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Noncoherent Integration after MTI Filters

M.M. Nayebi* and M.H. Bastani'

In this paper, the N, approximate method for calculation of integration loss after moving target
indication (MTI) filters of radars is generalized to MTI filters with nonuniform pulse repetition
frequency (PRF). Then, an exact method for analyzing the radar signal processor (MTI filter,

squarer and integrator) is presented.

INTRODUCTION

To increase the probability of detection and reduce the
false alarm rate, it is necessary to improve the signal to
interference ratio. Integration has an important role in
increasing the signal to noise ratio [1-4] and is usually
used in radar systems. A simplified block diagram of a
common radar signal processor is depicted in Figure 1.

In coherent (predetection) integration, the phase
relation between pulses is preserved so that integrating
over N; pulses (where N; is the number of pulses
integrated) results in N; times increase in signal to
noise ratio. However, in noncoherent (postdetection)
integration which is used in Figure 1, there will be
some loss due to phase relation deterioration [1-4],
thus the effective number of integrated pulses (NN.)
will be less than NN;. In addition, MTI filters cause
the noise to become colored (correlated) and, hence,
result in some additional loss in integration [5-10}.
In this paper, work concerning loss of integration on

uncorrelated and correlated (clutter) noises after MTT:

filters are reviewed. Then, the discussion is generalized
to nonuniform PRF, with the aid of general model of
MTI filters presented in [11].

Because of the approximate nature of the N,
method (which is used for integration loss calculations
in this discussion), another method will also be pre-
sented for exact analysis of complete MTI processors.

INTEGRATION AFTER MTI FILTERS
WITH UNIFORM PRF

For signal detection, the variation of output average
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Figure 1. Simple block diagram of signal processing part
of a radar.

due to signal with respect to noise power must be rec-
ognized. Therefore, N., which describes the effective
number of integrated pulses, is defined as follows [5]:

Ne — (022/m2)in , (1)
(02 /m?)out

where 0 and m are standard deviation and mean

deviation (of the signal at the input or the output of

the integrator), respectively.

Presence of an MTI filter results in noise corre-
lation and, consequently, a decrease in the effective
number of integrated pulses (N.). It has been shown
in [6,7] that using N, in well known curves of detection
probability, Py, (versus S/N and false alarm probabil-
ity, Ps.) leads to a good approximation for the required
S/N to achieve the given P; and Py,, which differ from
the exact results obtained by computer simulation with
0.3 - 0.6 dB.

First assume that the integrator is an FIR filter
(tapped-delay-line integrator) which adds the total N;
pulses coming from the MTI filter (after passing the

square law detector) with equal weights. For this
situation [5,8]:
N?
N = ) (2)

N;—-1
No+2 S (N~ K)R(RT)
k=1

where py(7) = Ay(7)/A,(0) is the normalized auto-
correlation function of MTI filter output and T the
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radar pulse repetition period (1/PRF). The following
approximate formula can also be used:

N. (3)

1
= T - N
O B p3(ryar

which leads to a satisfying approximation for small
values of 0. T(c.T < 0.4) [2], where o, is the standard
deviation of the clutter spectrum and 7; in Equation 3
is the total integration time, i.e.,

T, = N,T. (4)

In an MTI filter:

N-1
ynT) = 3" wal(n - T, %)
=0

where a;'s are MTI filter coefficients and N is the
number of coefficients. Therefore, the autocorrelation
function of an MTI filter can be written in terms of the
input antocorrelation function as:

Ay (kT) = y(nT)y(nT + kT)

2
2

-1

ajanzf(n — D)T)z|(n + k — m)T]

1
1M
i

N—-1N-1
= a1mpz[(l —m + k)T
=0 m=0
= dop:(kT)
N-1
+ Y di{pal(k +9)T] + p[(k — 9)T1},
=1 (6)
where,
N-—i—1
d,‘: Z a4, i=0717"'»N_17 (7)
=0

therefore [6]:

N—-1N-1

Ay(KT) _ ¥ aanpsl(l—m+k)T]

WO A bl - m)T)
=0 m=0

py(kT) =

ape(KT) + S difpal(k+ 7] + pel(k - ]}

N-1
do +2 E dipx(iT)
i=1

(8)
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If the input to the filter is white noise, then:

0 otherwise’

SO:
N-1
A(0)=do=)_ al, 9)
i=0
and
N-1
(k1) = Y Z—;m —k), k>0 (10)
1=0

Substituting this into Equation 2 results in:

N, = — : (11)

Nit2 S (N, - k()2

k=1

for example, for a double canceller, Equation 7 results
in:

dg =6, dy=-4, dy=1
and Equation 11 yields:
N2
Ne = N, c D407 + (N, ~ 20 /67
_ 18N?
35N; — 18’

which for large N;, approaches %Ni, leading to a loss of
101log[(35/18)!/?) = 1.4 dB. According to Kretschmer
[9], for a large N; and an nth order binomial filter:

Ne _ [(1)(3)(5) - (m— 1)} N

N, | (2)(4)6)---(m)
(m+2)(m+4)---(2m)
[(m+1)(m+3)...(2m+1)]* (12)
where:
m = 2n. (13)

If the input to the filter is clutter, assuming a Gaussian
spectrum for clutter:

po(KT) = po()|, _yp = exp(=2n202k2T2),  (14)

py(kT) can be derived by substituting this into Equa-
tion 8 and then N, can be calculated using Equation 2.

Figures 2 to 4 show N, versus o.T for various
values of N; for the cases of first, second and third
order binomial filters and also in a case where the MTI
filter is absent (but a square law detector is present).
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Figure 2. Effective number of integrated samples of
correlated noise after the MTI filter for N; = 3.
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Figure 3. Effective number of integrated samples of
correlated noise after the MTI filter for N; = 10.

When o.T — o0, N, approaches the value obtained
from Equation 11.

To consider clutter and noise simultaneously, it is
sufficient to substitute p,(7) in Equation 8 by:

_ 8(1) + (C/N)npe(T)
p:l:(T) - 1 + (C/N)m

_ Pe(7) + (N/C)iné(7)
T 1+(N/Ch

where (C/N)ip is the clutter to noise ratio at the filter
input. In this case, Equation 8 leads to [7]:

(N/C)idiUr,N-1 + dopc(kT)
dol1+ (N/C)l +2 3, dipeiT)
=1

(15)

py(kT) =

S o+ 7]+ pl(k - 9T)

+

y

dol1L + (N/C)i] +2 N.‘;‘: dipe(iT)

(16)
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Figure 4. Effective number of integrated samples of
correlated noise after the MTI filter for N; = 100.
where:
1 if |k <1
U, = o 17
kit 0 otherwise (17)

Up to now, it has been assumed that the integrator
adds the input pulses with equal weights, but if the
pulses are added together with b; weights [10]:

N;
(Z:l b;)?
Ne = NN (18)
PP bibjp3,,
where:
Pyi; = py(T)l,.:T(,'_j)a (19)

and py(7) is the normalized autocorrelation function
of the MTI filter output and can be substituted from
Equation 8. Therefore:

N; N—1N-1 2
> b.-)’{ ¥ “zavnﬂz[(l—'")T]}

i=1 =0 =0

e= N;

N; N—1N-1 2
3 Zb,‘"j{ 3 «mmpz(('—m+i-i)T1}

i=li=1 =0 m=0

Ni N-1
Q- v%Mdo+2 Y dipa(iT))?
=1

i=1
T N; N; N=1
D ki dopalG=NTIHY  d{palli=i+DTI+pz (=i -DTIN?

i=li=l I=1 (20)

GENERALIZATION OF Ne METHOD TO
MTI FILTERS WITH NONUNIFORM PRF

Since the general model presented in [11] covers all.
various types of MTI filters, the N, method for this
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general model is employed. In this case, in place of
Equation 5:

N-1
zaz kT(EG—1)s 4 N=1-k),
k=0 (21)

where z is the filter input and y its output, a; j the kth

coefficient of ¢th filter. Furthermore, it is assumed that

each time the filter slides “s” pulses forward [11].
From Equation 21 it can be concluded that:

Ay = Uil

N—
k=0
N-

IN—
Z @i kTt 1ysp N=1—k)T(Ri—1)s4 N—1—1),
1=0
IN-

It

@i kG 1Ps(ti NC1—k — Ej N—1-1),

k=0 1=0 (22)
where:
tis = t(im1)s4j-
Equation 21 can also be written as:
i = Y wik(t(i1)str); (23)
where:
Wik = Qi N~1—k- (24)
Therefore:
N-1N-1
Wi g Wj,1 Pz Lk — 150). (25)
k=0 1=0

Note that in Equations 22 and 25, since the filter is
time-variant, Ay, ; is not a function of the time differ-
ence only. For example, Ay, ; is not equal for various
values of ¢, therefore, the definition of Equation 1 is not
directly applicable because (02/m?);, is not constant
and changes from pulse to pulse. Consequently, NV, is
defined as:

02 7n2 injave
= (26

and as in Equation 18:

Ny=——=L (27)
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is so because MTI filter in its general form [11] is a time-
variant system that experiences I distinct variations
where [ is a function of s and the number of employed
periods. Thus, the integrator experiences I situations
for its input.

Equations 28 and 25 result in:

N

|
-

N

|
o

\g|

Wi kW51 Pz (ti ke — t51)

2.
_ k=0 1:0
Pyij = T N1 N—
(1/1)2 Z Z Wi kWi 1Pz (b — tig)  (29)
For s = 1 (moving window) and ¢, = 5T (uniform

PRF), Equations 27 and 29 reduce to Equation 20. If,
in the above equation, the nonequal occurance of filters
due to limitation of N, (total input pulses of MTI) is
to be considered {11}, then:

N
No=1+ IP(NT), (30)

where I P(.} denotes the integer part. This means that
N, — N; pulses are discarded by the transient removal
gate of Figure 1 and

N—1N=~1
Z Z wi w1 ew(ty g =ts )
L 0_1=0
Pui = N-IN-—1 !
[1/(Thy +i2)] Z[klw(xo— D13 S e gew gt

k=0 1=0
(31)

where k; is the repetition number of all filters and
ko the number of filters repeated once more (k; + 1
times). Figure 5 compares the value of N, for fixed
and moving window single canceller (N = 2). For both
cases, N, = 6 has been assumed, therefore, according
to Equation 30, N; will equal 5 for the moving window
(s = 1) and 3 for the fixed window (s = N = 2). It
is observed that for the fixed window, N, approaches 3
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Figure 5. Comparison of N, for fixed and moving
window single cancellers assuming N, = 6.
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(i.e., N;) as o, increases. This‘is due to the fact that in
fixed window filters, the output pulses are constructed
from different batches of input pulses and, thus, the
output noise is not correlated. However, in moving
window filters, N, approaches %Ni, approximately (as
can be predicted by Equation 12). It is understood that
although moving window filters cause some degree of
correlation, they usually have larger N, because of their
larger N; (for the same Np).

EXACT METHOD FOR NONCOHERENT
INTEGRATOR AND MTI FILTER
ANALYSIS

As previously mentioned, the N, method is only an
approximate model for calculation of the required input
signal to interference ratio to achieve the given P; and
Py,. This is because of two reasons, first is the fact
that the integration loss (due to the MTI filter before
the integrator) is not completely independent of the
input signal to interference ratio, second is that the
integrator is actually a lowpass filter and although a
portion of signal energy (even if it has a Doppler) is
transfered to dc due to square-law detector, there will
be a frequency dependency for the entire integrator and
square-law detector set.

The problem of analyzing the set of two lin-
ear filters (such as IF amplifiers and video or audio
amplifiers) with a square-law detector between them
has been of interest for a long time [10,12]. Castella
[13] presented a method for calculating the signal to
interference ratio at the output of a set of integrators
and square-law detectors in terms of input signal to
interference and clutter to noise ratios and integrator
coeflicients. However, he did not consider the presence
of the MTI filter.

