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A New Technique for Approximate

Solutions of the Nonlinear Volterra

Integral Equations of the Second Kind

A.R. Nazemi1, M.H. Farahi� and A.V. Kamyad1

In this paper, a di�erent approach for �nding an approximate solution of the Nonlinear Volterra
Integral Equations (NVIE) of the Second Kind is presented. In this approach, the nonlinearity
of the kernel has no serious e�ect on the convergence of the solution. The author's approach
is simple and direct for solving the (NVIE). The solution of the original problem is obtained,
by converting the problem into an optimal moment problem. The moment problem is modi�ed
into one consisting of the minimization of a positive linear functional over a set of Radon
measures. Then, an optimal measure is obtained, which is approximated by a �nite combination
of atomic measures and, by using atomic measures, this one is changed into a semi-in�nite
dimensional nonlinear programming problem. The latter is approximated by a �nite dimensional
linear programming problem. Finally, the approximated solution for some examples is found.

INTRODUCTION

The problem of �nding numerical solutions for integral
equations is an important case and many computa-
tional methods have been proposed in this area (see [1-
4]). It seems that the idea of solving NVIEs by
reducing them to an optimization problem gives rise
to a fascinating result.

Consider the following nonlinear Volterra integral
equation:

u(x) = f(x) +

xZ
a

k(t; x; u(t))dt; (1)

where x 2 [a; b], a.e. The necessary and su�cient
conditions of existence and uniqueness of the solution
for the above problem can be found in [5]. Here, it is
assumed that the problem, which is being considered,
has a unique solution, but it is not always the case
(see [3,6]). In the next section, it is shown that
one can convert the NVIE to an optimal moment
problem.
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OBTAINING THE MOMENT PROBLEM

Let the interval [a; b] be divided toM subintervals, Ji =
[xi�1; xi], i = 1; � � � ;M , where x0 = a and xM = b and

[a; b] =
SM

i=1[xi�1; xi].
Now, Equation 1 on [a; b] is converted into the

following system:

8>>>>>>>>>><
>>>>>>>>>>:

x1R
x0

k(t; x1; u(t))dt� u(x1) = �f(x1);

x2R
x0

k(t; x2; u(t))dt� u(x2) = �f(x2);

...
xMR
x0

k(t; xM ; u(t))dt� u(xM ) = �f(xM );

: (2)

System 2 can be written, equivalently, in the following
form:

8>>>>>>>>>><
>>>>>>>>>>:

x1R
x0

k(t; x1; u(t))dt� u(x1) = �f(x1);

x1R
x0

k(t; x2; u(t))dt+
x2R
x1

k(t; x2; u(t))dt�u(x2)=�f(x2);

...
MP
i=1

x1R
xi�1

k(t; xM ; u(t))dt� u(xM ) = �f(xM );

(3)
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Now, the following minimization problem is de�ned:

minimize

MX
i=1

xiZ
xi�1

gi(t; u(t))dt; (4)

subject to Problem 3, where the auxiliary functions
gi(t; u(t)) are arbitrary known functions. In fact, one
only needs to �nd the feasible solution of system in
Problem 3. Thus, �nding a solution for System 2 is
equivalent to �nding a solution of the optimization
Problems 3 and 4.

De�nition 1

The trajectory function, u(:) : [a; b] ! U � R,
is admissible if it is absolutely continuous and the
constraints of Problem 3 are satis�ed.

It is assumed that the set of all values, u(:);
denoted by U , is non-empty. Now, let the following
be de�ned:

ai = u(xi)� f(xi); (i = 1; 2; � � � ;M): (5)

Hence, the optimization Problems 3 and 4 are reduced
to the following problem:

minimize

MX
i=1

xiZ
xi�1

gi(t; u(x))dt; (6)

subject to:

iX
j=1

xjZ
xj�1

k(t; xi; u(t))dt = ai; (i = 1; 2; � � � ;M):
(7)

This problem is known as an optimal moment problem
and it is considered in the next section.

