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Research Note

Applying Circular Coloring
to Open Shop Scheduling

M. Modarres1;� and M. Ghandehari1

IN this paper, a new approach to formulate a class of scheduling problems is introduced, which
can be applied to many other discrete problems with complicated structures. The concept
of graph circular coloring is applied to develop a model for the special case of an open shop
scheduling problem. In this problem, there are some independent jobs to be processed in a
shop with dedicated renewable resources. Each job consists of several tasks with no precedence
restriction. Each task is processed without preemption. The processing time of the tasks is given.
Processing each task requires using some multiple speci�ed types of resource, while no more than
one task can use each resource, simultaneously. Some tasks can be shared by more than one job
and the process may be repeated more than once. The objective is to develop a schedule which
yields the minimal makespan length of all jobs, as well as the number of cycles. The model is �rst
developed for cases when the processing time of each task is one unit and, then, it is generalized
by relaxing this restriction. In both cases, a circular coloring formulation is shown in comparison
with traditional formulation (single process execution) results in an improved makespan and also
the required information regarding the optimum number of cycles to repeat the process.

INTRODUCTION

The objective of this paper is to introduce the special
case of an open shop scheduling problem, in which the
process can be repeated more than once. An approach
is also developed by applying the concept of circular
coloring for modeling a class of discrete optimization
problems, such as scheduling and sequencing. In fact,
a multi processor open shop scheduling is formulated
that can be handled in more than one cycle. It is
shown that the makespan obtained by this approach
can be less than the makespan of the same problem,
when calculated through a single period problem. This
problem is also similar to a cyclic scheduling one,
except that the number of cycles does not need to
be in�nite. It is shown that the makespan of the
schedule can be decreased signi�cantly, even for an
example with the execution of two processing cycles.
Circular coloring, an extension of graph coloring, has
been studied in recent years and is more powerful in
representing some discrete optimization problems.
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Although the subject of scheduling and sequenc-
ing has been investigated during the last �ve decades,
not many researchers have applied circular coloring
for its representation. Due to the complexity of these
problems, many researchers are still trying to develop
more e�cient methods to obtain good solutions.

In shop scheduling problems, there are a set of
jobs to be processed on a number of machines. A job
consists of several tasks, each to be performed on a
speci�c machine for a given amount of time. Shop
scheduling problems can be categorized as 
ow shops,
job shops or open shops, depending on the ordering
restrictions of job operations. In a 
ow shop, each
job can have, at most, one operation on each machine
and the tasks of all jobs are processed by the same
order, i.e. each job passes the machines in the same
order. In a job shop, the operations of each job must
be processed in a given order, which is speci�c to that
job, although di�erent jobs have di�erent tasks. In
an open shop, there is no restriction in the order of
job operations. For example, consider an automotive
garage with specialized shops. A car may require the
following work: Replacement of exhaust pipes and
mu�er; alignment of wheels and tune up. These three
tasks may be carried out in any order, but it is not
possible to perform two tasks simultaneously. The
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reason is that the exhaust system, alignment and tune
up are carried out in di�erent shops (see [1]). One can
�nd many situations where the tasks of a job can be
performed in any order, even though it is not possible
to execute more than one task simultaneously, due to
the nature of the job or the restriction of resources.

This paper addresses the problem of scheduling
a generalized version of open shops to minimize the
makespan, classi�ed by Graham et al. [2], as a class
of OjjC max. This scheduling problem is formulated
by applying a graph modeling approach, or more
speci�cally, as a circular coloring problem. In this
generalized case of an open shop, some tasks need
more than one type of resource, simultaneously. For
example, in the automotive garage mentioned before, a
task needs more than one resource, such as equipment,
tools and mechanics, simultaneously. It can be shown
that obtaining an optimal schedule is the same as de-
termining an optimal circular coloring of the resulting
graph. The solutions, obtained by applying interval
versus circular coloring formulation, are also compared
through several examples.

In the literature, scheduling problems revolve
around a series of techniques, such as mathemati-
cal programming, dispatching rules, expert systems,
neural networks, genetic algorithms, fuzzy logic and
inductive learning (see [3]). In this paper, some liter-
ature regarding only open shop scheduling is reviewed
brie
y. The open shop scheduling model has received
considerable research attention, because it occurs in
many real world environments (see [4] or [5]).

