 �0 1
�
; pj � 0; nj � 0; (10)

where Tj is nominal value of objective function Zj .

Proof
This is the result of Theorem 1 with the following
assumptions:

�(Zj) =

8>>>><>>>>:
0 Zj < Tj ��j
Zj�(Tj��j)

�j
Tj ��j � Zj < Tj

Tj+�j�Zj
�j

T � Zj < Tj + �j

0 Zj � Tj + �j

�j � �(Zj): (11)

Corollary 3

If there are k response variables on \the more { the
better" (one-sided transformation), the m�k response
variables are on the better nominal value (two-sided
transformation) and the goals are not identically im-
portant from the viewpoint of the decision maker, then,
the desired solution, from the viewpoint of the decision
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maker, is obtained by the following mathematical
model:

max :
mX
j=1

Wj�j

Zj
�j

+ nj � Pj =
Uj
�j

; j = 1; 2; � � � ; k;

Zj
�j

+ nj � Pj =
Tj
�j

; j = k + 1; k + 2; � � � ;m;

�j + nj � 1; j = 1; 2; � � � ; k;
�j + nj + pj � 1; j = k + 1; k + 2; � � � ;m;
�1 � Xj � 1; j = 1; 2; � � � ; n;
�j 2 �0 1

�
;

nj � 0; pj � 0: (12)

The proof is obtained from Corollaries 1 and 2.
Based on the proof of this theorem, an algorithmic

procedure for calculating the response surface is now
proposed.

Algorithm

Step 1: De�ne the following response variable prob-
lems:

max : Zj = Yj(X1; X2; � � � ; Xn);

j = 1; 2; � � � ; k
min : rj = Rj(X1; X2; � � � ; Xn);

j = k + 1; k + 2; � � � ;m;
s.t : �1 � Xj � 1; j = 1; 2; � � � ; n:

Step 2: Change the response variable problems as fol-
lows:

max : Zj = Yj(X1; X2; � � � : Xn);

j = 1; 2; � � � ;m;
s.t : �1 � Xj � 1; j = 1; 2; � � � ; n:

Step 3: Solve the problem for each objective function
separately and obtain the solutions. Put the
solutions in the objective functions. For each
objective function obtain two lower limit (Lj)
and upper limit (Uj) as the best and the worst
case and, then, obtain �j = Uj � Lj .

Step 4: Obtain the objective weights, Wj , from the
decision maker and then solve the following
mathematical programming model:

max :
mX
j=1

Wj�j ;

Zj
�j

+ nj � Pj =
Uj
�j

; j = 1; 2; � � � ;m;

�j + nj � 1; j = 1; 2; � � � ;m;
�1 � Xj � 1; j = 1; 2; � � � ; n;
�j 2 �0 1

�
; j = 1; 2; � � � ;m;

pj � 0; nj � 0; j = 1; 2; � � � ;m:

NUMERICAL EXAMPLES AND
COMPARISON

Example 1

This example concerns research that has been done by
Noorossana [17] and has four design variables: The
ammoniac (X1), the thickness of lead and expulsion
alloys on the radiator pipe X2), the temperature (X3)
and the percentage of expulsion in the alloy of the
radiator pipe (X4).

The responses are corrosion (Y1) and adhesiveness
(Y2). The design is a central composite design. The
data are given in Table 2.

The correlation coe�cient and covariance matrix
of the responses

�
Y1; Y2

�
are as follows:

R
�
Y1; Y2

�
= 0:994;

S2 �Y1; Y2
�

=
�

1580:79 1582:55
1582:55 1599:04

�
:

Therefore, the responses, Y1 and Y2, are highly corre-
lated. At �rst, the above data was coded. Then, a
second-order model was �tted for both responses. The
response surface curves for Y1 and Y2 are as follows:

Y1 = 250:34� 34:26X1 + 43:91X2 � 1:55X3

+ 6:75X4 � 22:97X2
2 � 21:84X2

3 � 23:22X2
4

+ 4:56X1X4 + 16:94X2X4 + 25:31X3X4; (13)

Y2 =176:75�2:01X1+30:6X2+2:59X3+16:87X4

� 13:31X2
1 � 13:19X2

2 � 12:94X2
3 � 12:44X2

4

+ 8:56X1X4 � 3:94X2X4 � 8:69X3X4: (14)
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Table 2. Experimental data.

