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Uniform Fractional Part: A Simple Fast Method
for Generating Continuous Random Variates

H. Mahlooji1;�, A. Eshragh Jahromi1, H. Abouee Mehrizi1 and N. Izady1

A known theorem in probability is adopted and through a probabilistic approach, it is generalized
to develop a method for generating random deviates from the distribution of any continuous
random variable. This method, which may be considered as an approximate version of the
Inverse Transform algorithm, takes two random numbers to generate a random deviate, while
maintaining all the other advantages of the Inverse Transform method, such as the possibility of
generating ordered as well as correlated deviates and being applicable to all density functions,
regardless of their parameter values.

INTRODUCTION

Random variate generators are at the heart of any
stochastic simulation. Generating samples from a di-
verse variety of distributions has become an established
research area since World War II, when the feasibility of
performing Monte Carlo experiments became a reality.
The generation of non-uniform random deviates has
come a long way, from methods dating back to a time
prior to the era of the computer [1] to the latest novel
methods, such as the Ziggurat and vertical strip [2].
While some methods are general in nature, some others
are intended for a particular distribution.

Fishman [3] summarizes the milestones in the
development of this �eld as follows: In 1951, von
Neumann showed how \principles of conditional prob-
ability could be exploited for generating variates". In
1964, Marsaglia et al. demonstrated how \a synthesis
of probabilistic and computer science considerations
could lead to highly e�cient algorithms" and, �nally,
in 1974, Ahrens and Dieter showed how \a bounded
mean computing time could be realized for an arbitrary
distribution".

Among the algorithms developed so far, some are
widely used and/or are more e�cient than others. For
instance, while the Inverse Transform method is quite
simple, if the desired cumulative distribution function
cannot be expressed in a closed form, one has to resort
to numerical methods, which signi�cantly decrease
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the e�ciency of the algorithm. If the distribution
function can be stated as a convex combination of other
distribution functions from which, perhaps, it is easier
to generate values, the Composition method would
be a competitive alternative. While these methods
deal directly with the intended distribution itself, the
Acceptance Rejection method targets a majorizing or
hat function instead of the given density. The e�ciency
of this method is directly related to the chosen hat
function, where identifying a `perfect' hat function in
each case has always posed as an elusive goal. There
are many other algorithms in the literature, such as:
Forsythe-von Neumann's Ratio of Uniforms and the
like, which all can be found with in-depth analysis and
examples in Devroye [4] or Fishman [3]. Hormann [5]
proposed a method named the Transformed Density
Rejection that can be applied to all distributions. This
is a complex method and is usually time-consuming
when it comes to �nd the hat and the squeeze functions.
Some other universal random variate generators, such
as the Strip method, have also been discussed thor-
oughly in Hormann et al. [5,6].

One of the most di�cult problems in random
variate generation is selecting an appropriate well-
suited algorithm. Devroye [4] suggests speed, set-
up time, length of compiled code, range of set of
applications and simplicity as the factors for evaluating
di�erent methods. Law and Kelton [7] add exactness
and robustness to this list. Exact algorithms generate
variates according to the desired distribution, with
the assumptions of availability of a perfect random
number generator and the computer capability to store
real numbers, while approximate methods need more
assumptions. Robustness deals with the e�ciency of
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the algorithm over the entire range of distribution
parameters.

In this article, a method is presented, which is
applicable to the distributions of all continuous random
variables. Although this algorithm belongs to the
approximate category, its simplicity, speed, robustness
and coverage make it a powerful competitor against
exact methods, while its accuracy can be enhanced
to almost any desired level. This method, which can
be looked upon as a piecewise linear approximation
generator, demands a rather high cost of set-up time,
in the case of a rare event simulation. An added set-
up time is expected also for cases when the density is
somehow changed during the simulation run.

The structure of this paper is as follows: First,
there will be a discussion on theoretical considerations
when developing the probabilistic interpretation of the
Uniform Fractional Part (UFP) method. Then, the
dependence issue between the random numbers used
as input to the algorithm will be elaborated on and
the initial algorithm will be presented. After that,
Simpli�cations to the initial algorithm are included
and computational results are presented. Finally, the
paper ends with concluding remarks and suggestions
for further developments.