The problem of minimizing the makespan of an
open shop with n jobs and m machines, where every
job consists of several tasks and each task must be
processed on a di�erent machine for a given amount
of time, is considered by many researchers (see [1,5-
25]). They developed suitable algorithms to solve the
problem for a variety of cases, such as for a di�erent
number of machines or for di�erent processing times.
However, they considered the problem with only one
execution and each task needs only one resource for
execution. Taillard [20] used a tabu search to solve
many open shop problems for open shop scheduling
problems, which are used as a benchmark in the
literature.

The only paper in the literature addressing open
shops by application of graph coloring is one by Kubale
and Nadoski [26]. However, they considered a cyclic
open shop, in which the process is repeated in�nitely
and each task needs only one resource. They also
showed that the problem of cyclic scheduling in open
shop scheduling is NP-hard for a 3-processor system
and polynomial for a 2-processor one. They proved
that if a given open shop can be scheduled in 3
time units, then it is polynomial solvable. They also
proved that in a compact open shop, the problem of

minimizing Cmax for a 2-processor to determine the
existence of a legal schedule is also NP-hard.

This research is distinguished from previous ones
from the point of view of problem de�nition, as well as
formulation. In the authors' model, each task may need
multiple resources. Furthermore, it is the special case
of a cyclic open shop, in which the number of cycles
can be limited and not necessarily in�nite. To solve
this model, an approach has been developed, based on
circular coloring formulation.

This paper is organized as follows: First, the prob-
lem is de�ned, then, the de�nitions are reviewed, as
well as some properties of graph and circular coloring.
After that, the graphical model is developed, which
represents multiprocessor open shop scheduling, and
�nally, some illustrative examples are presented.

PROBLEM DEFINITION

A multi processor open shop scheduling model with
dedicated resources is considered, which can be exe-
cuted in more than one cycle. The number of cycles is a
positive integer. In each cycle, there are n independent
jobs to be processed and each job consists of several
tasks. Due to the nature of open shops, no more than
one task can be executed at any time and no precedence
relation exists between the tasks of a job. A task may
belong to more than one job (such as the operation
of a furnace, which can handle more than one task).
Each task needs a set of resources to be executed and
its processing takes some speci�ed time. During the
process of a task, no interruption is allowed.

There are r types of dedicated renewable re-
sources. Each type contains a number of non-identical
resources available to process the jobs. For example,
one type of resource can be the set of machines in a
shop. However, the machines are not the same and are
used for di�erent purposes. To process a task, some of
these resources are needed simultaneously. However,
at any time, more than one task cannot use the same
resource.

The following notation is considered:

J : Set of jobs,
S: Set of tasks,
<: Set of dedicated renewable resources,
S(T ) � S: Set of tasks of job T 2 J ,
S(R) � S: Set of tasks that requires resource

R 2 <,
R(s) 2 <: Set of resources needed to execute

task s 2 S
ts: Initial point of the time interval of

task s 2 S (It is the decision variable
and determined by the model.)

As mentioned above, some tasks may be shared
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by more than one job. In other words, it is possible
that S(Ti) \ S(Tj) 6= ?.

The objective is to determine the minimum num-
ber of cycles and a proper schedule of tasks and,
consequently, the schedule of jobs to be executed, in
order to minimize the makespan (the total length of
processing) for all jobs. The problem of open shop
scheduling is known to be NP-hard (see [27]). It is
obvious that this problem is a generalized version of
open shop scheduling.

DEFINITION AND BASIC PROPERTIES
OF CIRCULAR CHROMATIC NUMBER

Since the authors' approach to formulate multi
processor-multi period open shop scheduling problem
is by applying circular coloring, in this section, the
de�nition, concept and some of its basic properties are
brie
y reviewed. However, since it is a generalization
of graph coloring, this classical topic is also de�ned and
the relation between them is then discussed.

Graph Coloring

De�nition 1
Consider a graph G(V;A) with a vertex set V (G) and
an edge set E(G) then, k-coloring of this graph is a
labeling, f : V (G) ! S where jSj = k. The labels are
the colors of vertices, such that adjacent vertices have
di�erent labels. The chromatic number, �(G), is the
least k, such that G is k-colorable.

In a similar de�nition for chromatic number �(G),
the vertices are assigned unit intervals, rather than
colors. The de�nition of r-interval coloring is as follows.

