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Particle Swarm Optimization Method for

Optimal Reactive Power Procurement

Considering Voltage Stability

B. Mozafari�;2;3, T. Amraee1;2;3, A.M. Ranjbar2;3 and M. Mirjafari3

This paper presents and utilizes an Improved Particle Swarm Optimization algorithm (IPSO)
for reactive power management in restructured power systems. Reactive power procurement is
modeled as a Security Constraint Optimal Power Flow (SCOPF), which incorporates a voltage
stability problem. This is a major concern in power system control and operation. The model
attempts to minimize the cost of reactive power procurement and energy losses as a main
objective, while the technical criteria and voltage stability margin, especially, are treated as soft
constraints. From a mathematical point of view, the reactive power market can be expressed
as a nonlinear non-convex optimization problem with multi-local minima. In most cases, the
non-convexity results in a failure of the mathematical-based optimization algorithm to �nd the
global optimum. Thus, the PSO, a powerful heuristic searching algorithm, is developed and
implemented to �nd the global optimum of the reactive power market objective function. The
feasibility of the methodology (IPSO) is tested over an IEEE30 bus system, while the obtained
simulation results are compared with the gradient-based approach, using General Algebraic
Modeling System (GAMS) software, the original PSO and another evolutionary programming
called a Genetic Algorithm (GA). The results demonstrate that the IPSO can converge to better
feasible solutions with less iteration and can be successfully used for reactive power scheduling
in deregulation environments.

INTRODUCTION

Voltage stability constrained reactive power dispatch-
ing in deregulated power networks is a di�cult task
facing an Independent System Operator (ISO) that is
mandated to provide equitable ancillary services. In
a vertically integrated power system, reactive power
facilities are operated under a monopoly by the sys-
tem operator to meet technical requirement, such as
improving the voltage pro�le and reducing the loss
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of transmission lines or, even, increasing the voltage
stability margin to avoid instability, due to load per-
turbation or equipment failure. However, there is not
a clear competition mechanism for providing reactive
power in this structure. With the advent of restruc-
turing, generation, transmission and distribution are
separated into distinct entities in terms of ownership
and management. Thus, the various competitive mar-
ket structure models are designed and developed for
the pricing of electricity and, also, associated ancillary
services [1,2]. In these structures, new concerns are
introduced into the power system operation to handle
both technical and economical issues e�ciently. Op-
timal reactive power procurement and voltage control
are the most important issues in restructured power
systems. Usually, the strategies for dealing with
reactive power control are in accordance with electricity
market strategies. In recent years, various approaches
have been proposed for the optimal distribution of re-
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active power among providers in power pool electricity
markets. In one approach, active and reactive power
markets are cleared together, at the same time. For
example, Xie et al. [3] apply a mathematical method
to minimize both active and reactive generation costs
while, in [4,5], the reactive powers generated by static
compensators are also treated as ancillary services and
their associated costs are considered correspondingly.
In the second approach, the reactive power market
is executed independently of the energy market. In
this perspective, a method is established that aims
to dispatch e�cient reactive power at a minimum
cost, while real power transactions are assumed to
be �xed [6]. As a matter of fact, that part of the
reactive power, which is used for improving various
technical features of the power system, is inherently
assumed as an ancillary service. This means that
generators should provide some parts of the reactive
power in a mandatory manner to satisfy grid code
requirements.

Generally, an optimal reactive power procurement
problem can be usually formulated as a nonlinear
programming (NLP) problem. The �nal purpose is to
optimize the objective function, while satisfying sets
of constraints. Usually, equality constraints are power
ow equations and the inequality constraints are the
limits on control variables, voltages, active/reactive
power generation and line ows. The mathematically-
based optimization algorithms are very e�cient in
handling linear convex problems. However, the studies,
which have been performed on reactive power and
voltage control optimization, show that the reactive
power market is usually a non-convex NLP with more
than one feasible region where the optimal solution
might be found at any point within any such region.
Hence, the mathematical algorithms are very sensitive
to initial conditions or starting points [7]. The stochas-
tic behavior implemented in the most population-based
evolutionary algorithms makes them good candidates
for obtaining the optimal solution. A survey regard-
ing application of intelligent techniques for reactive
power/voltage control in the power system is presented
in [8]. Recently, Kennedy and Eberhart have developed
a new powerful evolutionary computation technique,
called the PSO, which comprises a very simple concept.
This paradigm can be implemented in a few lines of
computer code. It requires only primitive mathemat-
ical operators and is computationally inexpensive in
terms of both memory and speed requirements [9].