THEORETICAL BASIS OF THE UFP
METHOD

The uniform fractional part method is based on the
following theorem, which appears as an exercise on
page 72 in Morgan [8]:

Theorem 1

Suppose X and U1 to be two independent uniform [0; 1]
random variables. Then, U2, de�ned as:

U2 = U1 +X � bU1 +Xc ; (1)

is uniformly distributed over the interval [0; 1], where
b�c stands for the \largest integer smaller than, or equal
to �".

There is an interesting extension to this problem
(see [8] p. 72). If the continuous random variable, X,
follows any distribution other than uniform [0; 1], U2 is
still distributed uniformly over the interval [0; 1].

It is tempting to infer that, based on Equation 1,
one can generate values for the continuous random
variable, X, with the use of two uniform random
numbers, such as U1 and U2. Following this notion,
one can isolate X in Equation 1 to get:

X = U2 � U1 + bU1 +Xc : (2)

Since U1 takes values between 0 and 1, then bU1 +Xc
is equal to either bXc or bXc+ 1. This means that one
of the following two cases is relevant:

a) If bU1 +Xc is equal to bXc, Equation 2 simpli�es
to:

X = U2 � U1 + bXc : (3)

Since the fractional part of X (i.e., X � bXc) falls
between 0 and 1, one can write:

0 � X � bXc = U2 � U1 � 1

) U1 � U2 � 1 + U1 ) U2 � U1: (4)

b) If bU1 +Xc is equal to bXc + 1, Equation 2 takes
the following form:

X = U2 � U1 + bXc+ 1: (5)

Since the fractional part of X falls between 0 and
1, one can write:

0 � X � bXc = U2 � U1 + 1 � 1

) U1 � 1 � U2 � U1 ) U2 � U1: (6)

Thus, Equation 2 can be rewritten as follows:

X =

(
U2 � U1 + bXc ; U2 � U1

U2 � U1 + bXc+ 1; U2 < U1
(7)

All this means that, in generating deviates for any
continuous random variable X, three values are needed:
U1, U2 and bXc. U1 and U2 are easily provided by
random number generators, such as the one developed
by Marsaglia and Tsang [9]. To generate values for
bXc, one can use the Inverse Transform method. In
fact, suppose X � FX . If one assumes that X takes
non-negative values only, then:

pi = P (bXc = i) = P (i � X < i+ 1)

= FX(i+ 1)� FX(i); i = 0; 1; 2; � � � (8)

Hence, bXc has a discrete distribution and takes value
i with probability pi, as illustrated in Figure 1, for an
arbitrary distribution. Nowadays, one can easily have
access to sources that provide very accurate values of pi
for any density function once the mesh points, bXc = i,
are speci�ed. This obviously can also be done for the
special case of pi = p, such that

P
8i
pi = 1:0 always

holds. Now, the following algorithm can be proposed.

Algorithm 1

1. Generate U1 and U2 as two independent uniform
[0; 1] random numbers,

2. Generate a value for bXc,
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Figure 1. Probabilities associated with bXc.

3. Generate U1 and U2 as two independent uniform
[0; 1] random numbers,

4. Generate a value for bXc,
5. If U2 � U1, then, X = U2 � U1 + bXc; otherwise,

X = U2 � U1 + bXc+ 1.

This algorithm works exactly, provided that U1
and U2 in Equation 1 are independent. In fact, if
X � U [m;n], it can be easily shown (see the Appendix
for the case of integer m and n) that U1 and U2
are independent. However, as will be investigated in
detail, this is not true in general. Hence, in cases
where U1 and U2 do not behave as independent random
variables, this algorithm can be modi�ed and used
as an approximate method toward generating random
deviates. This matter is discussed in following sections.

Up to this point, all this method does is randomly
to select one of the integer values within the range
of X(one of the columns in Figure 1) and then adds
U2 � U1 to it, to make a random deviate. Obviously,
it is quite restrictive if one is to select only integer
values for X as the mesh points. So, Theorem 1 is now
generalized in such a way that once needed any set of
non-equidistant real values within the range of X can
also be chosen and implemented in the algorithm. To
achieve this purpose, �rst, the following de�nition is
presented.