De�nition 2

An r-interval coloring of a graph G is a mapping,
g, which assigns each vertex, x 2 V (G), a unit
length open sub-interval of interval [0; r], such that
the sub-intervals of adjacent vertices are disjoint. The
chromatic number of a graph, denoted by �(G), is
de�ned as:
�(G) = Inf fr : G is r-interval colorableg:

Similarly, an r-interval coloring of G corresponds to a
mapping, f , from V (G) to [0; r), such that 1 � jf(x)�
f(y)j � r � 1 for every edge, (x; y) 2 G. Furthermore,
f(x) � r � 1, for all x 2 V (G).

Circular Coloring

The circular chromatic number, �c(G), of graph G is
a generalization of the chromatic number of a graph.
It was introduced in 1988 by Vince [28] as \the star-
chromatic number". The mathematical de�nition of
circular coloring is as follows.

De�nition 3
Let C be a circle (Euclidean) of length r. An r-circular
coloring of graph G is a mapping, c, which assigns each
vertex, x 2 V (G), an open unit length arc of C, say
c(x), such that, for every edge, (x; y) 2 G, c(x) _
c(y) = ?. It is said that graph G is r-circular colorable,
if there is an r-circular coloring of G. The circular
chromatic number of a graph, denoted by �c(G), is
de�ned as:

�c(G) = Inf fr : G is r-circular colorableg:
The alternate de�nition of circular coloring is presented
by Vince [28], as follows.

De�nition 4
For two integers, 1 � d � k, a(k; d), coloring of
graph G is a coloring of the vertices of G with colors
f0; 1; � � � ; k � 1g, such that:

(x; y) 2 E(G)) d � jc(x)� c(y)j � k � d:
The circular chromatic number is de�ned as:

�c(G) = Inf fk=d : G has a(k; d) coloringg:
On the other hand, it can be proved that �c(G) is

rational. To determine the circular chromatic number,
�c(G), of a �nite graph, G, it su�ces to determine
whether G is r-circular colorable or not, for each of
those rational numbers, r = p=q, for which q � �(G)
and p � circumference(G) � jV (G)j. �(G) is the
maximum size of an independent set of vertices and
circumference (G) is the length of the longest cycle in
G. Consequently, a �nite number of rational numbers
must be examined to determine �c(G).

Relation Between the Chromatic Number of
Graph and Circular Coloring

Lemma 1
For each graph, the following relation exists between
chromatic and circular chromatic numbers:

�(G)� 1 < �c(G) � �(G): (1)

Proof. See [29].

Corollary 1
a) The chromatic number of a �nite graph can be

obtained, if its circular chromatic number is given.
It is the minimum integer number, greater than, or
equal to, its circular chromatic number;

b) Two �nite graphs with the same chromatic number
may have di�erent circular chromatic numbers.
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Case of Equal �(G) and �c(G)
The important question is under what conditions
�c(G) = �(G) for a graph of G. This question was
raised by Vince [28] and investigated in many other
papers (see [29]). Guichard [30] proved that it is NP-
hard to determine whether or not an arbitrary graph,
G, satis�es �c(G) = �(G).

In open shop scheduling, if each task requires only
one resource, like classical open shops, then it can be
formulated as the edge coloring of a bipartite graph, G,
with a two disjoint vertex set, V1, V2, such that each
edge corresponds to one task and connects a vertex in
V1 (set of jobs) to a vertex in V2 (set of resources). So,
it is obvious that �c(G) = �(G) = �, where � is the
maximum degree of vertices in V (G).

Besides the chromatic number of a graph, there
are many other graph parameters for which the relation
with the circular chromatic number has been investi-
gated. Among these parameters are: The fractional
chromatic number, the clique number, the maximum
degree, the girth and the connectivity. These relations
are investigated by Zhu [29] and some other researchers.

Weighted Graph

De�nition 5
A weighted graph, (G;w), is a graph, G = (V;E),
with a vertex set and an edge set, E(G), and a weight
function, w : V ! [0;1).

De�nition 6
An r interval coloring of weighted graph (G;w) is a
mapping, �, of vertices of G to open sub-intervals of
[0; r], such that for each vertex, x, the length of �(x)
is equal to w(x) and adjacent vertices are mapped to
disjoint sub-intervals.

The interval chromatic number, �(G;w), of
weighted graph (G;w) is the minimum number, r, for
which there is an r-interval coloring of G.

De�nition 7
An r circular coloring of weighted graph G is a
mapping, �, of the vertices of G to the open arc of
a Euclidean circle, C, of length r, such that:

i) �(x) and �(y) are disjoint, if (x; y) 2 E(G);

ii) The length of �(x)is at least w(x) for all vertices,
x 2 V .

