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Research Note

Some New Robust Pseudo Forward and
Rotation Gaits for the Snakeboard

A. Asna�1 and M. Mahzoon2;�

The goal of this paper is to introduce some new robust gaits of the snakeboard. This is achieved
by de�ning two parameters; the ratios of the frequencies and amplitudes of the snakeboard's
sinusoidal shape variable dynamics, and properly adjusting their variations. The gaits are
produced via stable and/or moving limit cycles. The highly symmetric patterns generated by
these gaits, besides their inherent beauty and coherency, exemplify the rich information content
of the underlying nonlinear system.

INTRODUCTION

The snakeboard is the modi�ed model of a skateboard.
It is composed of a rigid bar with two connected wheel-
based platforms, which can pivot freely about the
vertical axes (see Figure 1). The rider puts his/her feet
on the platforms and generates motion by coupling the
twisting of his/her torso with an appropriate turning
of his/her feet on the platforms without touching the
ground.

A simpli�ed model of the snakeboard studied in
the literature is illustrated in Figure 2.

This model was �rst studied by Lewis et al. [1]
and its three famous gaits, i.e. forward, rotation and
parallel parking, were developed. It has also been
studied in the literature as the prototype of a robotic
locomotion system, which is modeled via geometric
tools (see, for example [2-4]). The controllability idea
for the snakeboard was given �rst by Ostrawki and
Burdick [5,6] and then followed by Bullo, Leonard,
Lewis and Lynch [7,8]. The snakeboard also has been
studied in the literature as a kinematically underac-
tuated system. Ostrowski [9] derived an approximate
path generation algorithm by using the studies of
Murray and Sastry [10] on kinematic systems. He also
described, numerically, an optimal trajectory genera-
tion [11] with the collaboration of Desai and Kumar.
Some new research on the motion planning of the
snakeboard that has an analytical approach and which
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Figure 1. The snakeboard.

Figure 2. The simpli�ed model of the snakeboard.

is all based on kinematic reduction, was developed
by Bullo and Lynch [12], Bullo and Lewis [13] and
Iannitti and Lynch [14,15]. Recently, Shammas [16]
has developed some general rules for gait generation
in a snakeboard. He has considered three types of
gait: Purely kinematic, purely dynamic and kino-
dynamic. In almost all previous work on the subject,
the nonlinear behavior of this dynamic system is not
addressed.

In this paper, the focus is on the nonlinear behav-
ior of the snakeboard as a nonlinear locomotive system
and, through the suitable tuning of input parameters,
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some new robust gaits will be produced with stable
and moving limit cycles. Because the snakeboard is
usually considered as a prototype of a symmetrical
nonholonomic locomotive system, these results may
help to further elucidate some salient features of these
nonlinear systems.

NONHOLONOMIC SYSTEMS WITH
SYMMETRIES

In the literature, the snakeboard has been presented
as an example of a robotic locomotion system that has
both nonholonomic constraints and symmetries. In this
paper, �rst, some basic ideas and concepts pertinent to
these systems are reviewed, via a geometric approach
(see, for example [17-19]).

Unconstrained A�ne Connection Control
System

Assume that the con�guration space of the described
system with coordinates fq1; q2; � � � ; qng is Q, having
de�ned on it the kinetic energy metric, G(q), and also
an inner product, hh:; :ii, acting between its vector
�elds. De�ne the a�ne connection, r, associated with
G(q) and Q, as a map, which assigns to vector �elds X
and Y the covariant derivative of Y , with respect to X
denoted by rXY with coordinates:

(rXY )i =
@Y i

@qj
Xj + �ijkX

jY k; (1)

where:

�ijk =
1
2
Gli
�
@Glk
@qj

+
@Glj
@qk

� @Gkj
@ql

�
: (2)

If m external forces, F1; F2; � � � ; Fm, which are de-
scribed asm one-forms, are applied to the system, then,
the equation of motion is [20]:

�qi + �ijk _qj _qk =
mX
a=1

Gil(Fa)lua; (3)

where (Fa)l is the lth-component of Fa and ua is the
possible corresponding control.