The PSO has also been applied to some optimiza-
tion problems in the power systems. In [10,11], the
PSO is implemented for well-known economic dispatch
problems. Yoshida et al. [12] have presented a two-
step procedure for handling voltage stability criteria
in the reactive power optimization problem. In the
�rst stage, the PSO is used to minimize transmission

power losses, while, in the second stage, the maximum
loading parameter of the system is evaluated using a
CPFLOW method [13] for each best solution found by
the PSO. The �rst solution that satis�es the minimum
requirements of the system operator is selected as the
�nal best solution. However, the PSO has not been im-
plemented for power market scheduling, especially the
reactive power market constrained by voltage stability
criteria.

In this paper, the PSO is modi�ed to solve the
reactive power market, which incorporates the voltage
stability criterion. This model conforms to the power
pool electricity market. The objective function includes
the costs associated with energy losses, as well as reac-
tive power generation costs, while the voltage stability
criterion is implemented into equality constraints. The
feasibility of the proposed method is demonstrated and
compared with the original PSO, the GA and results
obtained from the GAMS software.

PSO APPROACH

Original Algorithm

The particle swarm optimization algorithm is a new
evolutionary computation technique motivated by sim-
ulation of the social behavior of a folk or a group
of people [9]. Each individual refers to a particle
and presents a candidate solution to the optimization
problem. Two di�erent versions of the PSO algorithm
exist, which can be implemented and tested, namely,
the gbest PSO and the lbest PSO [14]. In the gbest
topology, all members move toward the best particle in
the population, however, in the lbest topology, each
swarm aims at the best particle in its surrounding
neighborhood. In the original version, neighborhood
size is constant and neighbors do not change during
a run. The impact of randomly created neighborhood
topologies on PSO performance has been investigated
in [15]. A modi�ed particle swarm optimizer is
presented in [16], which reduces a number of setting
parameters, such as maximum and minimum velocity
(Vmax, Vmin), associated with the original algorithm. In
the following, the application of the PSO method for a
general form of optimization problem is described. Let
the optimization problem be written, as follows:

Minimize F (X)

s.t

G(X) = 0;

H(X) < 0;

Xmin
� X � Xmax: (1)



536 B. Mozafari, T. Amraee, A.M. Ranjbar and M. Mirjafari

In this formulation, the vector, X , contains control
variables. PSO can be applied to an optimization
problem through the following steps.

Step 1

Using penalty factors, Equation 1 can be transformed
into the form of the augmented objective function
without any constraints. In such a case, the control
variable limits, (Xmin � X � Xmax), de�ne the feasi-
ble solution region, and initial population is generated
in such a way as to ful�ll these conditions. Moreover,
a random velocity vector is assigned to each particle.
These velocity vectors are generated according to the
lower and upper bounds of control variables. LetX and
V indicate the particle position and its corresponding
velocity in a d-dimensional search region, respectively.
Then, the ith particle can be represented as Xi =
(xi1; xi2; � � � ; xid) and its ight speed can be expressed
as Vi = (vi1; vi2; � � � ; vid).

Step 2

The augmented objective function is used to evaluate
the �tness of each individual in the population. The
obtained value for each particle is compared with the
previous one, which is stored in the agent memory.
If a decrease in value is noted (for the minimization
problem), the new explored point is substituted with
the prior position. This value suggests the self-
experience of a particle and can be written in the form
of Pbest i = (Pbest i1; Pbest i2; � � � ; Pbest id) for the ith
agent.

Step 3

In the lbest version, the initial generation is categorized
into di�erent groups where the particle's neighbors are
speci�ed. One methodology to determine neighbors
is presented in [15]. Implementing the gbest version
requires no additional operation. In this case, all
individuals are considered to be a particle's neigh-
bors.

Step 4

Referring to the evaluated �tness value of each particle
obtained in Step 2, the best agent in each group can
be distinguished. This value is shown by Lbest h,
where h denotes the number of the group. In the
gbest version, there is one neighborhood, which con-
tains all population members and, hence, Lbest h is
replaced with Gbest, accordingly. The Lbest h or
Gbest store the best experience attained by mem-
bers of the hth neighborhood or the best experience
achieved by all members of the population in every
epoch.

