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Intrinsic Expressions for Arbitrary Stress

Tensors Conjugate to General Strain Tensors

S. Sohrabpour1, R. Naghdabadi� and M. Asghari1

In this paper, a uni�ed explicit tensorial relation is sought between two stress tensors conjugate
to arbitrary and general Hill strains. The approach used for deriving the tensorial relation is based
on the eigenprojection method. The result is, indeed, a generalization of the relations that were
derived by Farahani and Naghadabadi [1] in 2003 from a component to intrinsic form. The result
is uni�ed in the sense that it is valid for all cases of distinct and coalescent principal stretches.
Also, in the case of three dimensional Euclidean inner product space, using the derived uni�ed
relation, some expressions for the conjugate stress tensors are presented.

INTRODUCTION

The rate of mechanical work per unit volume of the
body in the reference con�guration, _w, which is called
stress power, is de�ned by [2]:

_w = J� : D = � : D; (1)

where J denotes the ratio of the volume of the material
in the current con�guration to the reference con�gu-
ration, � is the Cauchy stress tensor, D stands for
the deformation rate tensor, i.e., the symmetric part
of the velocity gradient in space, � = J� is the
Kirchho� stress tensor and : represents the double
scalar product.

Let f�ig and fNig be the eigenvalues and the sub-
ordinate orthonormal eigenvectors of the right stretch
tensor, U, respectively. Indeed, f�ig are the principal
stretches of the deformation. The general class of
Lagrangean strain tensors was de�ned by Hill as [3,4]:

E(f) = E(f)(U) =

nX
i=1

f(�i)Ni 
Ni; (2)

where n is the dimension of the Euclidean space and the
scale function f(:) is an arbitrary, strictly-increasing
scalar function satisfying conditions f(1) = 0 and
f 0(1) = 1. Also, the symbol 
 represents the dyadic or
tensor product. If, in the special case, f(:) is selected
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in the form of f(�) = (�ri �1)=r, with r as an arbitrary
integer, then, the Seth class of strains [5], with the
notation E(r), can be obtained. For example, the
nominal strain, E1 = (U � I), Green's strain, E2 =
(U2 � I)=2, and the logarithmic strain, E(0) = lnU,
are strain measures in the Seth class that are given by
the scale functions f(�) = (�i � 1), f(�) = (�2i � 1)=2
and f(�) = ln�, respectively.

The concept of energy conjugacy was introduced
by Hill [3] and Macvean [6]. In this concept, a
symmetric second order tensor, T, is the conjugate
stress to the Lagrangean strain measure, E, if the
double scalar product of T and E produce the stress
power, i.e. _w.

_w = T : _E: (3)

In the other words, the concept of energy conjugacy for
stress and strain measures states that a stress tensor,
T, is conjugate to a strain measure, E, if T : _E provides
the rate of change of the internal energy per unit
reference volume of the body in an adiabatic process.
For example, the Biot stress, T(1), the second Piola-
Kirchho� stress, T(2) and T(0) are conjugate to E(1),
E(2) and E(0), respectively.

The concept of energy conjugacy plays a great
role in writing the internal power of a deforming body.
Also, the virtual work required for �nite element im-
plementation, as a weak form of equilibrium equations,
can be developed, in terms of a stress measure and
the variation of its conjugate strain, as a basis for the
analysis of a continuum.

In the study of nonlinear continuum mechanics,
the aforementioned strain measures, their rates and
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their conjugate stresses, are basic quantities [4,7].
Finding expressions for these basic quantities has
been a popular problem among researchers in the
past decades. Hill derived component expressions for
arbitrary stress tensor T(f) conjugate to E(f) in the
principal basis, in terms of the components of Kirchho�
stress tensor � [4]. Guo and Dubey derived a more
compact form of the component expressions for T(f),
in terms of [7].

Intrinsic (basis-free) expressions for the stress
T(0) conjugate to the Lagrangean logarithmic strain,
lnU, were derived by Hoger [8]. Wang and Duan
obtained intrinsic expressions for the stress conjugate
to an arbitrary Hill strain measure, in terms of back
rotated Cauchy stress, RT�R, where R is the rotation
tensor of the deformation relative to the reference
con�guration [9]. Also, intrinsic expressions for the
conjugate stress of an arbitrary Seth's measure of
strain, excluding r = 0, were derived by Guo and
Man [10].

Xiao derived a uni�ed explicit intrinsic relation
for the stress conjugate to an arbitrary strain of Hill's
class, in terms of the Biot(-Jaumann) stress tensor,
T(1) [11]. A new intrinsic expression for the stress
tensor, T(3), i.e. the conjugate stress to Seth's strain
measure with r = 3, was derived by Dui and Ren
through solving a tensor equation [12]. Dui et al. also
have derived new and compact intrinsic expressions for
stress tensor conjugate to an arbitrary strain of Seth's
strain measures, excluding r = 0, in terms of T(1) [13].