De�nition 1

The operand, Int, is de�ned as:

Int (X + �) =

(
ai; X + � < ai+1

ai+1; X + � > ai+1
(9)

where X is a continuous random variable taking values
in the interval [ai; ai+1) and a0is are distinct real values,
such that ai < ai+1; i = 1; 2; � � � .

Theorem 2

Suppose X is any continuous random variable and
(�1; a1), [a1; a2); � � � ; [ak;1) is a �nite partition of
the range of X. Now, de�ne A as the set of mesh
points, i.e., A = fa1; a2; � � � ; akg. Also, de�ne di as
the distance between two successive members of A, as
di = ai+1 � ai, i = 1; 2; � � � ; k � 1. Given that U1 is a
uniform [0; di] random variable for any value of i, when
X takes a value in an interval of the form [ai; ai+1),
then, U2 de�ned as:

U2 = U1 +X � Int (X + U1); (10)

is uniformly distributed over the interval [0; di].
To prove Theorem 2, the following lemma is �rst

presented.

Lemma 1

Given that di 2 <+, x 2 < and y 2 [0; di] are constant
real numbers and U 2 [0; di) is a real variable for i =
1; 2; � � � ; k � 1, then the following equation:

x+ U � Int (x+ U) = y; (11)

has one, and only one, solution, such as U = u.

Proof

First, it is shown that Equation 11 will always have an
answer. If U is isolated in Equation 11, one will arrive
at:

U = y + Int (x+ U)� x: (12)

It is obvious that, for any particular i, Int (x + U) is
either equal to Int (x) or Int (x) + di. So, Equation 12
can be presented as one of the following two cases:

- If Int (x+U) = Int (x), then, U = y+ Int (x)�x)
u = y + Int (x)� x,

- If Int (x+U) = Int (x) +di, then, U = y+ Int (x) +
di � x) u = y + Int (x) + di � x.

Thus, one answer always exists. If there were two
di�erent solutions as:

u1 = y + Int (x)� x;
and:

u2 = y + Int (x) + di � x;
one would have:

0 � u1 < di ) 0 � y + Int (x)� x < di

) di � y + Int (x) + di � x < 2di

) di � u2 < 2di; (13)
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which contradicts the assumption of 0 � u2 < di. A
similar argument holds for u1. Hence, Equation 11 will
always have a unique solution, like U = u.

Now, based on Lemma 1, an e�ort will be made to
prove Theorem 1. Bearing in mind that, for the case of
any continuous random variable like X one can write:

P (X = x) = P
�

lim
h#0 x � X < x+ h

�
= lim

h#0 P (x � X < x+ h) �= lim
h#0 h:fX(x)

) fx(x) �= P (X = x)
h

:

One can �nd the density of U2 conditioned on the
interval in which X falls as:

PrfU2 = u2jX 2 [ai; ai+1)g
= PrfX + U1 � Int (X + U1)

= u2jX 2 [ai; ai+1)g

=
Z ai+1

ai
PrfX + U1 � Int (X + U1)

= u2jX = x;

X 2 [ai; ai+1)gd(PrfX � xjX 2 [ai; ai+1)g)

=
Z ai+1

ai
Prfx+ U1 � Int (x+ U1)

= u2g fX(x)
PrfX 2 [ai; ai+1)gdx: (14)

By considering Lemma 1, which states that Equa-
tion 11 always has the unique solution, U = u,
Equation 14 simpli�es to:

PrfU2 = u2jX 2 [ai; ai+1)g

=
Z ai+1

ai
PfU1 = u1g fX(x)

PrfX 2 [ai; ai+1)gdx:(15)

Now, suppose �h is a small positive value, then:

PrfU2 = u2jX 2 [ai; ai+1)g
�= 1

PrfX 2 [ai; ai+1)g
Z ai+1

ai
(�hfU1(u1))fX(x)dx

=
1

dj PrfX 2 [ai; ai+1)g
Z ai+1

ai
�hfX(x)dx

=
�h
di
: (16)