The modi�ed velocity and position of each par-
ticle can be calculated, using the current velocity,
random weighted distance from the Pbest:i;h and ran-
dom weighted distance from the Lbest:h(Gbest), by the

Figure 1. Concept of particle's movement by PSO
algorithm.

following formulas. The process is shown plainly in
Figure 1.

V
(t+1)
i;h =w � V

(t)
i;h +c1�rand1(:)�(Pbest i;h�X

(t)
i )

+ c2:rand2(:) � (Lbest h �X
(t)
i;h); (2)

X
(t+1)
i;h = X

(t)
i;h + V

(t+1)
i;h ; (3)

where:

i = 1; 2; � � � ;m points to the ith particle,
m the number of particles,
t a counter of iterations,
w an inertia weight,
c1; c2 the acceleration constants,
rand1(:); rand2(:) uniform random generator

function in range of [0,1].

Equations 2 and 3 are used for implementing the
PSO lbest version. These equations are also applicable
for the gbest version substituting h = 1 and Gbest

instead of Lbest h into Equation 2.
The acceleration constants, c1 and c2, represent

the weighting of the stochastic acceleration terms that
pull each particle toward the Pbest and Lbest positions.
Low values allow particles to roam far from the target
regions before being tugged back. On the other hand,
the high values result in abrupt movement towards, or,
backwards, away from the target regions. Therefore,
according to previous experiences, these factors are
set to 2.0 during all simulations. The PSO algorithm
is very sensitive to the value of inertia weight, w,
presented in Equation 2. The w adjusts the PSO
dynamic behavior during searching procedures, where
w = 1 guaranties the PSO to converge by iterations.
High values of w put particles to y over the local



Optimal Reactive Power Procurement 537

minima, however, low values allow particles to intensify
searching local areas. Generally, the w decreases
linearly from about 0.9 to 0.4 during the run, according
to the following equation:

w = wmax �
wmax � wmin

itermax
� iter;

whereWmax is 0.9,Wmin is 0.4 and itermax is maximum
iteration number.

Improved Algorithm (IPSO)

PSO movement's instructions can be e�ectively applied
to all members except for the best agent position,
namely, Lbest h, where this position is identical to its
current position and its best previous experience. This
causes the best agent moves only based on its weighted
previous velocity. This becomes serious when w � 1
tends to zero velocity after a number of iterations.
Thus, the probability of local minima escaping may
decrease in this situation. To solve this de�ciency, in
this section, a method, which randomly selects the best
position for each particle, is presented.

In Step 4 of the PSO original algorithm, particles
that exist in neighborhood, h, move toward Lbest h,
which can be modi�ed, as follows.

Let the initial population be divided into N

neighborhoods, where h = 1; 2; � � � ; N and all Lbest h

are available at this stage. For each individual, Lbest is
assigned, where this value is selected among Lbest hs,
based on one of the random selection procedures,
such as the Roulette Wheel selection scheme. In this
approach, all candidates are assigned weights based
on their �tness values and then a random selection
is used to determine the social leaders. Accordingly,
this provides a situation, in which particles in one
neighborhood move toward other groups and increase
overlap among the ock. The aim of this process is to
maintain population diversity.

FORMULATION OF THE REACTIVE
POWER MARKET PROBLEM

In vertically integrated power systems, a single entity
(provider) performs all of the basic functions of produc-
tion, transportation and delivery. It is also responsible
for developing the power system in each section. Trans-
mission lines provide single path connecting generation
sources to consumption areas. The static voltage
security assessment is strictly dependent on power
system network operation. From a reactive power
point of view, in vertically integrated utilities, the
system operator makes an e�ort to dispatch reactive
power resources in order to maintain the security of the
system under normal and, also, under various loading
conditions. The reactive reserve can be determined

doing di�erent (N�1) contingency analyses, according
to the priority list. In such a system, the main objective
is the ful�llment of some technical requirements, such
as improving the voltage pro�le, minimizing real power
losses, increasing the available transmission capability
of the network etc. [7,8]. At the same time, there is less
attention paid to the reactive power revenue for each
supplier.