METAMORPHOSIS

Let 
 =
SM

i=1
i, where 
i = Ji � U , J =
SM

i=1 Ji,
where Ji is de�ned as before and the set U is compact.
Suppose C(
i) to be the space of all continuous
functions on 
i. Now, the moment minimization
Problems 6 and 7 are replaced to another one, as
follows:

1. The mapping �i : hi !
xiR

xi�1

hi(t; u(t))dt, 8hi 2

C(
i), de�nes a positive bounded linear functional
on C(
i), (i = 1; 2; � � � ;M);

2. By the Riesz representation theorem (see [7]), there
exists a unique positive Radon measure, �i on 
i,
such that:

�i(hi) =

Z

i

hid� � �i(hi); 8hi 2 C(
i): (8)

These measures, �i, are required to have certain
properties. First, by Equation 8,

j�i(hi)j � Ti sup jhi(t; u(t))j;

where Ti = xi � xi�1. Hence:

�i(1) � Ti:

Also, by Equations 7 and 8, one has:

iX
j=1

�j(k(t; xi; u(t))) = ai; (i = 1; 2; � � � ;M):

Finally, functions �i 2 C(
i) are considered, which do
not depend on u, that is, �i(t; u1) = �i(t; u2), for all
t 2 [xi�1; xi], u1; u2 2 U , where u1(:) 6= u2(:). Then,Z

i

�id� =

xiZ
xi�1

�i(t; u(t))dt = ��i ;

where u is an arbitrary element of U: Furthermore, ��i
is the integral of �i(:; u) over [xi�1; xi]. Let M

+(
i) be
the set of all positive Radon measures on 
i. The set,
Q, is de�ned as a subset of M+(
), such that:

Q = S1 \ S2 \ S3;

where:

S1 =

�
(�1; �2; � � � ; �M ) 2

MY
i=1

M+(
i) : �i(1)

� Ti; (i = 1; 2; � � � ;M)

�
;

S2 =

�
(�1; �2; � � � ; �M ) 2

MY
i=1

M+(
i)

:

iX
j=1

�j(k(t; xi; u(t))) = ai; (i = 1; 2; � � � ;M)

�
;

S3 =

�
(�1; �2; � � � ; �M ) 2

MY
i=1

M+(
i) : �i(�i)

= ��i ; �i 2 C(
i) and independent of u

�
:

By using the Alaoglu Theorem (see [8]) and the
Tychono� Theorem (see [9]), the set, S1, is compact.
The set, S2, can be written, as follows:

S2 =
M\
i=1

�
(�1; �2; � � � ; �M ) 2

MY
i=1

M+(
i)

:

iX
j=1

�j(k(t; xi; u(t))) = ai

�
=

M\
i=1

Mi;
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where:

Mi =

�
(�1; �2; � � � ; �M ) 2

MY
i=1

M+(
i)

:
iX

j=1

�j(k(t; xi; u(t))) = ai

�
;

i=1; 2; � � � ;M;

is closed, because it is the inverse image of a closed
singleton set on the real line, the set faig, under a
continuous map. By a similar argument, it can be
shown that S3 is closed. If one topologizes the space,
M+(
) by the weak �-topology, since Q is a closed
subset of the compact set, S1, therefore, Q is compact.
By de�nition of a convex set, it is concluded that the
sets, S1, S2 and S3, are convex, thus, Q is a compact
convex set (see [10]). By the Krein-Milman theorem
(see [11]), Q has extreme points.

Now, the original minimization problem is re-
placed by one in which the minimum of:

I

 
MX
i=1

�i

!
=

Z

i

MX
i=1

gid� �

MX
i=1

�i(gi); (9)

is sought over the compact, convex set, Q.

Theorem 1

The measure-theoretic problem, which consists of �nd-
ing the minimum of the functional in Equation 9 over
the set, Q, of M+(
), attains its minimum, �� =
MP
i=1

��i , in the set, Q.

Proof

The proof is clear, since �� =
MP
i=1

��i is continuous and

Q is a compact, convex set.

