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Coevolution of Input Sensors and Recognition

System to Design a Very Low Computation

Isolated, Word Speech Recognition System

R. Halavati1 and S. Bagheri Shouraki�

Appropriate sensors are a crucial necessity for the success of recognition systems. Nature

has always coevolved sensors and recognition systems and this can also be done in arti�cially

intelligent systems. To get a very fast isolated word speech recognition system for a small

embedded speech recognizer, an evolutionary approach has been used to create together the

required sensors and appropriate recognition structures. The input sensors are designed and

evolved through inspiration by the human auditory system and the classi�cation is done by

arti�cial neural networks. The resulting system is compared with a widely used speech recognition

system, and the results are quite satisfactory.

INTRODUCTION

There is strong biological evidence that current human
sensors have evolved and been optimized for our current
way of life. Evolution has chosen a set of appropriate
sensors for better dealing with the external world [1]
and the evolution of sensors and processors has always
been together, as either one of which without the other
gives no evolutionary gain. Therefore, one can say
that the ability to recognize the complex inputs of the
external world, such as voice and vision, is not only
due to computational power, but also, because of the
correct set of sensors and preprocessors through which
one absorbs the data.

Many recognition and classi�cation approaches
that are used in the current trends of arti�cial intel-
ligence are inspired by natural approaches or insights
into our conscious data processing. Examples of
these approaches are: Neural networks [2-4], fuzzy
systems [5-7], genetic and evolutionary algorithms [8,9],
symbiotic based evolutionary algorithms [10,11] and
arti�cial immune systems [12,13], as inspired directly
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by nature. There are also approaches, such as rule
based systems, hidden Markov models [14-16] and case
based reasoning [17,18], with based ideas taken from
conscious data processing.

But, when it comes to feature selection, this
is not the common approach and the features are
usually computed using highly complex mathematics.
It is clear that the computational powers of human
beings and digital computers are quite di�erent in
nature and one may need di�erent approaches for
solving human-centric problems when they are faced by
computers. However, a similar coevolution of sensors
and a recognition approach can also be appropriate for
arti�cial recognition systems.

In order to design and implement a very low
computation speech recognition system for an embed-
ded device, a co-evolutionary approach has been used,
in which a set of appropriate sensors are formed to
work together with some neural network classi�ers.
In this approach, the general structure of sensors and
classi�ers are inspired by the human auditory system,
but the exact speci�cation and structure is left to
evolution.

In the rest of the paper, �rst the basic idea
behind the sensors' structure will be presented. Then,
the actual implementation details are included and
the authors' genetic modeling and the evolutionary
approach are presented. After that, the experimental
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results and, �nally, conclusions and future works are
described.

THE RATIONALES BEHIND THE

APPROACH

The human ear is composed of three sections. The
external ear is in charge of gathering sound waves
and reecting then towards the middle ear. The
middle ear is mainly in charge of some mechanical
ampli�cations and medium transfer, so that the signal
reaches the inner ear, where the processing begins. The
main hearing organ responsible for sound perception
is the cochlea. The cochlea is a spiral structure with
two and a half turns and around one inch long if
unfolded. The membrane of the cochlea is covered
with hair cells, which detect sound activity and respond
to it. The cochlea includes hair cells with selective
frequency activity [19], so that each hair cell is acti-
vated mostly by a certain frequency and the activation
level decreases as the frequency of the incoming sound
gets further from this base frequency [20,21]. Also,
it must be noted that, like all other neurons, hair
cells have activity limitations, due to the required
chemical charges at their synapses. Therefore, there is
a minimum required rest time between two consecutive
�rings [22].

Based on these facts, a set of sensors are assumed,
each responding to a certain range of frequencies, tak-
ing the average or maximum of the sensed frequencies,
similar to the selective activation of hair cells. Also,
as the hair cells have consecutive activation limits, the
sensors can also sense and record the perceived signals
in time windows and produce an output, based on an
aggregation of perceived signals during this time. Once
these �rst layer sensors have computed their outputs,
the values can be given to a neural network to be
classi�ed.

The number of sensors, the position of each
sensor, its range, its activation rules and the structure
and features of the neural network can be subjects of
a coevolution between sensors and the classi�cation
system.

THE IMPLEMENTATION DETAILS

Based on the proposed idea, the system consists of
two subsystems. The �rst one is composed of the
sensors, which absorb the speech signal and convert it
into intermediate data and the second one is the neural
network that learns and classi�es the given data.

Sensors

The human ear uses a mechanical approach to separate
di�erent sound frequencies by using frequency depen-

dent hair cells. But, in conventional speech recognition
tools, there is just one recording device, which senses
all frequencies together and, if one needs frequency
amplitudes separately, this must be done by a com-
putational approach. The most common approach
to detect the amplitude of di�erent frequencies is to
use a short-term furrier transform. As the activity
range of each sensor will be de�ned later, a furrier
transform can be made with a linear scale and the exact
positioning of the sensors can be left to later stages of
the algorithm. Once the evolution is completed, the
furrier transform can be done by the scale provided by
the �nal positioning of the sensors.