However, in restructured power systems, �nancial
interests introduce new dimensions to an open market
system, where the cost and contribution of di�erent
reactive power facilities should be evaluated more
precisely than before. The methodology presented here
considers the prede�ned loadability limit or voltage
stability margin as a soft constraint. Considering
the voltage stability constraint in the reactive power
market modeling provides independent system opera-
tor with insurance against entering the power system
into unstable conditions, which may happen due to
load changes. In this paper, there is no intention of
dealing with reactive power reserve procurement and,
consequently, no contingency analysis will be carried
out into the presented model and simulation. Thus, a
voltage stability constrained reactive power market can
be generally formulated, as follows.

Reactive Market Objective Function

Minimize f(Q
g
; Qvsm

g
; Q

sh
; X)

=

NgX
i=1

Cgqi(Qgi) +

NgX
i=1

Avsm
gqi :Cgqi(Q

vsm
gi )

+

NshX
i=1

Cshi(Qshi) + 0:5:MCP:
X
i;j

(Gi;j

� (V 2
i + V 2

j � 2ViVj cos(�i � �j))); (4)

where:

i; j: index for buses,
Q
g
: generators VAr output at normal

condition,
Qvsm

g
: generators VAr output when

loads are increased,
Avsm
gqi : the ratio between the cost of

reactive energy and reactive
power reserve,

Ng: number of generators,
Q
sh
: static VAr compensators output,

Nsh: number of static compensators,
V : voltage at bus in per unit,
Gi;j=real(Yi;j): conductance of line i� j,
�: angle associated with Y bus,
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Y admittance matrix of power system,
X = [�; V ]: state vector,
MCP Market Clearing Price.

The objective function consists of the total payments
of the reactive power procurement under normal and
increasing load conditions and the payment associated
with real power losses of transmission lines. In this
model, the reactive power reserve necessary to protect
the system against voltage instability is procured,
simultaneously, with the reactive energy. In this
structure, it is assumed that the slack generator pro-
vides network losses at a MCP price, which has been
previously settled in the electricity market. The cost
of providing real power loss into the objective function
of reactive power procurement is considered, since
this term can inherently prevent the transportation
of reactive power from long distance areas. The
traveling of reactive power over long transmission lines
can increase both active and reactive power losses.
Since the de�ned objective function can minimize
the cost of active and reactive power losses, ISO
can assure the adequate local provision of reactive
power. As a result, it seems to be a good objective
for reactive power control in deregulated power sys-
tems.

Constraints on the Power System and
Resources

1. Power ow equations under normal condition:

P �

gi � P �

di =
X
j

ViYi;jVj cos(�i;j + �j � �j); (5)

Q�

gi +Q�

shi � tan('�di):P
�

di

=
X
j

ViYi;jVj sin(�i;j + �j � �j); (6)

where:

P �

gi; P
�

di: denote generation and consumption of
active powers,

'�di: denotes power angle of consumption
loads.

2. Power ow equations with �xed prede�ned voltage
stability margin:

(1 + kgi:�:

NgX
i=1

P �

gi):P
�

gi � (1 + kdi:�:

NX
i=1

P �

di):P
�

di

=
X
j

V vsm
i Yi;jV

vsm
j cos(�i;j + �vsmij ); (7)

Qvsm
gi +Q�

shi � (1 + kdi:�:

NX
i=1

P �

di): tan('
�

di):P
�

di

=
X
j

V vsm
i Yi;jV

vsm
j sin(�i;j + �vsmij ): (8)

In the above equations, the subscript \�" is used
to represent the quantities of variables in the base-
case, while vsm is used to show the variables under
load increasing conditions. In Equations 7 and 8,
the percentage of load increasing is modeled by

�. The terms of �:
PNg

i=1 Pgi or �:
PN

i=1 Pdi are
the total increase of power system generation and
load, respectively. kgi is a distribution factor, which
de�nes the direction of generation increase for the
ith generator and kdi indicates how much of the
load increase occurs at bus i. For a given load
increase, the sum of distribution factor, kgi, as
well as kdi, is unity. This means that one hasP

kgi = 1 and
P

kdi = 1. It should be mentioned
that numerous directions could be de�ned and
considered for any load increase in the power system
using these participation factors. In this paper,
the amount of generation/consumption is increased,
according to their base-case values. In other words,

one can de�ne kgi =
P�

giP
P�

gi

and kdi =
P�

diP
P�

di

;

3. Reactive power-generation limits:

Qmin
gi � Qgi � Qmax

gi ;

