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Research Note

Two-Objective Stacking Sequence Optimization

of a Cylindrical Shell Using Genetic Algorithm

M.H. Yas1, M. Shakeri� and M. Ghasemi-Gol2

In this paper, the stacking sequence optimization of a laminated cylindrical shell has been studied

for obtaining maximum natural frequency and buckling stress, simultaneously. An anisotropic

cylindrical shell has a �nite length with simply supported conditions at both ends. Three-

dimensional elasticity approaches are used for free vibration analysis and the buckling stress

function is based on the theory of classic shells. A genetic algorithm is used for optimization

and, regarding the two-objective problem, a Pareto-optimally curve is used to help determine the

best way to simultaneously satisfy all objectives. Finally, numerical results are presented for the

optimization of a six-layer cylindrical shell.

INTRODUCTION

Laminated cylindrical shells are widely used in in-
dustries as structural elements and their vibration
characteristics are important, in view of the current
interest in designing with composite materials. The
greatest advantage of laminated composite materials,
in addition to high strength to weight properties, is
that they provide designers with the ability to tailor the
directional strengths and sti�nesses of the material to
the given loading environment of the structure. There-
fore, laminated composite constructions o�er many
opportunities for engineers and designers to optimize
structures for a particular, or even multiple, tasks.
The problem is often formulated as a continuous op-
timization problem, with the thickness and orientation
of the plies as the design variable [1], but for most
particular problems, laminate thicknesses are �xed and
orientations are limited to a set of angles, so the design
problem becomes a stacking sequence optimization.
Haftka andWalsh solved the stacking sequence problem
for buckling load maximization [2]. The nonlinear
problem, resulting from using ply thicknesses as design
variables, is linearized by using ply- orientation identity
variables and then solved using a branch and bound
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algorithm. Nagendra solved a similar problem with the
additional strain constraints, once again introducing
non-linearities to the problem. This problem was
solved by using a sequence of linear integer program-
ming techniques [3]. The design space usually contains
many local extrema, even singular ones and, also,
many near optima designs may exist. Thus, there is
a need for optimization techniques that can identify
multiple and singular exterma. Optimization methods
based on Genetic Algorithms (GA), have been applied
to structural problems [4]. In the area of composite
structural design, a GA is used to optimize the stacking
sequence of laminated plates for buckling loads [5],
to design sti�ened composite cylindrical shells against
buckling [6] and optimized tailoring problems [7]. A
GA is the probabilistic optimization method that works
on the population of design [8]. In genetic algorithm
approaches, the solution is called a chromosome or
string. A genetic search requires a population of chro-
mosomes, each representing a combination of features
from the set of features. In recent years, genetic
algorithms have been successfully applied to large, non-
convex, integer programming problems [9,10]. Thus,
it was obvious that genetic algorithms would be well
suited for the design and optimization of laminated
composite plates. Early works include Callahan, who
used genetic algorithms for the stacking sequence
optimization of composite plates [11]. Negendra did
extensive work with genetic algorithms and sti�ened
composite panels [12,13]. The optimization problem
utilized a single objective frequency of a composite
laminated cylindrical shell. For multi-constraint prob-
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lems, since the best single objective usually doesn't
imply that the other objective(s) is simultaneously
optimized, the concept of Pareto-optimality is often
used to help determine the best way to simultaneously
satisfy all objectives to the greatest extent possible. In
this case, each string represents an alternative stacking
sequence of a laminated cylindrical shell. A genetic
algorithm is devised for designing composite laminates
comprised of one material only. The genetic algorithm
procedure, which is referred to as GA-I, will be used
for maximization of the lowest natural frequency of
a laminated cylindrical shell with strength and ply
contiguity constraints.

Shakeri et al. studied the stacking sequence
optimization of a laminated cylindrical shell, based
on natural frequency [14]. They used the genetic
algorithm procedure for maximization of the lowest
natural frequency with strength and ply contiguity
constraints. Grosset et al. considered the optimization
of a composite laminated plate made from two mate-
rials [15]. The multi-objective optimization problem
requires the construction of a Pareto trade-o� curve.
This paper uses genetic algorithms to optimize the
natural frequency and buckling load simultaneously.
For this purpose, by solving a series of optimization
problems combining the two objective functions, the
Pareto set is generated by optimizing a combination
of the two objectives and, �nally, the best stacking
sequence is obtained. The free vibration solution is
based on Shakeri et al. [16] and, for buckling load,
Tasi's work [17] is used. In the end, numerical results
are presented for a six layer composite cylindrical shell.

