
Scientia Iranica, Vol. 14, No. 6, pp 566{570

c Sharif University of Technology, December 2007

Research Note

A Hardwired Discrete Simulation Algorithm

M.H. Nojumi1

The architecture of a hardwired simulator for implementation of a discrete event-driven simulation

of digital systems at the logic level is presented. In the design of this system, attempts have

been made to utilize techniques of high performance computing to have a system capable of

simulating the digital circuits rapidly. The centralized event-driven simulation algorithm chosen

here, has the advantages of being e�cient and conceptually straightforward. The high reliability

of the simulator has been taken care of through a collection of handshake signals between each

two of the three main modules.

INTRODUCTION

Simulation is, today, the most frequently performed
operation in the computer aided design of systems. It
enables designers to test the designed system for defects
and to make necessary modi�cations and improvements
without the need to go through the expensive process of
constructing a prototype [1,2]. Advances in computer
programming paradigms, like object oriented design,
have seen parallel advancements and implementations
of simulation algorithms [3].

The ever-increasing complexity of digital systems
makes it necessary to develop faster simulators for
testing the designed circuitry. One acceleration strat-
egy is to employ more e�cient algorithms, which are
not easy to think of and come by. An alternative
approach is to incorporate the simulation algorithm
into the hardware, thereby having a \special-purpose"
computer, speci�cally con�gured to perform simula-
tion. The simulation algorithm will, thus, run faster,
since software compilation and execution will not be
required.

This work is based on the latter idea of having a
\hardwired" simulator for discrete event-driven simu-
lation of digital systems at the logic level. In its design,
attempts have been made to utilize techniques of high
performance computing to have a system capable of
simulating the digital circuits rapidly. For its e�ciency
and conceptually straightforward algorithm, the cen-
tralized event-driven simulation has been chosen.

It is important to note that the focus of this
paper is on describing a simulation paradigm at the

1. Department of Mathematical Sciences, Sharif University

of Technology, Tehran, I.R. Iran.

conceptual and logic level for event driven simulation,
rather than hardware details. For this reason, all
physical implementation issues have been deliberately
left out of this discussion.

The architecture of the accelerator consists of
three main modules: Element Evaluation Unit (EEU),
Event Scheduling Unit (ESU) and Event Processing
Unit (EPU). These parts perform the three operations
involved in centralized-time discrete event-driven sim-
ulation. In this way, the simulation algorithm has been
partitioned into three main tasks, each allocated to one
main module. These modules form a kind of pipeline
and operate in parallel to accelerate the simulation
process. The high reliability of the simulator has been
taken care of through a collection of handshake signals
between each two of the three main modules.

HOST AND AUXILIARY UNITS

The Host is the interface between the simulation
engine and the user. It receives a description of the
system from the user, performs relevant compilation
and preprocessing, if needed, and, then, delivers data to
the simulator. It also receives simulation results from
the simulator, performs post processing operations,
if needed, and, then, submits results to the user in
convenient forms (like graphs, simulation charts, etc.)
by displaying them on a monitor or storing them on
disk.

Two signal lines leave the Host and two enter it:

� \Start" signal leaves the Host and goes to EEU, ESU
and EPU. This signal is activated at the start of
the simulation and orders the units to start their
operations;



A Hardwired Discrete Simulation Algorithm 567

� \Stop" signal is sent by STI to various units, in-
cluding the Host, when the simulation time reaches
its predetermined �nal value, informing units that
simulation has terminated;

� \CycleComplete" signal is sent by ESU to the Host
to inform it that the current simulation cycle has
been completed. Upon reception of this signal, the
Host reads the current simulation time from the
CTR and the values of the nodes requested by the
user from EOT;

� \Continue" signal is sent by the Host to ESU.
Having �nished reading the necessary data from
EOT and the CTR, the Host activates this signal,
indicating for the ESU to continue.

A possible architecture for the simulator includes
the following data structures.

