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Research Note

A Fuzzy E�cient Frontier Method for Resource

Allocation with Di�erent Time Cycles

S.J. Sadjadi� and A. Eskandarpour1

The primary assumption, in many resource allocation problems, is that every asset has a unique

length of return. However, this simple assumption may create some chaos when di�erent

investment alternatives may return in various time cycles and resources cannot be allocated

at any given time. This paper presents a new extended e�cient frontier problem. The new

method assumes that all risky assets have di�erent time cycles for their returns. The primary

assumption is that the return for each asset is fuzzy in nature. The problem is solved and the

results discussed, with some numerical examples.

INTRODUCTION

During the past few years, many di�erent models have
been proposed to solve investment problems, such as,
e�cient frontier, cost/bene�t analysis and etc. It is
believed that Markovitz [1-3] was the �rst person to
propose a method for portfolio selection. In his imple-
mentation, he uses a modeling formulation, which is a
trade-o� between risk and reward, with consideration
of an arbitrary ratio. However, the method su�ers
from a non-trivial assumption that is a constant length
for all risky assets. In other words, the Markovitz
model assumes that each asset has a unique time cycle,
which is unrealistic for many real world problems. For
example, consider a food industry chain, which supplies
dairy products on a weekly schedule and the demand
for such products is subject to many parameters, such
as season or temperature. In this case, the suppliers
may wish to know how much money must be invested
for each kind of dairy product during each time cycle.
The case becomes more interesting when one is inter-
ested in, simultaneously, determining the optimal asset
allocation for a relatively large number of products
with di�erent time cycles. The proposed method of
this paper develops the concept of investment type
allocation, which has already been studied by many
others. The Markovitz model is a minimization of
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the risk-reward problem, which ends up as a convex
quadratic problem, where the quadratic term comes
from a covariance matrix. The resulted problem is
subject to some linear constraints, such as budget.
Yong and Yamazaki [4-6] propose another method,
which uses absolute deviation to measure the risk for
sampling the Markovitz classic model, and substitute
a minimum mean absolute deviation function with an
objective one in the Markovitz model. In their model-
ing formulation, compared with the Markovitz model,
it is not necessary to calculate the covariance matrix,
which may be considered an advantage. Hana�zaseh
and Sei� [7] use a semi-de�nite modeling formulation to
study the risk-reward portfolio selection. They discuss
di�erent kinds of norm, along with the concept of
robust optimization. However, all discussed models
have a non-trivial assumption, where all risky assets
have a unique time cycle. Sadjadi and Orugee [8]
developed a method for investment problems where
di�erent assets are studied with di�erent time cycles.
They assume the return for each asset is independent
and has normal distribution with a known mean and
variance. The objective function is the minimization
of risk and simultaneously maximizes the return for
each asset. The resulted model is a quadratic convex
optimization with linear constraints. In this paper, this
model is extended in more realistic forms, where the pa-
rameters are assumed to be fuzzy in nature. This paper
is organized as follows. First, the problem formulation
is discussed when all parameters are known and certain.
Then, the present modeling formulation is discussed in
fuzzy form. The fuzzy models are considered, using two
di�erent triangular and trapezoid fuzzy numbers. After
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that, the implementation of the proposed method is
demonstrated using some numerical examples. Finally,
the concluding remarks are given to summarize the
contributions of this paper.

PROBLEM STATEMENT

Suppose one is interested in allocating budget p in n

di�erently independent alternatives. The time hori-
zon consists of n equal periods and the investment
alternatives have di�erent time cycles. For the sake
of simplicity, one assumes the ith alternative needs i
period(s) for its return, where i = 1; � � �n. Let xij
be the amount of budget invested on alternative i in
period j. Suppose P to be the amount of investment
one has at the beginning of the �rst period, therefore,
one has:

nX
i=1

xi0 = P: (1)

Equation 1 is called budget constraint and plays an
important rule in the proposed model. There are other
constraints involved in the modeling formulation, called
cash 
ow constraints. To understand more about this
type of equation suppose, at the end of the �rst period,
the �rst investment pays o� the return, �, plus the
original investment and one may invest for the next
n� 1 periods,

n�1X
i=1

xi1 = x10 + x10�1: (2)

From the beginning of the second period till the
beginning of period n� 1 of the planning horizon, the
following hold,

n�2X
i=1

xi2 = x20(1 + �2) + x11(1 + �1);

...

2X
i=1

xin�2 =

n�2X
i=1

(1 + �i)xi;n�2�i;

x1n�1 =

n�1X
i=1

(1 + �i)xi;n�1�i: (3)

Let �p be the expected return of the proposed model,
therefore, the return of the investment strategy is
maximized at the end of the planning horizon, as
follows:

max �p =
nX
i=1

xin�i(1 + �i): (4)

In the next section, the model is studied when the
return is fuzzy in nature.