Qmin
gi � Qvsm

gi � Qmax
gi ; (9)

Qmin
shi � Qshi � Qmax

shi : (10)

Qmax
gi and Qmin

gi are the maximum and minimum
reactive power that a generator can provide. These
values vary with a change in active power output
of a generator. The capability curve of a generator
is usually used to demonstrate the relation between
its active and reactive power outputs. A typical
capability curve of a generator is shown in Figure 2.
It is restricted to the maximum stator winding
heating limit, which depends on stator current and
it is also restricted to the maximum �eld winding
heating limit or the end region heating limit of
the rotor when the generator operates in an over
or under excitation mode. The feasible operating
conditions of a generator can be expressed as a
function of its active and reactive operating current
point, its terminal and internal setup voltages and
its synchronous reactance [17]. However, this paper
assumes that generators are allowed to propose
their reactive power generation capability, with
respect to their active power generation points;
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Figure 2. Typical capability curve of a generator.

4. Bus voltage limits:

V min
i � Vi � V max

i ;

V min
i � V vsm

i � V max
i : (11)

V vsm
i = constant, if i 2 generator bus.

The value of the voltage stability margin

(�:
PNg

i=1 Pgi or �:
PN

i=1 Pdi) should be predeter-
mined by ISO, who is legally responsible for the
security and reliability of the power system. In this
paper, there is no intention of calculating the vsm
factor, however, a methodology has been presented
for modeling voltage stability in the reactive power
market. This method is called �xed voltage stabil-
ity margin formulation. Other useful strategies for
handling the voltage stability problem are presented
in [18,19].

Reactive Power Production Costs

1. Synchronous generators:
Active power generation decreases the reactive
power capability of a generator, as shown in Fig-
ure 2. The cost of reactive power production
can be modeled using opportunity cost calculation
[6]. An approximation for the cost of reactive
power production corresponding to the �rst term
of Equation 4, is given in the following equation [5]:

Cgqi(Qgi)=
h
Cgpi(Sgi)�Cgpi

�p
Sgi2 �Qgi2

�i
Kgi;

(12)

where Cgpi(Pgi) = aPgi2 + bPgi + c is active power
generation cost, Qgi is reactive power output of ith

generator, Sgi =
q
P 2
gi +Q2

gi is apparent power of

ith generator and Kgi is pro�t rate of active power,
usually between 0:05 � 0:1;

2. Static VAr compensators:
The second term in Equation 4 is the total produc-
tion cost of static VAr compensators, which can be

expressed as the following equation, for the device
installed at bus j:

Cshj(Qshj) = rshjQshj ; (13)

where rshj is the price of the reactive power per
MVAr, which depends on di�erent factors, such as
capital investment of the compensator, its period of
lifetime and average utilization factor. For example,
a SVC with an investment cost of $48,000/MVAr,
a lifetime of 30 years and an average use of 2/3, has
its rcj as [4,5]:

rshj =
22000

30� 365� 24� 2
3

= 0:1225($MVAr):
(14)

REACTIVE POWER MARKET SOLUTION
USING PSO

The following procedure can be used for obtaining
the optimal solution to the proposed reactive power
market.

Step 1

Initial populations of agents are generated randomly
inside the searching space, speci�ed by the upper and
lower bands of control variables. In this problem,
control variables consist of the output voltage of gen-
erators and the reactive power outputs of static VAr
compensators. Initial velocity values are also assigned
to each particle. For each agent, Pbest is initialized with
the current position.

Step 2

For each individual, Equations 5 and 6 are evaluated.
If the obtained values for state variables satisfy Con-
ditions 9 and 11, then, go to Step 3, otherwise, assign
a high value to the objective function and, then, go to
Step 5.

Step 3

The control variables are �xed and, then, Equations 7
and 8 are evaluated. if the obtained values for state
variables satisfy Conditions 9 and 11, go to Step 4,
otherwise, assign a high value to the objective function
and, then, go to Step 5.

Step 4

Particles are divided into di�erent groups. For each
particle, Pbest and Lbest are calculated for each neigh-
borhood. Finally, for each particle, Lbest is selected,
according to the method presented previously.

Step 5

New velocities are calculated using Equation 2.

Step 6

New positions are calculated using Equation 3.
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Step 7

If the iteration number reaches the maximum, then,
stop and print the �nal results, otherwise, go to Step 2.