So, one has:

P (U2 = u2jX 2 [a1; ai+1))
�h

�= 1
di

) fU2(u2jX 2 [ai; ai+1)) =
1
di
; (17)

when �h ! 0. Therefore, U2 is uniformly distributed
over the interval [0; di] and Theorem 2 is proved.�

Note that, if A consists of integer values, Int (x)
will result in the same values as bXc and Theorem 1
becomes a special case of Theorem 2, with di = 1,
i = 1; 2; � � � ; k � 1. In general, Equation 8 takes the
form:

pi = P (Int (X) = ai) = P (ai � X < ai+1)

= FX(ai+1)� FX(ai); i = 1; � � � ; k � 1: (18)

In analogy to Algorithm 1, one will arrive at the
following Algorithm.

Algorithm 2

1. Generate a value for Int (X) and determine the
value of i;

2. Generate U1 and U2 as two independent uniform
[0; di] random variates, where di denotes the length
of the interval into which X falls;

3. If U2 � U1, then X = U2 �U1 + Int (X), otherwise
X = U2 � U1 + Int (X) + di.

Algorithm 2 relaxes the restriction of using only
integer values for X. As will be discussed later on, this
would help signi�cantly when U1 and U2 show strong
dependence.

INVESTIGATING THE DEPENDANCE
BETWEEN U1 AND U2

Investigating the nature of the relation between the
uniformly distributed random variables, U1 and U2,
can be quite intriguing. To address this issue, �rst,
the authors resort to a number of experiments in which
they initially assume a uniform partition of the range
of X and, hence, a constant mesh size di = d;8i. For
the sake of experiments presented here, it is assumed
that X is distributed according to Gamma (Figures 2,
3, 4 and 6) or Normal (Figure 5). Then, by Monte
Carlo sampling on a computer, samples of arbitrary
size are generated from distributions of the independent
random variables, U1 and X. Each time a pair of
values (u1; x) is generated, the value u2 is computed
according to Equation 9. In this way, a sample of
size, say, n, is generated for (U1; U2). By plotting the
values (u1; u2) as points inside the square, [0; d]2, one
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Figure 2. Scatter diagrams for (U1; U2), d = 1 and X �
exponential (�).

can make some interesting observations. As can be
seen in Figure 2, for a uniform spacing with d = 1,
when dispersion in the distribution of X is small, clear
patterns between U1 and U2 can be observed in each
plot, such that it can be concluded that U1 and U2
are not behaving independently. Figure 3 displays
the same behavior for d = 1:5. Figure 4 shows that
instead of increasing the dispersion one can de�ne
a more compact set of mesh points (i.e., decreasing
the value of d), in order to make the patterns fade
away. When one considers other distributions for the
random variable X and manipulates the parameter(s)
of each distribution with the aim of increasing the
dispersion, similar observations are made (Figures 5
and 6). At this point, it is tempting to loosely interpret
a `no visible pattern' situation as indicative of the
independence of U1 and U2 on [0; d]2.

Even though such experiments shed light on the
dependence structure of U1 and U2, it was decided
that it would be more convincing if one were somehow
able to measure the dependence between U1 and U2.
There are several correlation notions in the statis-
tics literature, such as the Pearson linear correlation,
Spearman's � and Kendall's � . All these measures have

Figure 3. Scatter diagrams for (U1; U2), d = 1:5 and X �
exponential (�).

a substantial drawback for the purposes of this paper:
Being zero does not necessarily imply independence
between the random variables involved. Devroye ([4],
page 575) introduces a good measure of dependence
for continuous marginals, which, for the special case at
hand, is de�ned as:

L =
1
2

Z
jf(u1; u2)� f1(u1)f2(u2)jdu1du2; (19)

where f1 and f2 are marginal densities of U1 and
U2, respectively, and f(u1; u2) stands for their joint
density function. The fact is that, if this measure of
dependence between two random variables is zero, then
the random variables are independent and, conversely,
if the random variables are independent, then L = 0
holds true. Thus, U1 and U2 are independent if,
and only if, L = 0. In cases where L cannot be
found explicitly, one can try to calculate its unbiased
estimator, based on a sample of size n composed of
observations such as (u1i; u2i), through the following
expression:
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Figure 4. Scatter diagrams for (U1; U2), di�erent values
of d and X � exponential (0.25).