Farahani and Naghdabadi obtained the relation
between components of two stress tensors, conjugate
to arbitrary strains of Seth's class, in the principal co-
ordinates of U [14]. They also derived the expressions
relating the component of two stress tensors, conjugate
to arbitrary Hill strain measures and obtained some
intrinsic expressions between these stress tensors in
special cases [1]. Recently, Dui has derived six intrinsic
(basis-free) expressions for the conjugate of the loga-
rithmic strain, i.e., T(0) [15].

It should be pointed out that the representation
of a tensor in component form might not be convenient
for the purpose of theoretical and numerical studies.
Thus, it is of merit to seek the basis-free or intrinsic
representation of the desired tensors [9].

The main purpose of this work is to:

1. Generalize the component-form results of Farahani
and Naghdabadi [1] (relating two arbitrary conju-
gate stresses to each other) to intrinsic expressions;

2. Obtain a uni�ed intrinsic relation between two
arbitrary conjugate stresses which is valid for a
Euclidean inner product space with arbitrary di-
mension. The result is uni�ed in the sense that it is
valid for all di�erent cases of distinct and coalescent
principal stretches.

The outline of the paper is as follows. First, some
basic relations in nonlinear continuum mechanics are
reviewed. Then, using the eigenprojection method,
a uni�ed intrinsic expression is derived which relates
two arbitrary conjugate stress tensors to each other.
The derived expression is valid for all di�erent cases
of distinct and coalescent principal stretches. After
that, in the special case of the three dimensional inner
product space, the speci�c results are obtained from
the derived uni�ed expression presented previously.
Finally, some examples are presented as applications
of the results of this paper.

PRELIMINARIES

The deformation gradient tensor, F, at a point of a
deforming body, is written as a multiplication of the
symmetric positive-de�nite right stretch tensor,U, and
the proper orthogonal tensor, R, as follows:

F = RU: (4)

In the n-dimensional Euclidean inner product space,
let �1; � � � ; �m be all the distinct eigenvalues of U and
P1; � � � ;Pm, its subordinate eigenprojections. Thus, U
can be written as:

U =

mX
i=1

�iPi; (5)

where m is the number of the distinct eigenvalues of
U.

The characteristics of the eigenprojections result
in:

PiPj = �ijPi; (6)

mX
i=1

Pi = I; (7)

where �ij is the Kronecker delta and I is the second
order identity tensor over the Euclidean inner product
space. It is noted that the summation convention is
not used over dummy indices in this paper. Eigenpro-
jections of any second order tensor, such as U, are also
expressible in terms of the tensor and its eigenvalues,
as follows [16]:

Pi =

8><
>:

mQ
j=1
j 6=i

U��jI
�i��j

m > 1

I m = 1

(8)

Using the eigenprojections, the general strain measures
de�ned in Equation 2 are written in the following form:

E(f) =
mX
i=1

f(�i)Pi: (9)



488 S. Sohrabpour, R. Naghdabadi and M. Asghari

The material time derivative of E(f) is equal to [11]:

_E(f) =
mX

i;j=1

fijPi
_UPj = Lf (U) : _U; (10)

where the scalars, fij , are expressible, as follows:

fij =

(
f(�i)�f(�j)

�i��j
i 6= j

f 0(�i) i = j
(11)

and Lf = @E(f)

@U is a fourth order tensor valued function
of U. Also, (:)0 stands for the derivative, with respect
to the argument. Considering Lin as the second order
tensor space over the n-dimensional Euclidean inner
product space and de�ning a bilinear map � : Lin �
Lin! L(Lin) : (A;B) 7�! A �B by [17]:

(A �B) : C = ACBT ; 8C 2 Lin; (12)

then, Lf (U), presented in Equation 10, can be written,
as follows:

Lf (U) =

mX
i;j=1

fijPi �Pj : (13)

It is noted that L(Lin) represents the second-order
tensor space over Lin and I � I is the second-order
identity tensor over Lin. Also, the symmetry of each
Pi, together with the type of summation in Equa-
tion 13, results that Lf possess both major and minor
symmetries. It is emphasized that the scale tensor,
f(:), can be replaced by any other proper scale tensor,
such as g(:), in the aforementioned relations. For
example, by considering the de�nitions of Equations 11
and 13, one may obtain parameters, such as gij and L

g ,
similar to fij and L

f , respectively.