Circuit Topology Memory (CTM) is a memory
module, in which the description table of the system,
or equivalently, the \system's topology", is loaded by
the Host. CTM can be an array of 216 � 1 = 65535
cells, each corresponding to one element in the system,
making the simulation engine capable of simulating
systems with up to 65535 elements, with one code
(\0000Hex", for instance), denoting \no element". A
element number can then be coded with 16 bits. During
the processing of an event, the EPU determines the
numbers of activated system elements by referring to
this topology memory.

Assuming that elements of the system have, at
most, 16 outputs, the cell in CTM, at a location with
the address, s, is, thus, an array of 16 pointers to
the fanout lists of elements with the number s. So,
CTM[s][i] is a pointer to the list of element numbers
of elements that receive, as input, the output, i, of an
element with the number s. The fanout list can be
implemented as a linked list, with each node having
the structure:

Element # Input # Pointer to next Node

For example, if output number 2 of element number 37
leads to input number 4 of element number 23, to input
number 12 of element number 14 and to input number
0 of element number 3, then, CTM [37,4] is a pointer
to the linked list:

23 4 ! ! 14 12 ! ! 3 0 �

Element Class Table (ECT) speci�es the class to which
each element belongs, which, in turn, speci�es the
functionality of the element. For instance, all OR

gates in the system belong to the \OR class" (a
collection of elements that performs the OR operation
with various \generalized" interpretations of OR in
terms of logic \strengths", to be de�ned in any way the
system designer wishes). During the compilation of the

system, the Host loads the ECT with the class numbers
of elements in the system. The Host may also read
the ECT, perform some transformations and store the
ECT, on disk, for future reference or future simulations.
The 8-bit class number of an activated element is read
from the ECT by the EEU for evaluation of that
element, as described later.

Class Delay Table (CDT) contains the delay time
of each class of elements in, for instance, picoseconds.
With each 8-bit entry, delay time between 0 and 255
picoseconds can be recorded. A class with delay time
longer than 255 picoseconds can be represented by a
cascade of two or more classes. With a 8-bit class code,
there are 256 possible classes, making the CDT a 256�8
bit memory unit.

During the compilation of the system by the Host,
CDT is loaded with delays of element classes. The
data in CDT can also be read by the Host for various
computations or for storage on disk or for later retrieval
for future simulations to be done without the need for
recompiling the system to be simulated. EEU refers to
CDT to get the delay of the evaluated element, which
is used in the construction of new events.

Element Output Table (EOT) contains the signal
value of each output of each element in the system.
With a 16-bit element number and a 4-bit output
number, the EOT is a 65536 � 16 dmatrix, with
EOT[r; c] (element of EOT at row r and column s)
being the 4-bit value of the output c of element r.

In the processing of each event, EPU updates the
changed output in EOT. After evaluating an activated
element, EEU reads the previous values of the outputs
of the element and compares them with the present
values of the outputs, to determine whether an output
has changed. The Host gathers the simulation results
(that is, the values of the nodes requested by the user)
by reading from the EOT at the end of every simulation
cycle.

Element Input Table (EIT) contains the signal
value of each input of each element in the system. With
a 16-bit element number and a 4-bit input number, the
EIT is a 65536� 16 matrix, with EIT[r; c] (element of
EIT at row r and column s) being the 4-bit value of
the input c of element r.

In the processing of each event, EPU updates
the inputs in the fanout list of the changed output
by loading the new values into the EIT, in locations
corresponding to those inputs. EEU reads the input
values of an activated element from the EIT, in order to
\evaluate" that element (that is, to determine its out-
puts with the current inputs). For diagnostic purposes,
the Host can read input values of various elements from
the EIT. Before the start of the simulation, the values
of main inputs of the system are loaded into the EIT
by the Host.

In the processing of each event, EPU puts the



568 M.H. Nojumi

numbers of the \activated" elements (that is, elements
with at least one changed input) in the Activated
Element List (AEL), which is, then, read by EEU, one
by one, for evaluation. The size of AEL depends on the
activity level of the systems one wants to simulate.

It is important to recall that event-driven simula-
tion (an algorithm selected in this architecture) is an
e�cient simulation algorithm for low-activity systems
where, at each instance, a small percentage of system
elements experience change in their inputs [2]. For
simulation of high-activity systems, other simulation
algorithms should be employed [4,5].