PROBLEM FORMULATION

A laminated composite hollow cylindrical shell is con-
sidered of length L with MN constituent monoclinic
laminate. The mean radius and the thickness of layers
are denoted by R and h, respectively. The material axis
of any orthotropic layer is not necessarily aligned in the
x and � directions, hence, the constitutive equations of
a layer are, as follows:8>>>>>><
>>>>>>:
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The equations of motion in the absence of body forces
are:

�ij;j = ��ui: (2)

The strain-displacement relations are written as:

"ij =
1

2
(ui;j + uj;i): (3)

By combining Equations 1 with 3 for axisymmetric
loading and substituting into Equation 2, one can
obtain the governing equations in terms of the displace-
ment components (ur, u�, ux). The coe�cients of the
obtained governing equations are a function of variable
r, which makes the solution formidable. To circumvent
this di�culty, the following changes of variable are
used:
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The local coordinate is used, as �k = r�Rk. Each layer
is assumed to be thin (�k=Rk << 1). By substituting
Equation 4 into the equations of motion, the equations
of motion, with constant coe�cients for each layer, are
obtained:
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For simply supported conditions, one has:

�r(�; x; t) = 0; � =
h1
2R1

;

�xr(�; x; t) = �r�(�; x; t) = 0;
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To study the free vibrations, the inner and outer
surfaces are traction free:

�r = �r� = �xr = 0: (7)

Moreover, the conditions of continuity of displacements
and inter-laminar stresses should be imposed on the
solution. These conditions are, as follows:
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SUCCESSIVE APPROXIMATE SOLUTION

The solutions to Equations 5, which identically satisfy
the boundary conditions on the two ends, are consid-
ered, as follows:

ur = Ar(�k) cos(pmx) exp(i!t);

u� = A�(�k) sin(pmx) exp(i!t);

ux = Ax(�k) sin(pmx) exp(i!t); (9)

where pm = m�=L.
The substitution of Equations 9 into Equations 5

yields a system of homogeneous ordinary di�erential
equations, the solutions to which are, as follows:

Ar(�k) = u�re
��;

A�(�k) = u��e
�� ;

Ax(�k) = u�xe
�� : (10)

Upon inserting Solution 10, one arrives at a system
of homogeneous algebraic equations, which may be
written in matrix form, as follows:

[A]fUg = 0;

where:

fUg = fu�r ; u
�

�; u
�

x): (11)

The condition for Equation 11 to have a nontrivial
solution is that the determinant of matrix A should
vanish. This leads to the following sixth order algebraic
equation:

A0�6+B0�5+C 0�4+D0�3+E0�2 + F 0�+G0 = 0:
(12)

The mode shapes may be obtained, which are a
function of natural frequency. By substituting the roots
of Equation 12 into Equation 11, one �nally obtains the
displacement components, as follows:

ur =
XX

Kmje
�� cos(Pmx) exp(i!t);

u� =
XX

Kmje
�� sin(Pmx) exp(i!t);

ux =
XX

Qmje
�� sin(Pmx) exp(i!t): (13)

Substituting Equations 13 into the traction free con-
ditions (Equation 7) and the continuity requirements
(Equations 8), leads to a system of 6MN (MN is the
number of layers) homogeneous algebraic equations,
which are represented in the following matrix form:

[H ]fKg = 0; (14)

where fKg are the mode shapes. The components of
[H ], which are a 6MN*6MN matrix, are a function of
natural frequency. From Equation 14 one has:

jH j = 0: (15)

Equations 12 and 15 should be solved simultaneously
by a successive approximate procedure to obtain the
�rst few natural frequencies. To obtain the buckling
stress function, one proceeds as follows:

["] = [a]:[N ]� [b]T :[�];

[M ] = [b]:[N ]� [d]:[�]; (16)

where [N ] and [M ] are resultant force and moment
components, respectively, [�] is curvature matrix and:

[a] = [A�1]; [b] = [B][a]; [d] = [D]� [b][B];
(17)
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[A], [B] and [D] are obtained from the sti�ness matrix
of each layer, as follows:

[A] =

Z
[C]dz; [B] =

Z
[C]z dz;

[D] =

Z
[C]z2dz: (18)

Finally, the buckling load, based on the Donnel ap-
proach, is resulted, as follows [17]:
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Complete calculations for obtaining the buckling load
have been described in [17]. For this relation, the
coe�cients description is, as follows:

� = (�2=n2)(a22=a11)
0:5;
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0:5;
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0:5: (20)