Observation X1 X2 X3 X4 Y1 Y2

1 2 18 330 25 52 50

2 7 18 360 25 50 45

3 7 23 330 25 120 117

4 2 23 360 25 170 159

4 7 18 330 30 120 110

6 2 18 360 30 94 90

7 2 23 330 30 186 178

8 7 23 360 30 180 176

9 4.5 20.5 345 27.5 166 160

10 4.5 20.5 345 27.5 165 163

11 4.5 20.5 345 27.5 167 165

12 4.5 20.5 345 27.5 161 166

13 4.5 20.5 345 31.04 172 169

14 4.5 20.5 345 23.96 160 157

15 4.5 24.04 345 27.5 173 174

16 4.5 16.96 345 27.5 155 150

17 4.5 20.5 366.2 27.5 171 167

18 4.5 20.5 323.8 27.5 157 159

19 8.035 20.5 345 27.5 169 161

20 .965 20.5 345 27.5 162 159

The studied multi-response problem is as follows:

max : Z1 = Y1; max : Z2 = Y2;

s.t:

�1 � Xj � 1; j = 1; 2; 3; 4: (15)

Proposed Method
First, the two problems are solved independently:

max : Z1 = Y1;

s.t:

�1 � Xj � 1; j = 1; 2; 3; 4; Z2 = Y2;

max : Z2 = Y2;

s.t:

�1 � Xj � 1; j = 1; 2; 3; 4; Z1 = Y1: (16)

The results are shown in Table 3. Now, one has:

�1 = 311� 272 = 39; U1 = 311;

�2 = 198� 180 = 18; U2 = 198:

Then, the following problem is solved:

max : W1�1 +W2�2

Zi
�i

+ ni � pi =
Ui
�i
; i = 1; 2;

ni + �i � 1; i = 1; 2;

ni � 0; pi � 0; �i 2 �0 1
�
; i = 1; 2: (17)

The sensitivity analysis on W1 and W2 is shown in
Table 4.

By increasing Wi, the value of Yi would be
increased. As is clear, the best solution is obtained
by considering W1 = 0:25 and W2 = 0:75.

The three foregoing problems were solved using
LINGO software. Based on this example, the compar-
ison between the proposed method and existing ones
are shown in Table 5.

The above example was presented to evaluate the

Table 3. The range of objective functions.

Z1 Z2 X1 X2 X3 X4

max(Z1) 311 180 -1 1 0.297 0.574

max(Z2) 272 198 0.116 1 -0.099 0.594
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Table 4. The range of objective functions for di�erent values of W1 and W2.

W1 W2 Y1 Y2 X1 X2 X3 X4

0.25 0.75 280.4 197.14 -0.10392 1 0.00042 0.4874

0.5 0.5 278.06 197.3 0 1 0.745 0.52

0.75 0.25 278.8 196.67 0 1 0.178 0.565

0.9 0.1 279.3 195.57 0 1 0.276 0.633

0.1 0.9 276.23 197.59 0.0334 1 0 0.53

0.2 0.8 277.33 197.52 0 1 0 0.518

0.8 0.2 278.99 196.4 0 1 0.206 0.583

0.3 0.7 277.45 197.5 0 1 0.111 0.516

0.7 0.3 278.67 196.87 0 1 0.153 0.551

0.6 0.4 278.36 197.14 0 1 0.11 0.531

0.4 0.6 277.76 197.4 0 1 0.42 0.515

Table 5. Optimal results of existing and proposed methods.

X1 X2 X3 X4 Y1 Y2

Keeney and Rai�a [16] 0 1 0.1764 0.5645 278.8 196.7

Derringer and Suich [13] 0 1 0 0 271.3 194.16

Limited Goals Method 0 1 0.3802 0.7173 279.5 193.8

Noorossana [17] 0 1 0.212 0.58725 279.03 196.35

Pasandideh and Niaki [1] 0.23 0.99 0.0004 0.49 284.6 195.74
Presented Method for
W1 = 0:25, W2 = 0:75

-0.10392 1 0.00042 0.4874 280.4013 197.1377

performance of the developed method. As is clear from
Table 5, the developed method and the Pasandideh
and Niaki method [1] are superior to the existing
methods.

Example 2

This example concerns research that has been done by
Derringer and Suich [13]. The casting croup is looking
for the level of control variables that can minimize the
diameter of a hole on the part (Y1), the size of porosity
(Y2) and di�erent temperatures on the surface of the die
(Y3). The controllable variables are the temperature of
the furnace (X1) and the duration for which the die is
being closed (X2).