AN APPROXIMATION OF OPTIMAL

TRAJECTORY BY AN OPTIMAL

MEASURE

In this section, an approximation to the optimal
measure, �� 2 M+(
), is obtained that is de�ned in
Theorem 1. For this purpose, the minimization of the
functional in Equation 9 over the set, Q, is considered,
as follows:

minimize I(
MX
i=1

�i) = �i(
MX
i=1

gi); (10)

subject to:8>>>>><
>>>>>:

�i(1) � Ti; (i = 1; 2; � � � ;M);
iP

j=1
�j(k(t; xi; u(t)))=ai; (i = 1; 2; � � � ;M);

�i(�i) = ��i ; �i 2 C(
i); (i = 1; 2; � � � ;M)

and independent of u:

(11)

It is known that this problem is one of linear program-
ming; all the functions in Problems 10 and 11 are linear
in the variable, �i, and, furthermore, the measure, �i,
is required to be positive.

The linear programming described above is
in�nite-dimensional and an approximate solution to
this problem can be obtained by solving a �nite dimen-
sional linear programming associated with Problems 10
and 11. In the above linear programming, only a
�nite number, Gi, of functions �i (i = 1; 2; � � � ;M) are
chosen, as follows:8>>>><
>>>>:

�1;1 �1;2; ; � � � ; �1;G1

�2;1 �2;2; ; � � � ; �2;G2

...

�M;1 �M;2; ; � � � ; �M;GM

(12)

By this selection, the linear programming (Problems 10

and 11) has 2M +
MP
i=1

Gi constrained (i = 1; 2; � � � ;M)

and is called a semi-in�nite dimensional linear pro-
gramming.

Now, Ji is divided into mi and U into p subinter-
vals. Thus, a grid is obtained for 
i = [ti�1; ti] � U

and every subrectangle obtained as 
ik is renamed. A
member from each subrectangle of 
ik is taken and it
is denoted by zik = (tik ; uk).

According to the result of [12], it is shown that
the optimal measure, ��, which satis�es the constraints
in Problem 11 and minimizes the functional in Prob-
lem 10, has the following form:

�� =

MX
i=1

RiX
k=1

��ik�(z
�

ik); (13)

where Ri = mip is the number of points in the
above partition, z�ik 2 
i, the coe�cients, ��ik � 0,
k = 1; 2; � � � ; Ri, are unknown and �(zik), for each k,
denote a unitary atomic measure with the support of
the singleton set, fz�ikg, such that �(z�ik)Fi = Fi(z

�

ik),
for all Fi 2 C(
i), (i = 1; 2; � � � ;M).

Let 
i be divided into Ri rectangles, 
ik , (i =
1; 2; � � � ;M)(k = 1; 2; � � � ; Ri). Points zik 2 
ik are
chosen and �i = fzik; k = 1; 2; � � � ; Rig.

Now, let P (M;
MP
i=1

Gi; ") � R

�
M+

P
i=1

Ri

�
be the

set of all (�ik; k = 1; 2; � � � ; Ri, i = 1; 2; � � � ;M) and
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the variables, u(xj)(j = 1; 2; � � � ;M), be de�ned by:8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

j
jP

i=1

RiP
k=1

�ikkj(zik)� aj j � "; (j = 1; 2; � � � ;M);

j
RiP
k=1

�ik�is(zik)� ��is j � "; (s = 1; 2; � � � ; Gi);

(i = 1; 2; � � � ;M);
RiP
k=1

�ik � Ti;

�ik � 0; (i = 1; 2; � � � ;M);

(k = 1; 2; � � � ; Ri);

u(xj) is free; (j = 1; 2; � � � ;M):

where kj is the corresponding kernel, k(t; xj ; u(t)) (j =
1; 2; � � � ;M).

Proposition 1

For every " > 0, the problem of minimizing the
function,

PM

i=1

PRi

k=1 �ikgi(zik), zik 2 �i, on the set

P (M;
MP
i=1

Gi; "), has a solution for Ri = Ri(")(i =

1; 2; � � � ;M) su�ciently large. The solution satis�es:

�Q

 
MX
i=1

RiX
k=1

�ikgi(zik)

!
+ �(") �

MX
i=1

RiX
k=1

�ikgi(zik)

� �Q

 
MX
i=1

RiX
k=1

�ikgi(zik)

!
+ ";

where �(") tends to zero as " tends to zero.