Figure 5. Scatter diagrams for (U1; U2), d = 1 and X �
normal (10; �2).

L̂ =
1
n

nX
i=1

max
�

0; 1� f1(u1i)f2(u2i)
f(u1i; u2i)

�
; (20)

where f1, f2 and f(u1; u2) are estimated via methods
such as Kernel Density Estimation [5].

For special cases, where X is exponentially dis-
tributed with mean � and for an arbitrary partition of
the range of X, this measure of association has been
derived and has been shown to be equal to:

Figure 6. Scatter diagrams for (U1; U2), d = 1 and X �
Gamma (�; 1).

L =

(dipi�2�pi(ln(di)�ln(�)+1�ln(pi)) +2aipi+die
�(ai+di)

� +e�
ai
� di)

2pidi
;
(21)

given that X falls in an interval of the form [ai; ai+1),
pi is de�ned as in Equation 18 and di is de�ned as in
Theorem 2. The plot of L versus di�erent values of �
and di is presented in Figure 7. It is observed that L
tends to zero as � goes to in�nity or as di approaches
zero.

Note that, because of the di�culty in deriving
L, or even estimating it when X follows other com-
mon distributions, other means were relied upon to
justify the conditions under which U1 and U2 could
be considered as independent random variables. For

Figure 7. L vs. � and di.
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instance, since, when the joint density of U1 and U2
is uniform on the unit square, then U1 and U2 will
be independent (see, e.g. [4] p. 576). The following
hypothesis has been tested by using the chi-square
statistic for di�erent densities and a wide range of their
parameter values. For this purpose, when d = 1, the
unit square was divided into 100 squared cells of equal
area and, each time, samples of 1000 (u1; u2)'s were
generated, as described above. The di�erence between
the expected and observed number of points in each

cell was calculated through the �2 =
10P
i=1

10P
j=1

(yij�10)2

10

statistic, where yij stands for the number of observed
points actually falling inside the (i; j) cell. In this way,
one will have a chi-square statistic with 99 degrees of
freedom.(

H0 : f(u1; u2) = 1
H1 : Otherwise

(22)

Based on the values taken by the test statistic, the
null hypothesis may not be accepted at �rst. But, by
gradually increasing the dispersion of the density of X
and by feeding the same streams of random numbers
to generate values for U1 and X, the values assumed
by the test statistic improved to a point where H0
could no longer be rejected. Increasing the dispersion
even further, only amounts to accepting H0 by ever-
increasing p-values. These results were in line with the
initial notion that `to reach the needed independence
of U1 and U2, one can increase the dispersion in the
density of X either by increasing the variance of X
or by expanding its range (like in the case of beta
distribution)'. When the mesh size, di, assumes any
�xed value other than 1, quite similar results are
obtained from experimenting within the di square,
[0; di]2. In the case of varying di, still the same behavior
can be observed, except that now, the patterns of
(u1; u2) must be studied in, at most, k � 1 squares,
[0; di]2, i = 1; � � � ; k � 1.

Even though Figure 7 suggests that, for the case
of X as a negative exponential distribution, one can
treat U1 and U2 as independent random variables
when the mean of X actually tends to in�nity, from
a practical point of view, however, one can work with
very moderate values of E(X) = � (values as low as 8 or
9) and yet expect to generate quite satisfactory results.
In the following section, among others, the mechanism
of de�ning values for ai's (and hence di's) are discussed,
which can almost `assure' us of the independence of U1
and U2.

SETTING UP THE ALGORITHM

The most notable task in setting up the algorithm
deals with de�ning the set of mesh points a1; � � � ; ak.