In the initialization process, the Host loads the
AEL with the numbers of \zero-rank" elements; that is,
those elements whose inputs are all main system inputs.
EEU will start by evaluating these elements (initially
activated elements). After reading an element number
from AEL, EEU writes \0000" (the \unknown" logic
level) in the same location, to make it ready for the
next simulation cycle.

Evaluation Flag Memory (EFM) is an array which
indicates whether the number of an element has entered
in the AEL; that is, whether the element is activated,
with EFM[s] = 1 indicating that the element with
number s is active (so s is currently in AEL), and
EFM[s] = 0 indicating that the element with number
s has not experienced change in any of its inputs and,
hence, is inactive (so its evaluation is unnecessary).

Whenever EEU processes an event and deter-
mines the activated elements, it checks for each element
s and whether it has previously been entered into AEL
in the current simulation cycle, by reading EFM[s], the
\evaluation ag" of that element. If the ag is 0, EEU
sets it to 1 and puts the number of that element in
the AEL. If the ag is already 1, EEU does nothing
since the element number is already in AEL, making
the element marked for evaluation. This mechanism
prevents multiple evaluations of an element with more
than one altered input in a simulation cycle and, hence,
accelerates simulation.

Whenever EEU reads an element number s from
AEL, it resets the corresponding evaluation ag,
EFM[s], to 0, to prepare the EFM for the next
evaluation cycle.

During the initialization process, before the start
of the simulation, the Host loads the Final Time
Register (FTR) register with the \�nal simulation
time", as speci�ed by the user.

Current Time Register (CTR) is an internal reg-
ister of ESU, which holds, at any instant, the \current
simulation time" of the system. It is read by the Host
at the end of a simulation cycle and is then advanced by
ESU to the next simulation time read from the timing
wheel. It also leads to STI for being compared with
the content of FTR.

Simulation Termination Indicator (STI) is a com-

parator that constantly compares the contents of FTR
(�nal simulation time) and CTR (current simulation
time). When the current simulation time reaches the
�nal time speci�ed, STI activates its output: The
\Stop" signal which goes to the Host, EEU, EPU and
ESU, informing them that simulation has terminated.

Timing Wheel Pointer (TWP) is a pointer inside
the ESU that always points to the current slot on the
timing wheel, corresponding to the current simulation
time. At the end of a simulation cycle, TWP is
increased to point to the next \slot" on the timing
wheel and the slot previously pointed to by it is
disposed of.

ELEMENT EVALUATION UNIT

EEU performs the element evaluation; that is, deter-
mination of logic values of outputs of elements, based
on the current logic values at their inputs, for all acti-
vated elements whose numbers are in AEL. A possible
architecture of EEU includes a counter for addressing
AEL; for reading the numbers of activated elements; a
register for storing the number of the activated element
read from the AEL; a bank of registers used to store
the signal values of the inputs of the active element to
be evaluated, based on these input values and the class
of the element; a bank of registers used to store the
previous signal values of the outputs of the evaluated
element, read from EOT for comparison with the new
values of the outputs obtained from the evaluation of
the element; a bank of registers used to store the new
signal values of the outputs of the evaluated element;
a register for storing the delay of the element to be
evaluated, (read from CDT); a register for storing the
class number of the element to be evaluated (read from
ECT), and an \event register", into which the newly
constructed event is stored.

For every changed output, an event is created and
sent to ESU, via an \event bus". To shorten the width
of the event data structure, the di�erence between the
event time and the current simulation time (the event
delta time), which is equal to the delay of the element,
is sent in the event, rather than the event time.

EEU Algorithm

After receiving the \Start" signal from the Host, EEU
repeatedly executes a loop until it receives the \Stop"
signal from the STI. Communication between EEU and
EPU involves a handshake with two lines; Evaluate and
Acknowledge. The communication between EEU and
ESU involves a handshake with three lines; NewEvent,
No-Element and Accept.