FUZZY MODEL

Suppose
�

�i is fuzzy in nature. In other words, an expert
explains the behavior of the return as a triangular fuzzy
number, (�1i , �

m
i , �

2
i ). As mentioned in Equation 4, the

objective function for the frontier model is the sum of
Xi;n�i(1+�i), for every individual item Xi;n�i(1+�i).
The objective function includes three segments. The
left part of the objective function, (1 + �mi )xi;n�i �
(1+�1i )xi;n�i must be minimized, the center part, (1+
�mi )xi;n�i, is maximized and the right segment, (1 +
�2i )xi;n�i � (1 + �mi )xi;n�i, is maximized. Therefore,
these individuals are summed in every segment and one
obtains:

min z1 = (�m1 � �11)x1;n�1 + (�m2 � �m2 )x2;n�2

+ � � �+ (�mn � �1n)xn;0; (5)

max z2 = �m1 x1;n�1 + �m2 x2;n�2 + � � �+ �mn xn;0; (6)

max z3 = (�21 � �m1 )x1;n�1 + (�22 � �m2 )x2;n�2

+ � � �+ (�2n � �mn )xn;0: (7)

In order to estimate the fuzzy coe�cient associ-
ated with constraints, the following relationship is
used [9,10] (suppose, for constraints in a normal state,
one has A � b)

A+ 4A0 +A+

6
� b;

and:

ui =
�1i + 4�mi + �2i

6
: (8)

Therefore, the cash 
ow constraints are summarized,
as follows,

n�2X
i=1

xi2 = x20(1 + u2) + x11(1 + u1);

...

2X
i=1

xin�2 =

n�2X
i=1

(1 + ui)xi;n�2�i

x1n�1 =

n�1X
i=1

(1 + ui)xi;n�1�i: (9)

In order to �nd an e�cient solution for the crisp model,
one needs to solve six sub-problems. Let z+k and z�k
be the positive and negative objective functions with
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k = 1; 2; 3, associated with Equations 5 to 7. Therefore,
one must solve the following problems,

z+1 = min z1; S.T. Cons.;

z+2 = max z2; S.T. Cons.;

z+3 = max z3; S.T. Cons.;

z�1 = max z1; S.T. Cons.;

z�2 = min z2; S.T. Cons.;

z�3 = min z3; S.T. Cons. (10)

One now solves each of the six objective functions in
Equations 10, subject to the budget and cash 
ow
constraints. The next step is to de�ne the membership
functions for each objective function.

Let �1, �2 and �3 be the membership functions
associated with z1 to z3 (Fuzzy objective functions),
respectively. Therefore, one has [9,10]:

�z1 =

(
1 z1 < z+1
z
�

1
�z1

z
�

1
�z

+

1

z+1 � z1 � z�1

�z2 =

(
1 z2 > z+2
z2�z

�

2

z
+

2
�z
�

2

z+2 � z2 � z�2

�z3 =

(
1 z3 > z+3
z3�z

�

3

z
+

3
�z
�

3

z+3 � z3 � z�3
(11)

z+1 , z
�

1 , z
+

2 , z
�

2 , z
+

3 , z
�

3 are the optimum amount of the
six programs in Equations 10. Finally, the objective
function of the proposed model is summarized, as
follows,

max
�
min �zi(x)

	
; i = 1; 2; 3:

This is subject to cash 
ow and budget constraints.
The fuzzy model can be easily considered with other
fuzzy numbers, such as a trapezoid. Since the modeling
process of a trapezoid model is similar to a fuzzy
model, only the modeling formulation and the results
for the implementation of the numbers are reported in
an example.

TRAPEZOID FUZZY NUMBERS

Suppose �i is fuzzy in nature. In other words, an expert
explains the behavior of the return as a triangular fuzzy

number, (�1i , �
2
i , �

3
i , �

4
i ). In this case, the objective

function includes four segments, as follows:

min z1 = (�21 � �11)x1;n�1 + (�22 � �12)x2;n�2

+ � � �+ (�2n � �1n)xn;0;

max z2 = (�31 � �21)x1;n�1 + (�32 � �22)x2;n�2

+ � � �+ (�3n � a2n)xn;0;

max z3 = �31x1;n�1 + �32x2;n�2 + � � �+ �3nxn;0;

max z4 = (�41 � �31)x1;n�1 + (�42 � �32)x2;n�2

+ � � �+ (�4n � a3n)xn;0; S.T.;

A1 + 2(A2 +A3) +A4

6
X � b: (12)

NUMERICAL EXAMPLE

In this section, an example is provided to present the
implementation of the proposed models with triangular
and trapezoid fuzzy numbers.