SIMULATION AND RESULTS

In this section, the reactive power market is simulated
using the IEEE 30-bus test system and the results
obtained for optimal reactive power procurement are
presented. The performance of the reactive power
market is studied for two di�erent cases. In the �rst
case, it is assumed that all generators, which have been
committed for active power production, are obliged to
provide a su�cient reactive power reserve, according
to the ISO requirement, however, they will be paid
only for reactive energy production or absorption. In
other words, all Avsm

gqi are equal to zero. In the second
case, the cost associated with the reactive power reserve
takes into account using Avsm

gqi neq0. In both cases, the
feasible solution of the market is achieved by means of
di�erent methodologies, such as: GA [20], PSO, IPSO
and GAMS software. In these studies, the performance
of the IPSO solver is compared with other methods to
demonstrate its feasibility in the optimal reactive power
procurement problem. The network con�guration of
the IEEE 30-bus test system and its transmission lines
data are given in [21]. The characteristics of generating
units are tabulated in Table 1.

The second column in Table 1 represents the
reactive power output of generators when they are
required to �x their output voltage at the desired values
indicated in column three. In this condition, the real
power loss of the system is about 2.45 MW.

The reactive power costs of generating units are
calculated by Equation 12, where the associated pa-
rameters used in this formula are presented in Table 2.
Figures 3 to 5 show the capability curves of each
generator. It is assumed that these curves are
submitted to the ISO from each generating unit. These
curves demonstrate the maximum reactive power that
each participant is willing to produce.

The additional energy necessary to provide active
power losses is procured from the slack generator (G1),

Table 1. Generating unit characteristics.

Pg

(MW)

Qg

(MVAr)
VG

Pgmax

(MW)

GEN1 25.97 -12.37 1.00 80

GEN2 60.97 -13.36 1.00 80

GEN13 37 -0.05 1.00 50

GEN22 21.59 6.08 1.00 50

GEN23 19.2 -3.28 1.00 30

GEN27 26.91 -1.87 1.00 55

Table 2. Coe�cient factors of Equation 12.

a ($/Mw2) b ($/Mw) c ($) Kg

GEN1 0.02 2 0.0 0.1

GEN2 0.0175 1.75 0.0 0.1

GEN13 0.0625 1 0.0 0.1

GEN22 0.0083 3.25 0.0 0.1

GEN23 0.025 3 0.0 0.1

GEN27 0.025 3 0.0 0.1

Figure 3. Capability curves of generators 1 and 2.

Figure 4. Capability curves of generators 13 and 22.

Figure 5. Capability curves of generators 23 and 27.

Table 3. Static compensators operating costs.

C6 C19 C28

Cost ($/MVAr) 0.1 0.15 0.07
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based on the electricity market clearing price. In
all simulations, MCP is assumed to be 9.5 $/MW
to �gure out the cost of loss. The reactive power
prices of electronic-based static VAr compensators are
given in Table 3. These compensators are installed at
buses 6, 19 and 28, respectively. Fixed or switched
capacitors/inductors cannot be entitled to provide
reactive power as an ancillary service, since they
are not equipped with regulator devices and, hence,
their reactive power output varies drastically with any
voltage changes.

The voltage stability margin can be improved by
e�cient reactive power procurement. This is shown
on a typical P � V curve of a power system in
Figure 6, where consumption loads are �xed. A feasible
solution for reactive power dispatch may not exist
if available reactive power support is not adequate to
satisfy the voltage inequality constraints under heavy
loading conditions. In this paper, it is assumed that
the voltage stability margin, de�ned by the ISO, can
be reached using available reactive support. This value

Figure 6. Typical PV curve of a power system.

is assigned to be 0.1 per unit for the secure operation
of the power system under normal operation.

Case 1

In this case, the optimum reactive energy is procured
for the normal condition. Thus, all Avsm

gqi are assigned
to zero and, then, the optimum point of the market is
obtained, using GA, the original PSO algorithm, the
proposed IPSO algorithm and GAMS software [22],
which have been tabulated in Table 4.

The MINOS5 solver in GAMS software is used
for the reactive market computation. The GAMS
software has only been used to justify the correctness
of the solutions obtained by means of the population-
based algorithm. However, a comparison between
evaluated costs of each method highlights the fact
that population based algorithms may reach a better
solution than a gradient-based method. In heuristic
methods, the probability of escaping from local minima
usually increases with an increase in population size.