GENETIC ALGORITHM

A GA is a guided random technique that works
on a population of design. An initial population
of a genetic string, with randomly chosen genes, is
carried �rst. The size of the population used in
this paper remains constant throughout the genetic
optimization. Various genetic operators are applied
at given probabilities to generate new laminates. In
order to form successive generations, parents are chosen
from the current population, based on their �tness.
Parent selection is accomplished, using a roulette wheel
concept. This method of selection di�ers from other
evolutionary algorithms because it gives every member

of the population a chance to become a parent. Before
parent selection can begin, all laminates must be
ranked from best to worst, according to the value
of each laminate's objective function. Children are
created by combining a portion of each parent's genetic
string in an operation called a one-point crossover. To
determine the crossover point, a uniformly distributed
random number is chosen and then multiplied by one
less than the maximum number of non-empty genes
in the two parents. The integer ceiling value of this
product determines the crossover point. The gene
string is then split at the same point in both parents.
The left piece from parent 1 and the right piece from
parent 2 are combined to form a child laminate. After
a child is created, the operations of adding, deleting or
mutating genes occur with small probabilities. These
operators make up genetic mutation. When adding
a ply stack, a uniform random number is chosen to
determine the orientation. To delete a ply stack, a
random number is chosen and the corresponding stack
is removed from the stacking sequence by replacing it
with a 0 gene. The laminate is then re-stacked, so
that all empty plies are pushed to the outer edge of
the laminate. The ply swap operator is implemented
by randomly selecting two genes in the string and
switching their positions. Ply swap can be e�ective
for problems where certain parts of the laminate
stacking sequence get set up faster than others. For
example, if the optimal stacking sequence for the outer
section of the laminate has been determined �rst, the
ply swap operator may help the GA determine the
optimal orientations for the inner part of the laminate
by swapping plies from each section. The genetic
algorithm procedure, referred to as GA-I (genetic
algorithm for designing composite laminates comprised
of one material only) is used. For the GA-I algorithm,
one string of genes is used to represent one half of
a symmetrical laminated composite cylindrical shell.
The length of the gene string is kept �xed throughout
the optimization process. Each gene in the string is
represented by an integer value between 0 and 10 and
determines whether the ply stack location is empty or
occupied with a 3-ply stack, which may be oriented at
any angle between 0 and 90, in increments of 10. The
�tness calculation usually involves function values that
are determined from separate analysis subroutines or
packages. Next, the crossover mutation and ply swap
operators are applied to create child designs, which
are, helpfully, better suited to their environment than
their parents. The child population is then analyzed
and ranked. To complete the generation cycle, a
selection scheme is implemented that determines which
laminates from the child and parent populations will
be placed in the next generation. One generation
after another is created until some stopping criterion
is met.
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MULTI-OBJECTIVE OPTIMIZATION

As mentioned earlier, optimization is carried out for
both buckling strength and natural frequency simulta-
neously. For this purpose, a genetic algorithm is used
for optimization. To obtain a Pareto set of designs,
the in
uence of buckling load and natural frequency
on the overall �tness function of a shell con�guration
is adjusted from one extreme to the other by varying
the weight factor accordingly.

F = Fitness function = �(Buckling load=100)

+ (1� �)(Frequency=100): (21)

This allows the general con�guration of the genetic
algorithm to be maintained, since the sti�ness of each
laminate design is still based on a single value that is
comprised of both buckling load and natural frequency.

RESULTS AND DISCUSSION

It is assumed that laminates are constructed from
graphite-epoxy with the properties given in Ta-
ble 1. Numerical results are presented for a six-layer
cylindrical shell with L=R = 10 and three di�erent
values, h=R = 0:1, 0.05, 0.02. A genetic algorithm
is used to optimize the stacking sequence of layers.
The population size is six and the present selection is
accomplished using a roulette wheel. An elitist method
(EL) ranks the child population and present population
of the laminates separately.

In order to construct the Pareto front, the weight-
ing factor, �, is varied from 0.0 to 1.0 and the composite
objective function, (F ), is maximized using a genetic
algorithm. The optimum designs, obtained as their
frequency and buckling load, are summarized in Table 2
for a thin composite cylindrical shell. As observed
from this table, for thin cylindrical shells, natural
frequency values are very close for di�erent values of
the weighting factor and, thus, the buckling stress is
the determining parameter for the optimization of thin
composite cylindrical shells.

Tables 3 and 4 show optimized frequency and
buckling load for h=R ratios higher than similar ones
given in Table 2. As noticed, natural frequency has
more e�ect on the optimization. Therefore, buckling
stress and natural frequency are of similar importance
for the ratios h=R = 0:05 and h=R = 0:1.

Convergency of the sti�ness function has been
shown in Figures 1 to 4 for h=R = 0:1 and di�erent

Figure 1. Convergency of F for � = 0.