After running this experiment, the response level
curves are given in the following:

Y1 = 6:79� 1:67X1 + 0:5X2 � 0:167X2
1 ;

Y2 = 16:89� 2:67X1 � 0:5X2 � 0:33X2
1

+ 1:167X2
2 + 0:25X1X2;

Y3 = 94:44 + 10:5X1 + 3X2;

�1 � Xj � 1; j = 1; 2: (18)

The studied multi-response problem is as follows:

max : Z1 = �Y1; max : Z2 = �Y2;

max : Z3 = �Y3;

s.t:

�1 � Xj � 1; j = 1; 2: (19)

Proposed Method
At �rst, three problems are solved independently:

max : Z1 = �Y1;

s.t:

�1 � Xj � 1; j = 1; 2;

Z2 = �Y2; Z3 = �Y3; (20)
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max : Z2 = Y2;

s.t:

�1 � Xj � 1; j = 1; 2;

Z1 = �Y1; Z3 = �Y3; (21)

max : Z3 = �Y3;

s.t:

�1 � Xj � 1; j = 1; 2;

Z1 = �Y1; Z2 = �Y2: (22)

The solutions are shown in Table 6.
�1 = 1:837; U1 = �4:953;

�2 = 3:014; U2 = �13:876;

�3 = 10:821; U3 = �94:44;

Then, the following problem is solved:

max : W1�1 +W2�2 +W3�3;

s.t:

Zi
�i

+ ni � pi =
Ui
�i
; i = 1; 2; 3;

ni + �i � 1; i = 1; 2; 3;

Yi = �Zi; i = 1; 2; 3;

ni � 0; pi � 0; �i 2 �0 1
�
; i = 1; 2; 3: (23)

The sensitivity analysis on W1, W2 and W3 is shown in
Table 7.

By increasing Wi, the value of Yi would be
decreased. LINGO software was used to solve the
above four problems. The corresponding comparisons
are shown in Table 8. The above results were provided

Table 6. The range of objective functions.

Z1 Z2 Z3 X1 X2

max(Z1) -4.953 -13.89 -104.94 1 0

max(Z2) -5.0065 -13.876 -105.261 1 0.1071

max(Z3) -6.79 -16.89 -94.44 0 0

Table 7. The range of objective functions for di�erent values of W1, W2 and W3.

W1 W2 W3 Y1 Y2 Y3 X1 X2

0.336 0.333 0.331 4.953 13.89 104.94 1 0

0.1 0.2 0.7 6.79 16.89 94.44 0.12710�6 0

0.7 0.2 0.1 4.953 13.89 104.94 1 0

0.2 0.2 0.6 6.79 16.89 94.44 0.12410�6 0

0.6 0.2 0.2 4.953 13.89 104.94 1 0

0.3 0.4 0.3 4.953 13.89 104.94 1 0

0.7 0.1 0.2 4.953 13.89 104.94 1 0

0.2 0.7 0.1 4.953 13.89 104.94 1 0

0.1 0.1 0.8 6.79 16.89 94.44 0.12710�6 0

Table 8. Optimal results of the existing methods and the proposed method.

X1 X2 Y1 Y2 Y3

Limited Goals Method 0.19 0.19 6.56 16.33 94.1

Derringer and Suich [13] 0.84 -1 4.77 15.87 100.26

Noorossana [17] 0.815 -1 4.81 15.96 100

Pasandideh and Niaki [1] 0.835 -0.99 4.78 15.86 100.23
Presented Method for

W1 = 0:7, W2 = 0:2, W3 = 0:1
1 0 4.953 13.89 104.94

Presented Method for
W1 = 0:1, W2 = 0:2, W3 = 0:7

0.12710�6 0 6.79 16.89 94.44
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by assuming that W1 = 0:7, W2 = 0:2 and W3 = 0:1,
or W1 = 0:1, W2 = 0:2 and W3 = 0:7. The above
example was presented to evaluate the performance of
the developed method.

CONCLUSION

The proposed method in this paper used fuzzy goal
programming to determine the optimal solution of
statistical multi-response problems. The proposed
method solved (m+ 1) problems to reach the optimal,
m, responses. Two examples were presented to evalu-
ate the performance of the developed method.

NOMENCLATURE

Uj upper bound of objective function Zj
Lj lower bound of objective function Zj
�j access level to the optimum of objective

function Zj
Wj the importance or weight of objective

function Zj from the viewpoint of the
decision maker

�(Zj) the fuzzy membership function of
objective function Zj

Z�j the optimal value of objective function
Zj

X�j the optimal value of variable Xj

�j the tolerance of objective function Zj ,
�j = Uj � Lj
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