To provide a rational comparison between the
applied methods, similar population size is generated
in each algorithm. The number of agents in IPSO and
PSO is considered to be 24. This means that 24 new
positions will be explored in every epoch. A genetic
algorithm is initialized with 300 agents �rst and, then,
the best 24 individuals make a good population during
the searching procedures. The results clearly show that
the GA has a poor performance in �nding the best
solution among the alternatives considered. The IPSO
present the best solution, in which the active power loss
is 1.9705 (MW). This is about 19.6% less than before.

Doing numerous simulations have indicated that
the PSO algorithm has a good operation, moving the
particles all over the search space. The results obtained
from a 100 times execution of di�erent heuristic algo-

Table 4. Market simulation results.

GA PSO IPSO GAMS

PG1 (MW) 25.648 25.5 25.5 25.5

QG1 (MVAr) 3.9591 3.5247 3.5256 3.4737

QG2 (MVAr) 12.231 10.839 10.842 10.601

QG13 (MVAr) 8.6942 7.8017 7.7976 9.4239

QG22 (MVAr) 10.342 9.4003 9.3969 8.9853

QG23 (MVAr) 6.5433 6.268 6.2683 6.2212

QG27 (MVAr) 4.6327 4.3474 4.3314 4.9317

Qc6 (MVAr) 24.805 34.0670 34.2516 33.247

Qc19 (MVAr) 5.1774 4.1914 4.2209 4.171

Qc28 (MVAr) 22.536 17.0336 16.8361 16.371

Total Cost($) 27.557 26.1196 26.1194 26.1493
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rithms over the reactive power market are summarized
in Table 5, which can provide useful information about
the performance of each methodology. As Table 5
indicates, among the other methods, IPSO has a robust
characteristic and better performance.

In Table 6, the PSO sensitivity to the variation
of C1 and C2 is presented. As mentioned before,
selecting these factors can a�ect the performance of the
optimization algorithm. From the results of this table,
one can conclude that it is proper to set C1 = C1 = 2:0.

Figure 7 shows the typical convergence charac-
teristics of GA, PSO and IPSO methodologies. It is
clear from the �gure that IPSO is converged to high
quality solutions at the early iterations. The dynamic
convergence curve of the PSO is similar to the IPSO
and both of them can achieve a better solution, with
low iteration, in respect to a genetic algorithm, where a
decrease in the value of the objective function changes
more slightly over iteration.

On the other hand, the convergence rate of the

Table 5. Statistical results.

The Best

Solution

The Worst

Solution
Mean Variance

IPSO 26.1194 27.0780 26.2403 0.175366

PSO 26.1196 28.1932 26.3442 0.3098

GA 26.7032 28.2218 27.374 0.51109

Table 6. PSO sensitivity to parameter variation.

C1 0.5 1.0 3.0 2.0

C2 2.0 2.0 2.0 2.0

Cost Value 30.019 29.013 28.552 28.193

C1 2.0 2.0 2.0 2.0

C2 0.5 1.0 3.0 2.0

Cost Value 32.066 30.547 28.703 28.193

Figure 7. Dynamic behavior of GA, PSO and IPSO.

PSO depends on the factors w, C1 and C2. Since w
is usually chosen less than one, the velocity of the
agents decays to zero. This situation deteriorates
the potential of the PSO not to be trapped in local
optima. Referring to Equations 2 and 3, one can
easily �nd out that particle position does not have any
change when its associated velocity becomes zero. A
typical variation of velocity for a particle is depicted
in Figure 8. Figure 9 shows the same diagram for
an improved particle swarm optimization algorithm.
A comparison between these two �gures reveals that
IPSO can converge to global optima, even in the last
iterations. It also shows that the value of a particle's
velocity can only be used as a convergence criterion for
the PSO algorithm.

The impact of population size generated in the
searching space has been investigated and the obtained
results are shown in Figure 10. This study indicates
that the IPSO can achieve a better solution in earlier
iterations, if the number of individuals increases. How-
ever, trials with di�erent population size can converge
to near optimal value. Table 7 has also indicated the
objective value obtained by setting di�erent population
sizes.

Figure 8. Variation of particle velocity by iteration for
PSO.

Figure 9. Variation of particle velocity by iteration for
IPSO.
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Figure 10. IPSO convergence characteristic for di�erent
population.