The coordinate free form of the above equation is
as follows:

r _q _q =
mX
a=1

(G�1Fa)ua: (4)

A�ne Connection Control System with
Nonholonomic Constraints and Symmetries

Assume that the non-integrable constraints of the
system, i.e. nonholonomic constraints, are linear in _q.
They can, thus, be written as follows:

!ij _qj = 0; i = 1; � � � ; k; (5)

where k is the number of constraints. Also, the
coordinate free format of Equation 5 is:

h!; _qi = 0;

when h:; :i is the natural pairing between tangent and
cotangent vector �elds on Q and ! is constrained one-
forms f!1; !2; � � � ; !kg.

The constraint distribution, D, is de�ned as the
s dimensional distribution (i.e., the set of all velocities
that satisfy the constraints) of feasible velocities, where
s = dim(Q)� k = n� k.

Let P : TQ ! D be the orthogonal projection
on D (orthogonality, of course, is de�ned with respect
to G), P? = I � P , where I is the identity tensor
and, also, D? is the orthogonal complement of D with
respect to G.

By using the above assumptions and de�nitions,
the equation of motion for nonholonomic systems with
symmetries can be written as [4]:

r _q _q = �+
mX
a=1

(G�1Fa)ua; P?( _q) = 0; (6)

where � is the Lagrange multiplier vector which belongs
to D?.

Here, a lemma and a theorem developed in [20]
are demonstrated, which transform Equations 6 into a
format more suitable for application to these systems.

Lemma

Equations 6 can be written as:

~r _q _q =
mX
a=1

(PG�1Fa)ua; (7)

where ~r is the a�ne connection given by:

~rXY = rXY + (rXP?)Y; (8)

for all vector �elds, X and Y .

Theorem

Let fe1; e2; � � � ; en�kg be an orthogonal basis for D.
The generalized Christo�el symbols of ~r are:

~�ijk =
1
keik2



rejek; ei�� ; (9)

and the equation of motion (Equation 7) becomes:

_vi + ~�ijkv
jvk =

mX
a=1

Y iaua; (10)
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where vi are the components of _q along
fe1; e2; � � � ; en�kg, i.e. _q = viei and where the
coe�cient of control forces is:

Y ia =
1
keik2 hFa; eii : (11)

Of course, if the control forces are exact di�erentials
(i.e. Fa = d'a for some a 2 f1; � � � ;mg), then:

Y ia =
1
keik2 Lei'a; (12)

where Lei'a is the Lie derivative of scalar function 'a,
with respect to vector ei (note that the Lie derivative
of function f , with respect to vector X, is de�ned as:

LXf = hhgrad(f); Xii):
MODELING OF THE SNAKEBOARD VIA
CONSTRAINED AFFINE CONNECTION

If one assumes that the rear and front platforms of the
snakeboard have equal angles with opposite directions
at each instant of time during motion (this is not far
from the real situation, where riders of the snakeboard
usually move their feet in equal but opposite directions)
he/she has �ve dimensional con�guration manifolds,
i.e. (x; y; �;  ; �), to describe the position of the
snakeboard, where x and y are the locations of the
snakeboard's center of mass; � is the angle of the bar
relative to a �xed frame;  is the relative angle between
the bar and the rotor, playing the role of the human
torso and � is the relative angle between the bar and
the horizontal axes of the wheels, as shown in Figure 2.

One can write the Lagrangian for the snakeboard
as:

L =
1
2
m( _x2 + _y2) +

1
2
J _�2 +

1
2
Jr( _ + _�)2

+
1
2
Jw( _�+ _�)2; (13)

where J is the snakeboard body inertia, Jr is the rotor
inertia and 1

2Jw is the inertia of each wheel all about
the axis, which is perpendicular to the plane of the
motion, and m is the mass of the system. So, one can
write the metric tensor G as:

G =

0BBBB@
m 0 0 0 0
0 m 0 0 0
0 0 J + Jr + Jw Jr Jw
0 0 Jr Jr 0
0 0 Jw 0 Jw

1CCCCA : (14)

For no sideway slipping of the wheels, the constraints
are:

� sin(� � �) _x+ cos(� � �) _y + l cos(�) _� = 0;

� sin(� + �) _x+ cos(� + �) _y � l cos(�) _� = 0: (15)