The circular-chromatic number, �c(G;w), of
weighted graph (G;w) is �c(G;w) = Inf fr :
there is an r circular coloring of (G;w)g.

From this de�nition, it is obvious that whenever
the weight function takes constant value 1, then,
�c(G) = �c(G;w) [31]. Dauber and Zhu [32] proved
that �c(G;w) can always be attained.

FORMULATION OF THE SCHEDULING
PROBLEM

In this section, the concept of circular coloring is
applied to formulate the scheduling problem described
previously. First, it is assumed that the processing
time of each task is exactly one time unit. Then, this
assumption is relaxed.

Although both interval coloring and circular col-
oring can be applied to model this problem, the latter
may result in a better solution if the process is executed
more than once. Thus, this scheduling problem is
formulated as a circular coloring problem and it is
shown that obtaining an optimal schedule is the same
as determining an optimal circular coloring of the
graph. The solutions obtained are also compared by
applying interval versus circular coloring formulation
through several examples.

De�nition 8

A pair of tasks is called incompatible, if one of the
following relations holds:

� They belong to the same job;

� They share the same resource.

Considering the above de�nition, the following
notation is considered:

I(S): Set of tasks incompatible with s 2 S.

Let s 2 S be a task belonging to job T , or by the
authors' notation, s 2 S(t). If it needs some resources,
R(s) 2 <, then by the authors' notation, s0 2 S is
incompatible with s, if either s0 2 S(T ) or R(s) _
R(s0) 6= ?.

Graph Model of the Problem

Let a graph of G = (V;E), with a vertex set, V (G), and
an edge set, E(G), represent the scheduling problem
of the multi processor open shop, de�ned previously.
Each vertex of this graph indicates one task. In this
graph, incompatible tasks must be assigned disjoint
intervals. In other words, they cannot be processed
simultaneously. Therefore, if one considers each task as
a vertex, v 2 V (G), in this graph, then it is connected
to all of its incompatible tasks. In fact, there is an
edge, (x; y) 2 E(G), between any pair of vertices,
x, y 2 V (G), if and only if, x 2 I(y) or, similarly,
y 2 I(x). This means two adjacent vertices of this
graph are associated with a pair of incompatible tasks
and are connected by an edge. In other words, if two
vertices are not connected by an edge, it means they are
compatible tasks and can be processed simultaneously.
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It is obvious that any interval or circular coloring
of this graph results in a feasible solution for the
scheduling problem, due to the fact that a coloring
solution prevents two adjacent vertices from having an
overlapping time interval. In other words, it forces
the processing periods of two incompatible tasks to
be disjoint. Thus, it seems natural to solve this
problem by determining the chromatic number of the
corresponding graph, which is actually the required
time to complete the jobs.

As mentioned before, the objective is not only
�nding an optimal schedule but also determining the
minimum number of cycles in order to minimize the
makespan.

In case the chromatic number of G, which rep-
resents the problem, is equal to its circular chromatic
number, then scheduling for more than one cycle does
not decrease the makespan. But, if they are not equal,
then there exists a repeating schedule, such that its
makespan is equal to circular chromatic. Since the
inequality of �c(G) � �(G) can be strict, the chromatic
number approach may not provide the optimal solution
to this scheduling problem. It is also shown that the
number of repeated cycles required to gain an improved
makespan is limited.

Interval Coloring Formulation

There are various methods to obtain the interval or
circular coloring solution of a graph. A mathematical
model is formulated to derive the coloring solution of
a graph.

An interval of length r is considered and a
unit length subinterval is assigned to each vertex,
by considering that adjacent vertices must be dis-
joint.

Let ts denotes the decision variable for the
coloring model representing the initial point of the
subinterval assigned to vertex s. As a result, the
following mathematical model represents the interval
coloring formulation of the scheduling problem:

minZ = r;

S.t.

1 � jts � ts0 j � r � 1; s0 2 I(s); s 2 S; (2)

0 � ts � r � 1; s 2 S: (3)

This mixed integer programming has (jV (G)j + 1)
variables and 2(jE(G)j + jV (G)j) constraints. The
objective function minimizes the interval, in which G
is r colorable. Starting task s at ts, results in a feasible
schedule with a makespan that is equal to r.

Circular Coloring Formulation

Now, a circle with length r is considered and a unit
length arc is assigned to every vertex while considering
the adjacency condition. The resulting mathematical
model is the same as that of interval coloring, except
that Relation 3 is replaced with the following relation:

0 � ts � r; s 2 S: (4)

This mixed integer program is similar to the last one.
In this case, the makespan is equal to r, if the schedule
is executed repeatedly.