In each iteration, EEU waits for the Evaluate
signal from EPU. Having received 1 on this line, EEU
sets the Acknowledge line to 1 and waits for Evaluate



A Hardwired Discrete Simulation Algorithm 569

to be lowered to 0 by EPU. It then lowers Acknowledge.
EEU then reads the numbers of activated elements, one
by one, from AEL and, for each number, performs the
following:

1. The number of the activated element is used as the
address to EIT, EOT, ECT and CDT, to read the
input values, the previous output values, the class
of the element and the delay of the element;

2. The 4-bit class number of the element is applied
to the control inputs and the values of the element
inputs are applied to the data inputs of the Arith-
metic Logic Unit inside EEU and the element is
evaluated;

3. The new and previous values of each output of the
element are compared. For each altered output,
EEU constructs an event and sends it to the ESU
by placing the content of its event register on the
\event bus" to ESU and activating the handshake
line, NewEvent, to inform ESU that a new valid
event is on the bus. EEU then waits until it
receives 1 on the Accept line from the ESU, meaning
that ESU has taken the event from the bus. EEU
then lowers the NewEvent line back to zero;

4. EEU resets the evaluation ag of the element in
EFM to 0, and loads "0000Hex" (indicating \no
element") at the location in AEL, from which it
had just read the element number.

The above operations are performed for each ele-
ment number in AEL until "0000Hex" is encountered
in AEL, indicating the end of the list of activated
elements. EEU then activates the NoElement line, to
inform ESU that there is no other activated element.
It then waits until it sees 1 on Accept, meaning that
ESU has received 1 on the NoElement line, at which
point EEU lowers the line NoElement to 0 and then
starts all over again by waiting for 1 on the Evaluate
line.

EVENT SCHEDULING UNIT

ESU performs event scheduling. A possible architec-
ture for ESU includes a pointer to the �rst slot of
the timing wheel; a register for holding the current
simulation time; a pointer to the current time slot,
which will be the next event dispatched by ESU to
EPU; a register to store the event pointed to by the
timing wheel, which will be the next event sent to EPU
for processing; a register to store the newly constructed
event received from EEU; a register to store the time
of a new event, which is the sum of the content of CTR
and the delta time speci�ed in the event; and auxiliary
pointers, used in the insertion of the newly received
event in the appropriate place on the timing wheel.

ESU Algorithm

After receiving the \Start" signal from the Host, ESU
repeatedly executes a loop until it receives the \Stop"
signal from the STI. Communication between ESU and
EEU involves a handshake with three lines, Accept,
NoElement and NewEvent. Communication between
ESU and EPU involves a handshake with three lines,
NextEvent, NoEvent and Ready. In each iteration,
ESU does the following:

1. The �rst slot in the timing wheel, pointed to by
TWP, points to the linked list of events pertaining
to the current simulation time. The events on this
list are transmitted, one by one, to EPU in the
following manner. For each event, ESU waits until
it receives 1 on the Ready line, sent by EPU to
inform ESU that it is ready to get an event. Having
received 1 on Ready, ESU places the currently
scheduled event on the event bus to ESU and sets
the NextEvent line to 1, thereby, informing EPU
that a valid event is now on the bus. ESU waits
until it receives 0 on Ready, meaning that EPU has
taken and has read the event from the bus. ESU
then lowers the NextEvent line;

2. Having sent all the events scheduled for the current
simulation time, ESU then waits until it sees 1 on
the Ready line and, then, sets the NoEvent to 1, to
inform EPU that there is no other event to be sent.
ESU then waits to see 0 on the Ready line, i.e.,
the acknowledgment of EPU that it has received
the NoEvent signal. Having seen 0 on Ready, ESU
lowers the NoEvent line;

3. ESU starts its transaction with EEU. It waits
until it gets 1 on either the NewEvent line or the
NoElement line. If it receives 1 on NewEvent, ESU
reads the new event on the bus sent by EEU and
then sets the Accept line to 1, to inform the EEU
that it has received the newly transmitted event.
ESU then waits for 0 on NewEvent, at which time
it lowers the Accept line;

4. If the newly received event has zero delta time (in
which case, it corresponds to the evaluation of an
element with no delay), then, ESU sends it to the
EPU for immediate processing, without scheduling
it on the timing wheel. If the newly received event
has non-zero delta time, then, ESU schedules it on
the timing wheel at the proper slot;