In one-form format, these can be expressed as (see
Equation 5):

!1 = � sin(� � �)dx+ cos(� � �)dy + l cos(�)d�;

!2 = � sin(� + �)dx+ cos(� + �)dy � l cos(�)d�:
(16)

Now, relative to the dimension of D, which is n�k = 3,
one can introduce the following basis:

e01 = l cos�
�

cos �
@
@x

+ sin �
@
@y

�
� sin�

@
@�
;

e02 =
@
@ 

;

e03 =
@
@�
; (17)

where e01 corresponds to the instantaneous center of
rotation when  and � are �xed (see Figure 2) and
fe02; e03g describe the changes in  and �, respectively.
To use the above vectors in Equation 9, they must be
orthogonal. Since e01 is orthogonal to e03, an e�ort is
made to �nd an appropriate form for e02.

Using the Gram Schmidt procedure, one can �nd
an orthogonal basis as follows:

e1 = e01;

e2 = e02 � hhe
0
2; e1ii

hhe1; e1iie1

= �
�

cos �
@
@x

+ sin �
@
@y

�
� � @

@�
+

@
@ 

;

e3 = e03; (18)

where:

� =
Jrl cos� sin�


; � =

Jr sin2 �


;

 = ml2 cos2 �+ (J + Jr + Jw) sin2 �: (19)

In the presented model, the control forces are torques
applied at the rotor and wheel axles. In one-form
forms, they can be represented by F = d and
F� = d�. By using Equations 11, one has:

Y =

Jr�

e2; Y� =
1
Jw

e3; (20)

where:

� = ml2 cos2 �+ (J + Jw) sin2 �: (21)
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All generalized Christo�el symbols de�ned in Equa-
tion 9 vanish, except the following:

~�1
13 =

(J + Jr + Jw �ml2) cos� sin�


;

~�1
23 =

Jrml2 cos�
2 ; ~�2

13 = �2ml2 cos�
�

;

~�2
23 = �Jrml2 cos� sin�

�
: (22)

Now, one can write the dynamic equation of the
snakeboard by using Equation 10:

_v + ~�1
13v _�+ ~�1

23
_ _� = 0;

� + ~�2
13v _�+ ~�2

23
_ _� =


Jr�

u ;

�� =
1
Jw

u�: (23)

Note that _ and _� are written for the velocity compo-
nent along e2 and e3, respectively. Next, the kinematic
equations of motion are written, i.e. _q = ve1 + _ e2 +
_�e3, as:0@ _x

_y
_�

1A =

0@l cos� cos �
l cos� sin �
� sin�

1A v +

0@� cos �
� sin �
��

1A _ : (24)

In what follows, Equations 23 and 24 are used to �nd
some new gaits for the snakeboard.

EXAMPLES

Three famous gaits of the snakeboard are forward,
rotation and parallel parking (see [1] for details), which
were developed especially to explain controllability
ideas rather than nonlinear behaviors of the snake-
board. In this study of snakeboard locomotion, it is
endeavored to �nd some robust gaits in forward and
rotation gaits (the famous forward gait developed in [1]
is not stable and the rotation gait is not repetitive) and
also some gaits based on stable limit cycles.

In the examples,  and � are assumed to be simple
harmonic functions of time;

 = a sin(! t+ ' );

� = a� sin(!�t+ '�); (25)

where a, ! and ' are amplitude, frequency and phase,
respectively. All numerical values for snakeboard
geometry, such as l, m, J etc., are taken from [1] and
the initial conditions for the described examples are
assumed to be (x; y; �) = (0; 0; 0) and (' ; '�) = (�; 0).

ko and ka are de�ned as the ratio of frequencies
and amplitudes of � to  , respectively. The gaits of the
examples are produced for di�erent values of ko and ka,
�xing a = a and ! = ! in each case.