A simplified block diagram of a radar signal
processor has been shown in Figure 1. In practice,
two channels (in-phase and quadrature) are used to
solve the blind phase problem. If the received signal
is ACos[(wp + wq)t + 6], where wy is the Doppler
angular frequency, it will be synchronously detected
with Coswgt at in-phase channel of radar receiver and
samples of ACos(wgt + 6) will be obtained. For a uni-
form PRF radar, if the MTI filter coefficients are shown
with w; and their number is N, this will lead to [14]:

N-1
=AY wpCos(kw,T +6)
k=0
= A[H.(wq)Cosf — H,(wq)Sind], (32)
where:
N-1
He(wa) = ) wiCos(kwsT) (33)

k=0
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and:
N-—1
H(wa) = Y wiSin(kwyT). (34)
k=0
Hpr(wg) and a(wg) can be defined as:
Hy(wa) = ([He(wa)* + |Ho(wa) )2,
(35)
_ _ Hs(wd)
awd) = 157 | F0). (36)
Now it can be written that:
Yi = A{HM(wd)COS[G + a(wd)]}. (37)

At quadrature channel, the input is synchronously
detected by Sinwgt and similarly:

yq = A{Hp(wa)Sin[8 + a(wq)]}. (38)
Therefore:
y1 = [gl® + |ygl* = A%|Hpr(wa)l®. (39)

Consequently, the filter total power gain is described
with the following equation and is independent of input
phase:

Pwg) = A_ = |Hu(wa)|?
N— N—1
Z wiCoskwaT|® +| Y wiSinkw,T|?
k=0
N-—
2 wy, ejlcwdT 2 (40)
k=0

The above equations, however, are for uniform PRF
(with moving window) but the MTT filter in its general
form, as previously stated, experiences I distinct vari-
ations. Therefore, if P;(wq) is used for power gain of
the Ith filter (i.e., [th variation):

P( ) IHM =!Z’wlk6]whk
= |Ha(w)]? + [Ha(w)?, (41)
where:
N-1
HCI w) Z wy, kCOSu)tz k= HMl( )Cosal(w)
k=0 (42)
and
N-1
H,(w) = Z wl,kSinwtl,k = HMl(w)Sinozl(w).
k=0 (43)
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wy, in these equations is the kth coefficient of the Ith
filter and:
tl,k = t(l—l)s+k ’ l= 1,2,.., 7N -1

(44)

is the time at which the kth input pulse to the Ith filter
is received.

Now assume that the input to the in-phase chan-
nel of MTI filter is:

I, k=0,1,..

vi(t) = (28)/2Coswqat + z(t) (45)
and for quadrature channel:
vy(t) = (25)Y/?Sinwat + y(t), (46)

where z(t) and y(¢) are in-phase and quadrature com-
ponents of the interference, repectively. Without loss of
generality, ¢ and y can be considered normalized such
that:

(47)

With this normalization, S in Equations 45 and 46
will be the SIR;, (input signal to interference ra-
tio). If the lth filter output is shown by Y, con-
sidering Equations 41-43, the following equation is
obtained:

Y; =[(28)"/2(Pi(wa))'/? Cosau(wa) + &1)?

a2=y? =1

+ [(28)Y2(Py(wa))*Sinau (wa) + 0],

(48)
where #; and ¢ are in-phase and quadrature
components of interference at the filter ouput
and:

- Hsl(wd)
=tg~! . 49
anfon) = g™ {24 (49
So, the integrator output is equal to:
Z= me Zbl[QSPl(wd)+a:l+gjf
1=1
+ 28, (25 2(Py(wq))/? Cosay(wy)
+ 21(28)"(Pi(wa))'/*Sineu(wa)) (50)

and
N, N;
Z2=3" 3" bibm[2SPi(wa) + & + i
I=1 m=1

+ 281(28) /2 (Py(wa)) ? Cosay(wa)
+ 26:(28)Y?(Pi(wq))*/?Sinay (wq)}[2S P (wa)
+ 22 4+ 92 4 28 (29) 2 (P (wq)) /2 Cosam(wa)

+ 20m(28) /(P (wa)) 2 Sinam (wa)],
(51)
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therefore:

N. N;
_Z—§ =ﬁs+1 = Z Z blbm[45 P[ wd)Pm(wd)

=1 m=1

+ 4SPl(wd))\mm + 45371(‘-0(1)/\1[ + 4/\ll/\mm

+ 402 + 85(P(wa) P (wa))? A Cos(au(wa)
- am(wd))]) (52)

where S + I index for Z2 implies that both signal and
interference have been considered for the above calcu-
lation. According to Equation 25, A;,, in Equation 52
is equal to:

N—1N—
Aim = Tilm = Z Z W kWi, Pz (b ~ Emj)s

k=0 3=0 (53)

where p,(7) is the normalized autocorrelation function
of input interference of the MTI filter. Because of
time dependency of the MTI filters, Ay and A,,,, are

not equal (for I # m) as mentioned previously. In
Equation 52:

(B, P)2Cos(as ~ aim)
=Hun H prm (Cosa Cosau, + Sina;Sina,y,)

=Hcchm + Hslem

N-—1 N-—1
=( Z wl,jCoswdtl,j)( Z wm,kCoswdtm,k)
J=0 k=0
N-1 N-1
+ ( Z w5 Sinwgty ;) Z Wm £ COsWalm k)
j=0 k=0
N—-1N-1 A
Wy jWm k COswalts; = tmk) = Prnlwa),
7=0 k=0 (54)
consequently:
N; N;
Z2541=Y > bibm[4S* PPy + 4SPAmm
=1 m=1
+4SPo A\ + 4 i Amm + 4/\ m + 85/\lmplm]~

(55)

Eliminating the terms related to signal in Equation 55:

N;
Z lb ()‘llAmm+)‘lzm)7 (56)

i M;
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SI =—mm—m—m
Ro 7,

N{ N,

E Z b1bm[S% P P+ S(PiAmm +Pm A1) +25 Pim Aty ]

—l=1m=1

N, N;

Z 2 blbm('\ll Amm +'\l2m)

I=lm=1

(57)

Equation 57 is interesting because it presents the
exact relation between -output and input signal to
interference ratio for the signal processor. For example,
Figure 6 shows the SIRq for a moving window double
canceller (s = 1, N = 3) with (13, 17, 14, 19) periods,
assuming N, = 10 (which results in N; = 8 according
to Equation 30), b; = 1 (for all i), § = SIR;, =
~30 dB, (C/N)i, = 40 dB and a Gaussian clutter with
0cTave = 0.05. The use of the generalized N, method
(Equations 27 and 29) for the same example results
in N, = 2.94, which means an approximate value of
—~30+14.64+2010g(2.94)1/2 = —10.7 dB for SIRy where
14.6 dB is the improvement factor [1] of this MTI filter.

In Equation 57, if the MTI filter is not present
and, like Castella, the effect of antenna pattern is to be
considered, it is sufficient to set P, equal to g? where
[13]):

—-2.7726

g1 = €xp

. .oq2
Osto Np +1) 6,
oy (1 Mo )_]

(58)

6, is the rotation rate of the antenna in degrees per
second, fp its 3-dB beamwidth (one way), ty the time
offset of the center of pulse batch from the peak and
Ng = 95/(95T) the number of pulses in a dwell time

—10 i

—14 i s ! L L L L
0 2 4 6 8 10 12 14 16

f. Tave
Figure 6. Output signal to interference versus Doppler
frequency (normalized to average PRF) for an equal
weight integrator preceded by a moving window double
canceller with (13, 17, 14, 19) periods, assuming N, = 10,
SIRin = —30 dB and (C/N)in =40 dB.
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[1). Substituting p; = g? and assuming that N; = Np
and A; = 1 (normalization of the filter power gain),
Equation 57 results in:

SIRy =

N

Z
L
L]

bibm [S297 02, +5(9F +92, ) +2591 gm pim Coswa(ti—tm )]

-
it
I
-

lm

Np Npg

33 bibm(1402,,) (59)

I=1m=1

as an especial case, which is the same as Castella
equation.

CONCLUSIONS

In this paper, the way to use N, method for calculating
integration loss after an MTI filter with nonuniform
PRF is stated and different methods of the PRF
variation from this point of view are compared. Then,
an exact method for analyzing the entire radar receiver
signal processor (consisting of squarer, MTI filter and
integrator) is presented. It should be noted that
optimization of MTI filters, without taking their effect
on the performance of the subsequent circuits into
account is not thoroughly correct, because the choice
of coefficients and periods of MTI filters affects the
integration gain. Using the presented method, it
is possible to evaluate the entire set of processor
performance due to changes in periods and coefficients
of the MTI filter and integrator.
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