Table 7. Results obtained by di�erent population size.

Iteration pop = 12 pop = 24 pop = 48

1 53.380 53.380 53.380

10 45.438 31.479 29.106

20 40.426 31.479 26.454

30 38.512 28.067 26.252

40 35.656 28.064 26.204

50 33.529 27.407 26.174

60 32.029 27.407 26.156

70 31.939 27.245 26.126

80 29.823 26.945 26.123

90 29.556 26.776 26.121

100 28.214 26.717 26.121

110 27.247 26.199 26.120

120 26.533 26.135 26.120

130 26.489 26.129 26.120

140 26.482 26.123 26.119

150 26.438 26.120 26.119

160 26.402 26.120 26.119

Case 2

This case deals with a situation in which reactive
energy and the reactive power reserve are determined
simultaneously for security operation of the power
system. In this paper, it is assumed that generators
are allowed to enter into the reactive power reserve
market, and other types of reactive power generation

can only participate in the reactive energy market. As
mentioned previously, it is intended to determine the
e�cient amount of reactive reserve needed to prevent
voltage instability, happening due to perturbation in
load values. Hence, it is assumed that all competitive
suppliers could bid the cost of their reactive capacity
proportional to the associated cost of reactive energy
through the factors, Avsm

gqi .
Assigning di�erent values to the factors, Avsm

gqi ,
can de�ne various strategies for the reactive power
suppliers who take part in the reactive reserve market.
One strategy can be de�ned by setting all Avsm

gqi to the
same value. The results obtained for di�erent values of
Avsm
gqi are presented in Table 8.

The simulation results in Table 8 show the impact
of the reactive power costs on both reactive energy and
reactive reserve dispatching. It also shows that static
compensators have a good opportunity to provide the
necessary reactive power when the prices of the reactive
power reserve of the generators are extremely high.
The results obtained for the two �rst generators show
that they have a large opportunity to make market
power in the system.

The amount of reactive power of the �rst genera-
tor does not change with increasing reactive costs. The
revenue of the second generator notably changes in the
situation expressed by Avsm

gq = 5:0, in comparison with
Avsm
gq = 1:0. This is somehow true for the generator

G13. These signals can lead ISO to identify weak areas
with less reactive power capacity and to reinforce these
parts of the network.

CONCLUSION

Reactive power management can be carried out for
di�erent purposes, such as minimizing power losses,
improving voltage pro�le and, also, providing a suf-
�cient voltage stability margin. In this paper, �rst,
a model to handle both reactive energy and reactive
reserve has been presented, in which reactive power
can be e�ciently dispatched locally. Second, an
improved version of the PSO has been presented, which
increases the particle's endeavor to escape from the
local minima. Then, the proposed method has been
successfully implemented for the optimal procurement
of reactive power in the open electricity market. In
the proposed reactive market structure, the voltage
stability constraint is implemented as a soft constraint
to guarantee the security of the power system, due to
some happenings in the power system, such as sudden
load perturbation. Thus, reactive power management
becomes a NLP problem with non-linearity in both the
objective and its associated constraints. The simula-
tion results carried out for the IEEE 30-bus system,
demonstrate the excellent capability of the IPSO in
obtaining the best solution, as well as convergence time,
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Table 8. Results of Case 2.

Avsm
gq = 0:5 Avsm

gq = 1:0 Avsm
gq = 5:0

MVAr REa RRb RE RR RE RR

QG1 3.387 3.685 3.263 3.556 3.070 3.40

QG2 8.046 12.42 6.499 10.86 2.533 6.968

QG13 5.546 6.909 4.412 5.773 1.525 2.894

QG22 6.115 10.213 4.314 8.408 -0.275 3.740

QG23 5.116 6.0124 4.348 5.238 1.856 2.757

QG27 2.697 3.936 1.834 3.064 -0.163 1.069

Qc6 40 - 40 - 39.98 -

Qc19 5.140 - 6.1812 - 11.06 -

Qc28 21.79 - 27.245 - 39.42 -

Loss (MW) 1.995 2.028 2.173

Cost ($) 27.45 28.355 31.491

a) RE: Reactive Energy; b) RR: Reactive Reserve

in comparison with those obtained from the GA and
the PSO algorithms. It is clear from the results that
the proposed PSO method can avoid the shortcoming
of premature convergence found in the GA method.
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