Proof

Now, by choosing mi's (i = 1; 2; � � � ;M) and p large
enough, so that �i be approximately dense in 
i (see
Theorem III in [9]), one can compute �

Q(M;
MP
i=1

Gi)
(gi)

(the approximate value of the ��(gi)), by the following
linear programming problem:

minimize

MX
i=1

RiX
k=1

�ikg(zik); (14)

over the set, �ik � 0, (i = 1; 2; � � � ;M), (k =
1; 2; � � � ; Ri) and u(xj), (j = 1; 2; � � � ;M), such that:8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

jP
i=1

RiP
k=1

�ikkj(zik)

�u(xj) = �f(xj); (j = 1; 2; � � � ;M);
RiP
k=1

�ik�is(zik) = ��is ; (i = 1; 2; � � � ;M);

(s = 1; 2; � � � ; Gi);
Ri+1P
k=1

�ik = Ti; (i = 1; 2; � � � ;M);

u(xj) is free; (j = 1; 2; � � � ;M):

(15)

The slack variables, �iRi+1
, are used to put the inequal-

ity,
RiP
k=1

�ik � Ti, in the form of equality. Note that,

�is(t; u) is chosen, as follows:

�is(t; u) =

(
1 if t 2 Jis

0 otherwise

where Jis =
h
(s�1)Ti

Gi
; sTi
Gi

i
, (s = 1; 2; � � � ; Gi), (i =

1; 2; � � � ;M). So:

��is =

Z
Jis

�is(t; u)dt =
Ti

Gi

;

(s = 1; 2; � � � ; Gi); (i = 1; 2; � � � ;M):

Thus, �iRi+1
= 0, (i = 1; 2; � � � ;M). Consequently,

Problems 14 and 15 change to the following linear
programming problem:

minimize

MX
i=1

RiX
k=1

�ikg(zik); (16)

subject to:8>>>>>>>>>>>><
>>>>>>>>>>>>:

jP
i=1

RiP
k=1

�ikkj(zik)

�u(xj) = �f(xj); (j = 1; 2; � � � ;M);
RiP
k=1

�ik = Ti; (i = 1; 2; � � � ;M);

�ik � 0; (i = 1; 2; � � � ;M);

(k = 1; 2; � � � ; Ri);

u(xj) is free; (j = 1; 2; � � � ;M):

(17)

NUMERICAL EXAMPLES

The solution of some nonlinear Volterra integral equa-
tions of the second kind has been estimated by using
the technique developed here. Before presenting the
result, it is necessary to make several comments:

I. The bounded space solution, U , for u(x), is chosen
appropriate, such that the approximate solution
can be obtained, accurately;

II. The sets of the form zik(i = 1; 2; � � � ;M), (k =
1; 2; � � � ; Ri), were constructed by dividing the ap-
propriate intervals into a number of subintervals,
de�ning, in this way, a grid of points;

III. The solution of Linear Programs 16 and 17,
was estimated by means of a home-made revised
simplex method (see [13]);

IV. Without loss of generality, in the optimiza-
tion Problems 3 and 4, the criteria function
gi(t; u(t)) = 0, (i = 1; 2; � � � ;M) was chosen;
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V. By using the slack variables u(xi), (i =
1; 2; � � � ;M), which have been obtained by solving
Linear Programmings 16 and 17, one can get
an approximate solution for the original problem
(Equation 1), as follows:

u(x) = u(xi�1) +
u(xi)� u(xi�1)

xi � xi�1
(x� xi�1);

x 2 [xi�1; xi]; (i = 1; 2; � � � ;M); (18)

where u(x0) is given;

VI. The computation errors of the exact solution,
u(x), and the approximate solution, u�(x), are
compared, as follows:

E(u(x); u�(x)) =

MX
i=1

(u(xi)� u�(xi))
2:

In the following examples, one assumes that M =
3 and J = [0; 1] is divided into J1 = [0; 0:3], J2 =
[0:3; 0:7] and J3 = [0:7; 1].