Figure 2. Convergency of F for � = 0:4.

Figure 3. Convergency of F for � = 0:6.

Table 1. Properties of the composite material.

Density [kg/m3] E11 [pa] E22 [pa] v12 v21 G12=E11 G23=E11

1408 84.9 E9 E11=40 0.25 0.32 0.6 0.5
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Table 2. Optimized Frequency and buckling load with h=R = 0:02.

Fitness

Function

Buckling

Stress (MPa)

Natural

Frequency (Hz)
Generation �

14550 585 14550 102 0

11370 649 14050 94 0.2

8978 621 14530 78 0.4

6172 587 14517 163 0.6

3465 700 14526 102 0.8

770 770 12834 144 1.0

Stacking Sequence �

[55, 15, -35, 35, -55, -15] 0

[45, -45, 5, -45, 45, -5] 0.2

[-55, 15, 55, 35, -35, -15] 0.4

[50, -15, 15, -25, -50, 25] 0.6

[-65, 40, -15, 65, -40, 15] 0.8

[70, -40, 40, -25, 25, -70] 1.0

Table 3. Optimized Frequency and buckling load with h=R = 0:05.

Fitness

Function

Buckling

Stress (MPa)

Natural

Frequency (Hz)
Generation �

13967 517 13967 101 0

8965 626 11050 129 0.2

6783 569 10926 87 0.4

4732 551 11003 100 0.6

2678 631 10867 79 0.8

648 648 7014 100 1.0

Stacking Sequence �

[-75, 70, -20, 75, -70, 20] 0

[-60, 20, 80, 60, -80, -20] 0.2

[65, -15, -80, 80, 15, -65] 0.4

[-70, 20, 70, 80, -20, -80] 0.6

[65, -15, -65, -80, 80,15] 0.8

[55, -50, 50, -55, -50, 50] 1.0

Figure 4. Convergency of F for � = 1.

weighting functions. As observed, the convergency
speed is faster and, also, the sti�ness function increases
when � decreases. The search has been stopped after
a minimum of 50 generations, with no improvement in
the �tness function.

The e�ective parameters, on increasing the con-
vergency performance, including the size of the �rst
population, parent population and di�erent genetic
operators, have been studied by the authors in de-
tail [14]. Figure 5 shows the Pareto front obtained
for � = 0:6 and h=R = 0:1. The Pareto trade-o�
curve can be used to help the designer determine the
optimal con�guration for this problem. The �nal choice
of the best design will depend on additional information
that will enable him to assign priorities to the two
objectives. There is no single best design.

Depending on the application that is considered,
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Table 4. Optimized Frequency and buckling load with h=R = 0:1.

Fitness

Function

Buckling

Stress (MPa)

Natural

Frequency (Hz)
Generation �

10.676 369.86 10676 102 0

10.078 619.16 11050 94 0.2

8.7892 666.55 10205 78 0.4

8.3639 657.32 11050 163 0.6

7.4243 706.23 8872 102 0.8

7.0623 706.23 8872 144 1.0

Stacking Sequence �

[85 5 -85 -5 -50 50] 0

[-70 25 70 -75 75 -25] 0.2

[55 -10 -85 -55 10 85] 0.4

[-65 15 70 65 -70 -15] 0.6

[30 -85 -30 -25 85 25] 0.8

[30 -85 -30 -25 85 25] 1.0

Figure 5. Pareto set for natural frequency and buckling
load optimization.

Table 5. Three di�erent optimal con�gurations.

Optimized Point Stacking Sequence

A [-65 15 65 65 -65 -15]

B [-70 15 65 70 -65 -15]

C [65 -15 -65 -75 15 75]

the choice will be di�erent. For example, for � = 0:6 in
Tables 3 and 4, natural frequency and buckling load are
of similar importance. Finally, three di�erent optimal
con�gurations have been chosen from Figure 5 and
brought into Table 5. These points are A, B and C,
corresponding to � = 0:65, 0.3, 0.2. As mentioned
earlier, the �nal choice depends on additional informa-
tion.

CONCLUSION

A stacking sequence optimization with GA is done to
maximize the natural frequency and buckling strength
of a six-layer cylindrical shell, simultaneously. It
is concluded that, for thin shells, buckling strength
is the determining parameter for optimization while,
for thick ones, both natural frequency and buckling
strength are of the same importance for optimization.
It is also concluded that the convergency speed is
faster and, also, the sti�ness function higher when
� decreases. Pareto trade-o� can be used to help
designers determine optimal con�guration. The �nal
choice of the best design will depend on additional
information that will enable the designer to assign
priorities to the two objectives. However, there is no
single best design.
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