5. Upon reception of 1 on the NoElement line, ESU
raises the Accept line and waits to see 0 on NoEle-
men, at which time, it lowers the Accept line and
adjusts the TWP to point to the next slot on the
timing wheel;

6. ESU sends the \CycleComplete" signal to inform
the Host that the current simulation cycle has



570 M.H. Nojumi

been completed. It then waits for the \Continue"
signal from the Host, at which time, it lowers the
\CycleComplete" line and loads the CTRd with
the time of the slot on the timing wheel currently
pointed to by the TWP (the new current simulation
time) and starts the above steps all over again.

EVENT PROCESSING UNIT

EPU performs processing of events generated by ac-
tivated elements. A possible architecture for EPU
includes: A counter for addressing AEL in the process
of storing the numbers of the activated elements in
AEL; a register to store the event sent by ESU and a
register to store the element and input numbers of each
node in the fanout list of the output when an event is
being processed.

EPU Algorithm

After receiving the \Start" signal from the Host, ESU
repeatedly executes a loop until it receives the \Stop"
signal from STI. Communication between EPU and
ESU involves a handshake with three lines, NextEvent,
NoEvent and Ready. Communication between EPU
and EEU involves a handshake with two lines, Evaluate
and Acknowledge. In each iteration, EPU does the
following:

1. It repeatedly executes the following until it receives
1 on the NoEvent line from ESU: It sets the Ready
line to 1 and waits until it receives 1 on either the
NextEvent line or the NoEvent line. If it receives
1 on NoEvent, EPU exits from this inner loop,
otherwise, with 1 on NextEvent, EPU reads from
the bus the event sent by the ESU and, then, lowers
the Ready line to acknowledge to ESU reception of
the event. EPU then waits for the NextEvent line
to be lowered by ESU. Having seen 0 on NextEvent,
EPU starts the processing of the event it has just
received. This involves updating the corresponding
values in the EOT and EIT tables. For each of
the elements on the fanout list of the changed
output that has generated the event, EPU enters
the number of that element in the AEL, if the
evaluation ag of that element in the EFM is 0,
and sets the evaluation ag of that element to 1.
If the evaluation ag of that element is already 1,
no action is performed on AEL and EFM. For this

process, the fanout list of each output is extracted
from the CTM;

2. Upon exit from the above inner loop, EPU lowers
the Ready line and waits for 0 on the NoEvent line,
at which time, it raises the Evaluate line, to inform
the EEU that it can start evaluating elements;

3. EPU then waits to see 1 on the Acknowledge line,
at which time, it lowers the Evaluate line and starts
the above steps all over again.

CONCLUSION

This paper aims at describing, at the conceptual and
logic levels, a possible architecture of a hardwired
simulator for performing the discrete event driven
simulation algorithm. Physical implementation has
been deliberately not discussed, in order to emphasize
underlying architectural ideas and discrete algorithm
paradigms.

The author believes the ideas outlined in this pa-
per can be employed for e�cient design of a large class
of discrete algorithms and can be used in a wide variety
of applications where discrete event driven simulation
is useful for system testing and evaluation [6].

ACKNOWLEDGMENT

The author wishes to thank the Research Council and
the Department of Mathematical Sciences of Sharif
University of Technology for academic and �nancial
support.

REFERENCES

1. Banks, J., Nelson, B.L. and Carson, J.S., Discrete-

Event System Simulation, Third Edition, Prentice Hall
(2000).

2. Severance, F.L., System Modeling and Simulation: An

Introduction, John Wiley and Sons (2001).

3. Tyszer, J., Object-Oriented Computer Simulation of

Discrete-Event Systems, Kluwer Academic Publishers
(1999).

4. Fishman, G.S., Discrete-Event Simulation: Modeling,

Programming and Analysis, Springer-Verlag (2001).

5. Train, K.E., Discrete Choice Methods with Simulation,
Cambridge University Press (2003).

6. Walke, B., Mobile Radio Networks: Networking and

Protocols, John Wiley and Sons (2002).