The mesh points are obviously de�ned once an ar-
bitrary partition of the range of X is formed. In
general, the partition can be presented as (�1; a1],
[a1; a2); � � � ; [ak; + 1). In case the range of X is
bounded, as a1 � X � ak, the partition simpli�es to
[a1; a2), [a2; a3); � � � ; [ak�1; ak]. From a practical point
of view, in order to implement the UFP method, one
has to cut o� the range of X at one or both ends,
if the range is open on one or both sides. In other
words, in the case of an open range, one needs to
substitute X � ak, X � a1 or X 2 < by a1 � X � ak.
This amounts to discarding a segment in the partition
that includes either (�1; a1] or [ak;+1) or both with
corresponding area(s) p0 and/or pk. Depending on the
probability associated with the discarded interval(s),
one should expect a serious or mild de�ciency in the
generation of tail values by the algorithm. It is only
logical that a1 and/or ak must be chosen in such a way
that the risk of such de�ciency becomes negligible. By
resorting to experimentation, it has been noted that the
cut o� value(s) a1 (and ak) must be selected in such a
way that p0 (and pk) does (do) not exceed 0.001. This
threshold is suggested as a maximum only.

Once end points a1 and ak are given or decided
upon, points a2; � � � ; ak�1 must also be de�ned. Among
di�erent available ways, only the `uniform probability
partition' scheme is discussed. This is the alternative
that makes the areas of all segments equal (i.e., p1 =
p2 = � � � = pk�1 = p, where p is equal to 1

k�1 ).
Following this rule, if k = 11, for instance, the mesh
points will be a1; a2; � � � ; a11 and there will be ten
segments each with an associated probability of 0.1,
except, possibly, the very �rst and/or the very last
segment(s), depending on the necessity of a cuto�
operation on the left and/or the right extreme(s) of
the range of X.

By choosing very small values for p, the accuracy
of the UFP method will become quite acceptable. In
fact, as p ! 0, the accuracy of the UFP method
approaches the accuracy attainable by the Inverse
Transform method when the latter is applicable. By
adopting a uniform probability partition of the range
of X and in light of Step 1 in Algorithm 2, one
just needs to generate a random number, such as U 0,
divide it by the chosen value of p and identify index
i = 1; � � � ; k � 1 as the integer part of U 0

p + 1, which,
in turn, identi�es Int (X) = ai. In this way, the �rst
step in Algorithm 2 is executed without any need for a
formal search routine.

SIMPLIFYING THE ALGORITHM

The proposed algorithm takes three uniform random
numbers to deliver one random variate (one of these
random numbers is used for generating a value for
Int (X)). Random number generators are never perfect
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and, in fact, produce pseudorandom numbers. Replac-
ing uniform deviates by pseudorandom numbers may
induce a substantial error of approximation. According
to Fishman [3], this error may increase with the number
of pseudorandom numbers required for generating a
single deviate. The need of our algorithm for pseudo-
random numbers is more than that of other methods,
which mostly need less than three on the average (for
the inverse transform method this number is just 1). In
this section, it is explained how and when this number
can be reduced to only 2.

It begins with Theorem 2, with the speci�c
assumption that random variable X is uniformly dis-
tributed over the interval [0; d] and the mesh size is
equal to d. Given that U1 and U2 can be treated as
independent uniform [0; 1] random variables, in line
with Step 3 in Algorithm 2, one will arrive at:

X =

(
U2 � U1; U2 � U1

U2 � U1 + d; U2 < U1
(23)

This is because Int (X) is equal to zero. Since it is
assumed that X � U [0; d], thus, the role of U1 and
U2 in Algorithm 2 can be played by a single uniformly
distributed random variable over interval [0; d]. This
single random variable is designated by U . Note that,
in this case, U1 and U2 are supposed to be independent
before such a role reversal can take place, so, necessary
measures should �rst be taken to make U1 and U2
behave almost independently. In the case of a non-
uniform partition of the range of X, where the mesh
size, di = ai+1 � ai, is variable, a similar argument
holds and just two random numbers are su�cient to
generate a random deviate for X within each of the
k � 1 intervals [ai; ai+1). Thus, Algorithm 2 can be
modi�ed as follows.