Example 1

Consider the following nonlinear Volterra integral equa-
tion of the second kind, with the analytical solution,
u(x) = ex, on [0; 1]:

u(x)=ex�
1

3
xe3x+

1

3
x+

xZ
0

xu(t)3dt; 0 � x � 1:

In this example, the appropriate intervals are chosen,
as follows:

m1 m2 m3 U p R1 R2 R3

10 10 10 [0.06, 46.4] 20 200 200 200

Thus, one has the following linear programming
problem:

minimize 0t�;

subject to:

�

R1X
k=1

0:3u31k�1k + u(x1) = 1:2039;

�

R1X
k=1

0:7u31k�1k �

R2X
k=1

0:7u32k�2k + u(x2) = 0:3416;

R1X
k=1

u31k�1k+

R2X
k=1

u32k�2k+

R3X
k=1

u33k�3k�u(x3)=3:6436;

R1X
k=1

�1k = 0:3;

R2X
k=1

�2k = 0:4;

R3X
k=1

�3k = 0:3;

�ik � 0; i = 1; 2; 3; k = 1; 2; � � � ; Ri;

u(xi) is free; i = 1; 2; 3;

where � = (�ik ; i = 1; 2; 3; k = 1; 2; � � � ; Ri). To
compare the results, see Table 1.

The error function is E(u(x); u�(x)) = 0:0013. In
Figure 1, the suboptimal trajectories of the approx-
imate solution and the exact solution of the above
integral equation are compared.

Example 2

Consider the following nonlinear integral equation,
with the exact solution, u(x) = x2 on [0; 1]:

u(x) = x+
1

2
x(1� cosh(x2)) +

xZ
0

xt sinh(u(t))dt;

0 � x � 1:

The summarized results are shown in Table 2. Figure 2
shows the approximate and the exact solutions. The
error function is E(u(x); u�(x)) = 0:3608� 10�4.

Table 1. The numerical results of Example 1.

xi 0 0.3 0.7 1

u�(xi) 1 1.3417 1.9801 2.7262

u(xi) 1 1.3499 2.0138 2.7183

Figure 1. The suboptimal trajectory comparison between
the approximate and exact solutions of Example 1.
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Table 2. The numerical results of Example 2.

xi 0 0.3 0.7 1

u�(xi) 0 0.0924 0.4928 0.0982

u(xi) 0 0.09 0.49 1

Figure 2. The suboptimal trajectory comparison between
the approximate and exact solutions of Example 2.

Example 3

Consider the following integral equation, with the exact
solution, u(x) = ex on [0; 1]:

u(x) = ex � x sin(x) +

xZ
0

sin(x)u3(t)e�3tdt;

0 � x � 1:

Table 3 represents the results for this example:
The error function is E(u(x); u�(x)) = 0:0031.

The approximate and exact solutions are shown in
Figure 3.

Example 4

Consider the following integral equation of the second
kind, with the exact solution, u(x) = x on [0; 1]:

u(x) =
3

2
x�

1

2
xex

2

+

xZ
0

xteu
2(t)dt;

0 � x � 1:

The results for this example are represented in Table 4.

The error function is E(u(x); u�(x)) = 0:0011.
Compare the approximate and exact solutions in Fig-
ure 4.

Table 3. The numerical results of Example 3.

xi 0 0.3 0.7 1

u�(xi) 1 1.3222 1.9956 2.6736

u(xi) 1 1.3499 2.0318 2.7183

Figure 3. The suboptimal trajectory comparison between
the approximate and exact solutions of Example 3.

Figure 4. The suboptimal trajectory comparison between
the approximate and exact solutions of Example 4.

Table 4. The numerical results of Example 4.

xi 0 0.3 0.7 1

u�(xi) 0 0.3075 0.6911 0.9688

u(xi) 0 0.3 0.7 1

CONCLUSIONS

This paper presents a method to �nd the solution of
nonlinear Volterra integral equations by an optimiza-
tion method that is based on some principles of measure
theory, functional analysis and linear programming.
In comparison to the other methods, the authors'
approach has some advantages. For example, this
method is not iterative and it solves the problem
directly, without need of any initial guess. It is
necessary to mention that the approximate solution for
the nonlinear Volterra integral equations, obtained by
piecewise lines on subintervals [xi�1; xi], is based on
Relation 18.
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