Interval Coloring of Weighted Graph

Now, the assumption that the processing time of each
task is one unit is relaxed. In that case, vertex s of
graph G has a label, named weight, which is equal
to the processing time of task s. Thus, the problem
is represented by a weighted graph. Obviously, in
this graph, each feasible schedule is equivalent to an
interval coloring of weighted graph G. Let wj be the
processing time of task sj or the weight for vertex sj .
The following formulation of interval coloring can be
converted into a mixed integer programming:

minZ = r;8><>:r � wi � tsi ; si 2 S
tsi � tsj � wi; if : tsj � tsj ; si 2 I(sj)
tsj � tsi � wj ; if : tsi � tsi ; si 2 I(sj)

(5)

Circular Coloring of Weighted Graph

Now, a circle with length r is considered and an arc is
assigned to every vertex, si, with length wi, considering
the adjacency condition:

minZ = r;8>>>>>>>>>>><>>>>>>>>>>>:

r � tsi ; si 2 S

tsi � tsj � wi
tsi � tsj � r � wj

)
if; tsi � tsj ; si 2 I(sj)

tsj � tsi � wj
tsj � tsi � r � wi

)
if; tsj � tsi ; si 2 I(sj)

(6)

ILLUSTRATIVE EXAMPLES

In this section, the proposed approach is illustrated
through some examples.
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Example 1

Consider an open shop scheduling problem with three
jobs of J = fT1; T2; T3g and �ve tasks of S =
fs1; s2; s3; s4; s5g. The processing time of each task is
equal to one unit. On the other hand, there are three
di�erent machines, R1 = fA;B;Cg and operators,
R2 = fK;L;Mg. Thus, the set of resources is < =
fA;B;C;K;L;Mg.

Job T1 consists of tasks s1 and s2 or, by the
authors' notation, S(T1) = fs1; s2g. Similarly, S(T2) =
fs3; s4g and S(T3) = fs5g. Task s1 must be processed
on machine A under supervising operator K or, by
the authors' notation, R(s1) = fA;Kg. Similarly,
R(s2) = fB;Lg, R(s3) = fB;Lg, R(s4) = fC;Mg and
R(s5) = fC;Kg.

There are no precedent constraints. Find a
schedule of jobs to be executed such that the total
scheduled length is minimized when the process is
executed once or more.

The graph coloring concept is applied to solve
this problem. The graph representing this problem is
shown in Figure 1. Task sj is represented by vertex
sj , for j = 1; 2; � � � ; 5 of graph G. Incompatible tasks
are associated with adjacent vertices in this graph.
For example, there is an edge between s1 and s2,
because they belong to job T1. There is also an edge
between s5 and s1, because they need common resource
K. Both interval and circular coloring concepts are
applied to obtain the solution and then the answers
are compared.

Interval coloring formulation determines the ini-
tial point of the subinterval of each vertex in graph
G, or in fact, the starting time of processing the
corresponding tasks in the scheduling problem. Table 1
and Figure 2 represent the schedule of all tasks, if
interval coloring formulation is applied.

Figure 1. Graphical representation of Example 1.

Table 1. Starting time of tasks of Example 1 by interval
coloring.

i 1 2 3 4 5

tsi 0 1 0 1 2

Figure 2. Schedule of tasks of Example 1 by interval
coloring.

If r is determined by Relations 2 and 3, then
r = 3. On the other hand, if circular coloring
(mathematical model consists of Relations 2 and 4)
formulation is applied, then the makespan reduces
to r = 2:5 and the minimum number of times that
the process has to be repeated is 2. Actually, it is
the minimum multiplier of the integer that makes it
integer. Table 2 and Figure 3 represent the schedule
of the tasks, if the circular coloring formulation is
applied.

When the process is executed once, then the
makespan is equal for both interval and circular color-
ing. Therefore, this method is helpful when the process
is repeated more than once to achieve a better schedule
with a lower makespan.

Following circular coloring formulation (when the
process is executed repeatedly), the makespan reduces
to 2.5.