Algorithm 3

1. Input p, uniform probability mesh points a1; � � � ; ak
and di = ai+1 � ai for i = 1; � � � ; k � 1,

2. Generate a random number, U 0,
3. Determine the index i, as

j
1 + U 0

p

k
,

4. Based on the value of i, identify Int (X) = ai and
di = ai+1 � ai,

5. Generate a random number, U1,

6. Deliver X, as X = U1di + ai.

Algorithm 3 possesses almost all the advantages
of the Inverse Transform method. In other words,
UFP makes it possible to generate correlated random
variates, as well as values from the densities of order
statistics.

Using the antithetic of the random number con-
sumed for generating a value from Int (X) in Step 2
of Algorithm 2 or 3, leads to a random variate, which
is negatively correlated to the one generated from that
random number. This procedure allows one to generate
pairs of negatively correlated random variates from any
density function. Notice that the Inverse Transform
method is not able to generate correlated variates from
all distributions.

Order statistics can simply be generated by this
algorithm as well, because it can be easily applied
to any Beta density function. While the Inverse
Transform method can match this property on a very
limited basis, the method developed in this work can
be applied to any underlying density function and any
order statistic.

COMPUTATIONAL RESULTS

While it is obvious that UFP is not capable of working
as fast as the inverse transformation method in the
special case of X � U [a; b], it can be considered as a
fast method in many other cases.

In this section, the authors present partial results
obtained in generating random deviates from two of
the most popular distributions in the Monte Carlo
literature, i.e. Gamma (�; �) and Beta (�; �). The
performance of UFP is evaluated on the basis of speed
and accuracy. The time (in micro seconds) required to
generate one random deviate is the yardstick by which
the speed is measured. To study the accuracy, the
average p-value is adopted in testing the hypothesis,
H0 : X � FX(x). In fact, the Kolmogorov-Smirnov
test statistic is used to decide whether samples gener-
ated from a distribution function actually demonstrate
the needed conformity to that distribution or not.
Because of the sensitivity of the results to the seeds and
streams of random numbers, the conformity is chosen
to be judged based on the average p-value in a series of
100 samples of 1000 random deviates from the intended
distribution functions. The 100 seeds have been chosen
randomly and the experiments have been run on an
AMD Athlon 978 MHz processor using the Borland
C++ 5.02 compiler under the win32 platform.

Since there are two schemes which can be im-
plemented to make U1 and U2 behave (almost) inde-
pendently, the numerical results for each scheme are
presented separately. In one scheme, a more compact
mesh is chosen to be de�ned without changing the dis-
persion, while, in the other scheme, it is endeavored to
increase the dispersion of the intended density function.
In order to measure speed, samples of 1000000 deviates
were generated.

To take advantage of the capabilities of the C
language to make the algorithm work faster, when
using the �rst scheme, partitions of the set of positivity
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of the random variable, X, were examined in terms of
2n segments (n being a positive integer). By doing
so, very fast times were recorded. Speci�cally, UFP
performed twice as fast as the Marsaglia approach in
generating deviates from Gamma distribution.

Table 1 shows the average p-values and speeds in
generating deviates from di�erent Gamma and Beta
distributions. In this table, Scheme 1 is adopted and
only 16, 32 and 64 segments are considered in the
partition of the range of X. As can be seen, UFP
performs at a speed which is almost constant for the
parameter values shown, as well as the number of
segments in the partition.

Tables 2 and 3 display the same performance
measures for the second scheme, in which the dispersion
of the densities is increased. In these tables, the mesh
size is constant (d = 1) and positive integers are
considered as the mesh points. The results indicate
that the �rst scheme more often leads to better p-
values.

In general, it can be said that the UFP algorithm
is robust, with respect to speed, against the change of
distribution, distribution parameters and also the num-

ber of segments in the partition (for each scheme). The
notable di�erence in speed between the two schemes
(0.05 vs. 0.16 �s) is due to using the power of 2 (16,
32 and 64) as the number of segments in the uniform
probability partition scheme. This idea provides the
possibility of working with bit operands in Step 3 of
Algorithm 3, which operates very fast in C++ language.

Even though these experiments are far from be-
ing exhaustive, the comparisons with other popular
methods for generating deviates from a number of
distributions, such as Gamma, Normal and Beta, show
that UFP is the fastest when the number of segments
in the partition is chosen as an integer power of 2.