Case 1 (Some Pseudo Forward Gaits)

Assume that a = �
4 , ! = 1 and ko = m

n . If m = 1 and n
is an odd number, one has unstable gaits (see also [3,5]),
which are forward for n = 1 (the famous forward
gait) and n = 3 (see Figure 3). Here, some pseudo
forward but stable gaits are developed for ko = 3

5
(�shbone-like gait) and ko = 3

4 (moving limit cycle
gait). These gaits are named pseudo-forward, because
their net forward displacement is produced by moving
cycles. Also, they deviate negligibly from the positive
x axis. These gaits are drawn for di�erent values of
ka (see Figures 4 and 5). Although, in the \�shbone-
like" gait, the qualitative behavior does not change
with di�erent values of ka, in the \moving limit cycle
gait", these behaviors converge to a stable limit cycle
(see Figure 5).

Figure 3a. Unstable forward gait (a, ko, ka) = (�=4, 1/3,
1) after 400 seconds.

Figure 3b. Unstable forward gait (a, ko, ka) = (�=4, 1/3,
1) after 1000 seconds.
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Figure 4a. Fishbone-like gait (a, ko, ka) = (�=4, 3/5,
1/2).

Figure 4b. Fishbone-like gait (a, ko, ka) = (�=4, 3/5, 1).

Case 2 (Some Robust Rotation and Stable
Limit Cycle Gaits)

For ko equal to 1
4 , 2

4 and/or 3
4 , some gaits, which are

repetitive and robust, are developed. The robust rota-
tion and stable limit cycle gaits with di�erent values of
ka are shown in Figures 5d, 6 and 7. All the above gaits
can also be produced with a real snakeboard (because
a = �

4 is an acceptable amplitude in real situations).
Besides, some limit cycles are developed that can
be produced only by experimental modeling of the
snakeboard, i.e., their assumed amplitudes cannot be
normally produced by humans. These latter gaits have
the same ko as the former ones, but their amplitude,
i.e. a = a , are equal to �, 3�

4 or 2�
3 (see Figures 8 to

10 for details).

Figure 4c. Fishbone-like gait (a, ko, ka) = (�=4, 3/5,
1.5).

Figure 4d. Fishbone-like gait (a, ko, ka) = (�=4, 3/5, 2).

Figure 5a. Moving limit cycle gait (a, ko, ka) = (�=4,
3/4, 1/2).
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Figure 5b. Moving limit cycle gait (a, ko, ka) = (�=4,
3/4, 1).

Figure 5c. Moving limit cycle gait (a, ko, ka) = (�=4,
3/4, 1.5).

Figure 5d. Limit cycle gait (a, ko, ka) = (�=4, 3/4, 1.75).

Figure 5e. Moving limit cycle gait (a, ko, ka) = (�=4,
3/4, 1.9).

Figure 6. Robust rotation gait (a, ko, ka) = (�=4, 1/2,
1.15).

Figure 7. Limit cycle gait (a, ko, ka) = (�=4, 1/4, 1).
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Figure 8. Limit cycle gait (a, ko, ka) = (2�=3, 1/4, 1.75).

Figure 9. Limit cycle gait (a, ko, ka) = (�, 1/4, 1.2).

Figure 10. Limit cycle gait (a, ko, ka) = (3�=4, 3/4,
1.075).

CONCLUSION

It was shown that a snakeboard, as the prototype
of a nonholonomic locomotion system with symme-
try, is capable of generating highly coherent robust
gaits. Some of these gaits were produced through
proper adjustment of the input parameters. The
essential features of the mathematical model, namely,
nonlinearity and symmetry, may be regarded as the
source of complexity and coherency of these gaits.
Although these patterns were generated by an ad hoc
tuning of certain parameters, further study may reveal
corroborative evidence in favor of a causal relation
between tuning criteria and complex coherent patterns.

NOMENCLATURE

r a�ne connection
�ijk Christo�el symbols
' ; '� snakeboard's phases of the shape

variables
� Lagrange multipliers
 ; � snakeboard's body coordinates
!ij constraint one-forms
!; ! ; !� snakeboard's frequencies of the shape

variables
a; a ; a� snakeboard's amplitudes of the shape

variables
D constraint distribution
Fi generalized forces
G kinetic energy metric tensor
J; Jr; Jw snakeboard's body, rotor and wheel

inertias
ko; ka the ratio of frequencies and amplitudes

of � to  , respectively
L Lagrangian
L Lie derivative operator
m mass of the snakeboard
qi generalized coordinates
Q con�guration manifold
TQ tangent space of Q
x; y; � snakeboard's center of mass position
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