For a triangular fuzzy number, consider the fol-
lowing information:

n = 4; P = 1000; � = 0:05; i = 1; 2; 3; 4

�

�1 = (0:1; 0:12; 0:13);
�

�2 = (0:22; 0:24; 0:29);

�

�3 = (0:35; 0:42; 0:44);
�

�4 = (0:53; 0:55; 0:6);

and � is return.
A triangular fuzzy problem formulation is applied

in the previous section to �nd an optimum solution to
this example, which is, as follows:

minZ1 = 0:02x1;3 + 0:02x2;2 + 0:06x3;1 + 0:02x4;0;

maxZ2 = 1:12x1;3 + 1:24x2;2 + 1:41x3;1 + 1:55x4;0;

maxZ3 = 0:01x1;3 + 0:05x2;2 + 0:03x3;1 + 0:05x4;0:
(13)

subject to:

x1;0 + x2;0 + x3;0 + x4;0 = 1000;

1:118x1;0 � x1;1 � x2;1 � x3;1 = 0;

1:118x1;1 + 1:245x2;0 � x1;2 � x2;2 = 0;

1:118x1;2 + 1:245x2;1 + 1:405x3;0 � x1;3 = 0:
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The optimal solutions for z+i , z�i , i = 1; 2; 3 are
summarized as the following:

Z+

1 = minZ1 = 20; Z�1 = maxZ1 = 67:08;

Z+

2 = maxZ2 = 1576:38; Z�2 = minZ2 = 1543:8;

Z+

3 = maxZ3 = 62:5; Z�3 = maxZ3 = 13:92:

Therefore, the �nal model is formulated, as follows:

max�

S.T.

0:000425x1;3+ 0:00042x2;2 + 0:00127x3;1

+ 0:000425x4;0 + � � 1:425;

0:034x1;3 + 0:038x2;2 + 0:043x3;1 + 0:0476x4;0

� � � 47:38;

0:000206x1;3+ 0:00103x2;2 + 0:00062x3;1

+ 0:00103x4;0 � � � 0:29;

x1;0 + x2;0 + x3;0 + x4;0 = 1000;

1:118x1;0 � x1;1 � x2;1 � x3;1 = 0;

1:118x1;1 + 1:245x2;0 � x1;2 � x2;2 = 0;

1:118x1;2 + 1:245x2;1 + 1:405x3;0 � x1;3 = 0;

xij >= 0: (14)

Table 1 summarizes the results of the implementation
of the proposed fuzzy model using two di�erent fuzzy
numbers, triangular and trapezoid. For a trapezoid
example, �1 to �4 are set, as follows:

�

�1 = (0:1; 0:11; 0:12; 0:14);

�

�2 = (0:24; 0:25; 0:255; 0:26);

�

�3 = (0:33; 0:345; 0:355; 0:37);

�

�4 = (0:51; 0:516; 0:52; 0:54):

Therefore:

min z1=0:01x1;3 + 0:01x2;2 + 0:015x3;1 + 0:006x4;0;

max z2=0:01x1;3 + 0:005x2;2 + 0:01x3;1 + 0:004x4;0;

max z3=1:12x1;3 + 1:255x2;2 + 1:355x3;1 + 1:52x4;0;

max z4 = 0:02x1;3 + 0:005x2;2 + 0:015x3;1 + 0:02x4;0:
(15)

Table 1. Combined report for fuzzy triangular model.

Decision Solution Value

Variable Triangular Trapezoid

� (objective) 0.4791 0.5750

X1;0 502.1632 422.94

X2;0 0 0

X3;0 123.90 161.34

X4;0 373.93 415.71

X1;1 0 0

X2;1 0 472

X3;1 561.41 0

X1;2 0 0

X2;2 0 0

X1;3 174.08 808.76

ST:

x1;0 + x2;0 + x3;0 + x4;0 = 1000;

0:116x1;0 � x1;1 � x2;1 � x3;1 = 0;

0:116x1;1 + 0:252x2;0 � x1;2 � x2;2 = 0;

0:116x1;2 + 0:252x2;1 + 0:35x3;0 � x1;3 = 0;

xij >= 0:

CONCLUSION

A new model is presented for an extended resource al-
location problem, where each alternative has a di�erent
life cycle and the parameters are assumed to be fuzzy in
nature. The fuzzy models are considered using two dif-
ferent triangular and trapezoid fuzzy numbers. Fuzzy
linear optimization has been used to solve the resulted
fuzzy models. The implementation of the proposed
model is demonstrated using some numerical examples
and the results have been discussed. The modeling
of the proposed method can be easily extended to
other continuous fuzzy numbers, such as Gaussian, etc.
Another extension of this model is to choose the cash

ow constraints as a chance constraint optimization.
Such models can be formulated as robust optimization
and this could lead to work on recent advances in semi-
de�nite programming. These topics are left as open
research areas for other interested researchers.
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