For the sake of computations, a C program was
written to generate values from continuous distribu-
tions, when the set of positivity of the density consists
of [0;1]. Obviously one can make simple modi�cations
to prepare it for other cases. This code uses the uniform
probability partition scheme, as discussed previously,
and bene�ts from the C inline macros, as well as the
extremely fast random number generator of Marsaglia
and Tsang [9]. The k macro has been used to de�ne the
desired number of segments in the partition. One can

Table 1. Average p-values and speed under Scheme 1.

Distribution Parameters p-Values Speed
k = 24 + 1 k = 25 + 1 k = 26 + 1 (�s)

� = 0:1, � = 1 0.326870 0.425883 0.529656 0.06
Gamma � = 1, � = 1 0.336946 0.514091 0.536118 0.05

� = 5, � = 1 0.241094 0.50367 0.536259 0.06
� = 1:5, � = 3 0.373641 0.497531 0.510837 0.05

Beta � = 0:8, � = 2 0.459897 0.498533 0.457957 0.05
� = 0:2, � = 0:8 0.164221 0.493317 0.459484 0.06

Table 2. Average p-values and speed for Gamma distribution under Scheme 2.

Distribution Parameters p-Values Speed
� = 10 � = 100 � = 1000 (�s)

� = 0:1, � = 1 0 0 0 -
Gamma � = 1, � = 1 0.449565 0.466253 0.469371 0.17

� = 5, � = 1 0.462224 0.468812 0.468492 0.16

Table 3. Average p-values and speed for Beta distribution under Scheme 2.

Distribution Parameters p-Values Speed
Range = 10 Range = 100 Range = 1000 (�s)

� = 1:5, � = 3 0.439006 0.457462 0.469494 0.16
Beta � = 0:8, � = 2 0.244152 0.463282 0.470577 0.17

� = 0:2, � = 0:8 0 0 0 -
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easily replace this number by any other value, which
should be a suitable power of 2 (for example, 128).

Since this substitution decreases the speed, only
powers of 2 are recommended as the number of seg-
ments in the partition.

CONCLUSIONS

Based on an all probabilistic reasoning, in this work,
a method for generating continuous random deviates
is developed. This method takes two random num-
bers to generate a deviate from any density function.
The method in this paper is based on the uniform
probability partition of the intended density function
and is categorized among the approximate generating
methods. While the proposed method enjoys very nice
properties, in terms of conformity of the results and
speed, it su�ers very minor limitations in the case of
the rare event simulation. Future research may aim at
encouraging this method to behave in an exact manner.
Reducing the number of required random numbers
from two to one is another area to explore. Finally, one
can concentrate on the evaluation of the merits of this
method in generating deviates for order statistics and
some of the important densities, like normal, gamma
and beta, as compared to other methods.
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APPENDIX

Here, the independence of U1 and U2 is shown in
Equation 1, in which U2 = U1 + X � bU1 +Xc for
special cases where X is uniformly distributed over the
interval [m;n) (m and n are integers). One starts with
�nding the distribution function of Y = X � bXc. By
using the transformation technique, it can be easily
shown that:

fY (y) =
n�1X
i=m

fX(y + i) =
n�m
n�m = 1; 8y 2 [0; 1):

Now, X � bXc is replaced, in Equation 1, by Y to get:

U2 = U1 + Y �
(

0; Y < 1� U1

1; Y > 1� U1

To �nd the joint distribution function of U1 and U2,
the following transformations are performed:

u2 = u1 + y ) y = u2 � u1;

u1 = u1 ) u1 = u1;

when u1 < u2 and:

u2 = u1 + y � 1) y = u2 � u1 + 1;

u1 = u1 ) u1 = u1;

when u1 > u2. Then, the joint distribution function
would be:

f(u1; u2) =

(
fy(u2 � u1)fU1(u1) = 1 u1 < u2

fy(u2 � u1 + 1)fU1(u1) = 1 u1 > u2

So, f(u1; u2) = 1 over the square [0; 1]2 and that means
that U1 and U2 are independent.