Each input sensor has a de�nite frequency range
from which it can absorb data. Sensors may have
di�erent bandwidths, may overlap with each other and
may leave some frequency range unsampled.

The sensors are applied over time windows; there-
fore, the input of each sensor is all the frequency
amplitudes that lie in the rectangle that is produced
by its coverage range and time window. The output
of each sensor is passed through a Max-N opera-
tor [23]. The operator takes the average of the
maximum, N , percent of its inputs by sorting inputs
in descending order and taking the average of the top,
N , percent of them. Using di�erent values of N ,
the operator can vary between average and maximum
operator.

Figure 1 presents the spectrogram and output
results of a set of sensors that have been designed,
based on the MEL scale, as a possible start position
of the sensors evolution.

Classi�cation Network

To classify the sensors' outputs, a set of feed forward
neural networks with an error back propagation train-
ing algorithm [24] was assumed, each for the acceptance
of one word. Each network has an input layer with
the size of its sensors multiplied by the number of
time windows and an output layer with one node
specifying whether the input belongs to that class or
not. The number of intermediate layers, their sizes
and their activation functions are left to evolution. The
activation function can be either Sigmoid or Gaussian.
Figure 2 presents a sample neural network.

General Structure

Putting the above components together, the complete
system starts the recognition task by passing the input
spectrogram through sensors and getting a matrix of
the intermediate data. Then, this data is given to
classifying neural networks and the class whose network
output is the maximum, is chosen as the correct class.
The complete schema is presented in Figure 3.
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Figure 1. A sample spectrogram of speech signal (left) and sampled inputs using a set of sensors, designed based on the
MEL scale (right) [25].

Figure 2. The structure of the recognition neural networks.

GENETIC STRUCTURES AND

EVOLUTIONARY TRAINING

To design the previously stated sensors and the clas-
si�cation networks, a coevolution between sensors and
networks was used. To do so, the sensors and networks
are coded in common chromosomes and a standard
genetic algorithm is run to optimize these settings.

Chromosomes

The following genes compose one chromosome:

� The number of sensors,

� Time windows' count,

� For each sensor:

{ The �rst frequency in the range,

{ The last frequency in the range,

{ The parameter of the Max-N operator.

� The number of the classi�cation networks' interme-
diate layers (all networks have the same number of
intermediate layers, for the sake of simplicity),

� For each intermediate layer:

Figure 3. The general structure of a recognition system.
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{ Number of nodes in this layer,

{ Activation function of cells, which can be either
Sigmoid or Gaussian.

Fitness Function

To compute the �tness of each chromosome, its pheno-
type (the constructed sensors and networks) is trained
using an error back propagation algorithm and the
negative of the �nal recognition error rate is returned
as the �tness value.

Mutation Operator

The following mutation operators were used during the
creation of new o�spring with equal probabilities:

� Alteration of one sensor's �rst or last frequency,

� Alteration of one sensor's operation type (Max-N's
parameter),

� Duplication of one sensor,

� Merging of two sensors,

� Dropping of one sensor,

� Alteration of number of neural networks' intermedi-
ate layers,

� Alteration of one intermediate layer's number of
cells,

� Alteration of one intermediate layer's activation
function.

Cross-Over Operator

During a crossover, two chromosomes swap their sen-
sors, keeping their own network structures.

EVALUATION AND EXPERIMENTAL

RESULTS

The above structure was tested on two di�erent test
cases. The �rst set was FARS DAT (FARS DAT
includes a variety of Farsi speech data uttered by
304 native speakers who di�er from each other with
regard to age, gender, dialect and educational level.
Each speaker uttered twenty sentences in two sessions.
The speech was collected in an acoustic booth of the
Linguistics Laboratory of the University of Tehran); a
standard multi-speaker Persian speech database, which
is widely used in Persian speech recognition systems,
and a random set of 250 words, spoken by 10 di�erent
speakers, half-male and half-female, were chosen. For
the second test, 100 words were recorded by one 21-
year-old male speaker and each word repeated 10 times.
The words were selected from the literature book of
the �rst year of primary school in Iran. Both sample

sets were recorded by a 16 kHz sampling rate and
spectrograms were computed by 512 frame windows
and 384 frame window overlaps (128-frame step size).

To evolve the sensor/networks with genetic algo-
rithms, a population of 100 chromosomes were used,
10% elitism, 60% crossover rate and 60% mutation
rate. The initial design of the sensors was based on the
MEL scale, but for diversity, the mutation operator was
applied 100 times on each chromosome before starting
the evolution. The initial structure of the neural
network was randomly selected with 1-3 intermediate
layers, each having 1-100 nodes. The parameter of the
Max-N operator was set to 10%-40%, randomly.