If the process executes in a �nite number of
repeats, the data in Table 3 can be used to develop
a schedule with a makespan of exactly 2.5. In the
following schedule (see Figure 4), the order of tasks for

Table 2. Starting time of tasks of Example 1 by circular
coloring.

i 1 2 3 4 5

tsi 0 1 2 0.5 1.5

Figure 3. Schedule of tasks of Example 1 by circular
coloring.
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Table 3. Processing time of tasks of Example 2.

i 1 2 3 4 5 6 7

wi 1 1 1 1 1.5 0.5 0.5

each process is the same as the previous one. Actually,
in this schedule, the gap between the tasks is removed
and compacted to improve the makespan.

In this schedule, the makespan is minimized and
the total processing time is reduced to 2.5, provided
the number of times this sequence is repeated be an
even number.

In the following example, a situation is considered
in which the processing times are di�erent and not
necessarily equal to one.

Example 2

Consider an open shop scheduling problem with four
jobs of J = fT1; T2; T3; T4g and seven tasks of S =
fs1; s2; s3; s4; s5; s6; s7g. On the other hand, there are
three di�erent machines, R1 = fA;B;Cg and three
operators, R2 = fK;L;Mg. Thus, the set of resources
are R = fA;B;C;K;L;Mg.

Job T1 consists of tasks s1 and s2, or by the
authors' notation S(T1) = fs1; s2g. Similarly, S(T2) =
fs3; s4g, S(T3) = fs5g and S(T4) = fs6; s7g. Task
1 must be processed on machine A under supervising
operator K, or by the authors' notation.

Similarly, R(s2) = fB;Lg, R(s3) = fB;Lg,
R(s4) = fC;Mg, R(s5) = fC;Kg, R(s6) = fB;Lg,
R(s7) = fA;Mg and R(s1) = fA;Kg.

In this example, the processing time of the tasks
is not equal, as shown in Table 3.

Similar to Example 1, there is no precedence
assumption. Again, the objective is to �nd a schedule
of executing the tasks such that the total processing
time is minimized, when the process is executed once
or when it is repeated.

The graph which represents this problem is shown
in Figure 5. Incompatible tasks are associated with
adjacent vertices in this graph. Both interval and
circular coloring are applied to obtain the solution and
then the answers are compared.

By formulating the problem as an interval color-

Figure 4. Schedule of tasks for two repeats of Example 1
by circular coloring.

Figure 5. Graphical representation of Example 2.

ing, the tasks are executed within 3 units. The schedule
of tasks is shown in Table 4 and Figure 6. However,
by applying circular coloring, it is possible to decrease
the makespan to 2.5.

Similarly, from the circular coloring formulation
of Relation 6, the schedule is as in Table 5, as well as
in Figure 7.

In this case, to �nd the minimum number of
cycles, considering the multiple properties is not ap-
plicable anymore, because the processing times are not
equal numbers.

By using circular coloring formulation, a sched-
ule can be developed (given in Figure 8), in which
the number of cycles is 2 and the makespan is
2.75.

According to these examples, a schedule in which
the makespan is equal to the circular chromatic number
of graph G can be determined. If the processing time
of all tasks is the same, then the number of cycles
is the least multiplier that makes that makespan an
integer. The schedule is obtained from the mixed
integer programming, which is developed by circu-
lar formulation �rst and which can then be com-
pacted.

Table 4. Starting time of tasks of Example 2 by interval
coloring.

i 1 2 3 4 5 6 7

tsi 1.5 0 1 2 0 2 1.5

Table 5. Starting time of tasks of Example 2 by circular
coloring.

i 1 2 3 4 5 6 7

tsi 0 1 2 0.25 1.25 0.25 1.25
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Figure 6. Schedule of tasks of Example 2 by interval
coloring.

Figure 7. Schedule of tasks of Example 2 by circular
coloring.

Figure 8. Improved schedule of tasks of Example 2 by
circular coloring.

CONCLUSION

In this paper, a scheduling problem is introduced
that can be considered a generalization of open shop
scheduling. Also, a method based on circular coloring is
developed to improve the makespan in situations when
the process repeats. The objective is to minimize the
total makespan. In this model, independent jobs are
processed in an open shop. Each job consists of several
tasks and each task needs a set of dedicated resources.
Actually, one also can determine the minimum number
of repetitions of jobs required, in order to minimize the
makespan. This approach can be extended for many
other problems in the real world. In fact, circular
coloring models are capable of improving the results of
these cases. For further research, some metaheuristic
algorithms; such as Ant Colony Optimization (ACO),
can be developed for problems of a larger size. It is also
possible to extend this research by hybridization of the

ACO algorithm with other analytical or e�cient local
search methods to improve its precision and speed.
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