To force the evolution to �nd cost-e�cient de-
signs, each chromosome had only 20 seconds for train-
ing its networks during �tness computations and, there-
fore, there was both one selection pressure for better
recognition and another pressure for training speed,
which could result in smaller sensors and network
structure and, therefore, faster recognition speed. The
20 second limit was practically chosen.

In all runs, the training was with clean data, but
testing was done with 20, 10, or 0 db SNRs of additive
white or babble noise. The babble noise was recorded in
a computer lab with about 30 people. 70% of each test
set was used for training and 30% percent for testing.
In the �rst test case, which had di�erent speakers, the
selection was speaker based (30% of the speakers were
randomly chosen for the test).

To compare the recognition rate of the resulting
system with standards of speech recognition, the same
test and train cases were given to a speech recogni-
tion system which used MFCC features [18] and the
HMM [18,26] recognition system.

Figures 4 and 5 present the comparison results of
the recognition rate of the two systems and Figure 6
presents their recognition speeds.

As depicted in the diagrams, the evolved approach
has a recognition rate almost the same as the MFCC-
HMM approach, but much better results when the
amount of noise, either babble or white, increases.
Both systems have an almost 100% recognition result
when testing is done with clean data, but with an
increment in noise level, the recognition rate of both
systems decreases. However, the decrement of the new
hybrid approach is much slower than MFCC-HMM, as
the new method reaches 55% to 75% correct recognition
with the existence of 0 db noise, while the other has
5% to 39% correct results. Hence, it can be concluded
that the new approach has been quite able to learn the
patterns and ignore environmental noise.

The next test, depicted in Figure 6, presents
the speed comparison of the two approaches. In this
test, 10 minutes of clean samples, separated into 1000
�les, was given to both systems to recognize. The
MFCC feature extraction (not including spectrogram
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Figure 4. Single speaker recognition results for the
presented approach vs. MFCC-HMM approach.

Figure 5. Multiple speaker recognition results for the
presented approach vs. MFCC-HMM approach.

Figure 6. Processing time for classifying 10 minutes of
recorded speech in milliseconds.

computation) took a little less than double the time of
the Max-N used and the HMM took about three times
more time than the neural networks.

Finally, to have a measure of the relation between
recognition speed and recognition accuracy for selec-
tion of an appropriate system for the embedded hard-
ware, a simple multi-objective optimization algorithm
was used [27]. In this scenario, there were 100 separate
nests in the gene pool. Once the �tness of one chromo-
some is computed, it moves to one of the nests, based on
its recognition rate (the �rst nest accepts recognition
rates in the [0..1) range, the second in the [1..2) range
and the last in the [100..100] range). Then, to generate
the next generation, the chromosomes in each nest
are sorted, based on their recognition time, and the
higher computation chromosomes are dropped. The
new generation is created by mutations and crossovers
over the contents of these nests.

As the result of this run, a set of chromosomes
were obtained with di�erent recognition speeds and
accuracy. Figure 7 presents the results. As depicted
in Figure 6, the chromosome with a recognition rate
of 93 percent takes only 1 microsecond, while a 2
percent better accuracy requires triple time. Therefore,
if the extra 2-3 percent accuracy were not crucial (and,
usually, it is not, as the recognition is based on current
context), one could have an appropriate system with 3
times more recognition speed.

CONCLUSIONS AND FUTURE WORKS

The coevolution of recognition systems and sensors is
an approach, which has been tested and proved in
nature and is now being used in this paper to design a
very low computation speech recognizer algorithm for
an embedded system. In this approach, the general
structure of sensors is inspired by the human auditory
system and the recognition system is a set of neural
network classi�ers.

The evolved system is tested on two speech
databases and the results are compared with a widely
used top-level speech recognition system, namely;
MFCC features and an HMM recognizer. As stated
in the previous section, the results show a system
with a little less accuracy in comparison with top-level
recognition systems, but using about 300 times less
necessary computation, which was the bottleneck in
the design of the hardware embedded system.

The approach has no language dependencies, as
no model was used related to the Persian language.
Implication of the sensors can be easily used in con-
ventional speech recognition systems, but, the general
approach is not suitable for continuous speech recogni-
tion, as it is heavily dependent on �xed time windows
for each word.

In comparison with general speech recognition
systems, a major simpli�cation of this model are the
�xed time windows. Using this simpli�cation, one

Figure 7. The relation between the recognition speed
and the recognition accuracy of possible sensor-network
structures. The horizontal axis represents recognition
accuracy in percent and the vertical range represents
recognition speed in microseconds on a Pentium IV 2.4
GHz.
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can only cope with intonations almost similar to the
recorded samples. The results on the two test sets were
quite satisfactory and a broad set of intonations was not
an important issue in the hardware device. But, as a
next step in this approach, the authors are working on
a more elastic recognition system to be used, instead
of neural networks with �xed time windows.
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