INTRINSIC EXPRESSION BETWEEN TWO

STRESSES CONJUGATE TO ARBITRARY

HILL'S STRAINS

Two di�erent arbitrary Lagrangean strains E(f) and
E(g), with scale functions f(:) and g(:) are considered,
respectively. Let T(f) and T(g) be their conjugate
stresses. Thus, in view of Equation 3, one can write:

T(f) : _E(f) = T(g) : _E(g): (14)

Now, substitution of Equation 10 into Equation 14
yields:

(T(f) : Lf ) : _U = (T(g) : Lg) : _U: (15)

Since Equation 15 is valid for every _U, one obtains:

T(f) : Lf = T(g) : Lg : (16)

Also, in view of the symmetries existing in the fourth-
order tensors, Lf and Lg , it is concluded that:

Lf : T(f) = Lg : T(g): (17)

Premultiplying Equation 17 by the inverse of the Lf ,
one obtains:

T(f) = [(Lf )�1 : Lg ] : T(g); (18)

where (Lf )�1 is the inverse of Lf , in the sense that the
double contraction, (Lf )�1 : Lf , results the identity
tensor I � I over Lin. It is obvious from Equation 7
that:

mX
i;j=1

Pi �Pj = I � I: (19)

Considering Equations 6, 13 and 19, it is concluded
that (Lf )�1 is in the form of:

(Lf )�1 =

mX
i;j=1

(fij)
�1Pi �Pj : (20)

So, Equations 6, 13 and 20 yield:

(Lf )�1 : Lg =
mX

i;j=1

(fij)
�1gijPi �Pj : (21)

With the help of Equation 8, the eigenprojections, Pi,
can be expressed in terms of a power series of U, as
follows:

Pi =
1

di

m�1X
k=0

ai;m�1�kU
k; (22)

where:

di =

mY
j=1
j 6=i

(�i � �j); (23)

and:

ai;j =8><
>:
0 j = 0

(�1)j
m�1P

1�i1<���<ij�m

�i1 � � ��ij (1��ii1) � � � (1��iij ) 0<j
:
(24)

Substituting the eigenprojections from Equation 22
into Equation 21 and using Equations 23 and 24, T(f)

can be written as an isotropic tensor valued function of
U and T(g), and linear in T(g), in the following form:

T(f) =

m�1X
i;j=0

�ijU
iT(g)Uj ; (25)
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where the scalars, �ij , are given as:

�ij =

mX
k;l=1

gkl
dkdlfkl

ak;m�1�ial;m�1�j : (26)

Equation 25 is a uni�ed intrinsic expression relating
two arbitrary conjugate stresses, T(f) and T(g), which
is valid for all cases of distinct and repeated principal
stretches. Also, Equation 25 is valid for arbitrary
dimensions of the Euclidean inner product space. This
intrinsic expression, which relates two arbitrary con-
jugate stress tensors, has not been presented in the
literature, as far as the authors know. Equation 25 is,
indeed, the generalization of the results of Farahani and
Naghdabadi [1], from a component to intrinsic form. As
explained in the introduction, component expressions
are not generally satisfactory. Thus, the need to �nd
intrinsic expressions for the basic tensors is useful.

RESULTS FOR THREE DIMENSIONAL

EUCLIDEAN INNER PRODUCT SPACE

In this section, the three dimensional Euclidean inner
product space is considered, i.e., n = 3, and speci�c
results are obtained from Equation 25 for all possible
cases of distinct and coalescent principal stretches, i.e.,
for di�erent values of m.

The Case of Non-Coalescent Principal

Stretches, i.e., m = 3

Substitution of Equations 11, 23 and 24 for the case
m = 3 into Equation 26 and, then, substitution of the
results into Equation 25 yields:

T(f) = �00T
(g) + �01(T

(g)U+UT(g))

+ �11UT
(g)U+ �02(T

(g)U2 +U2T(g))

+�12(UT
(g)U2+U2T(g)U)+�22U

2T(g)U2; (27)

where:

�00 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�2i �

2
j (�i � �j)

2 g
0(�k)

f 0(�k)

+ 2III�k(�i � �j)
�2(�k � �i)

�1

� (�j � �k)
�1 g(�i)� g(�j)

f(�i)� f(�j)

#
; (28)

�01=�
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�i�j(�i+�j)(�i��j)

2 g
0(�k)

f 0(�k)

+ III[2 + III��2
i ��2

j � (�i + �j)](�i � �j)
�2

(�k � �i)
�1(�j � �k)

�1 g(�i)� g(�j)

f(�i)� f(�j)

#
;

(29)

�11 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�2i � �2j )

2 g
0(�k)

f 0(�k)

+ (I II� III)(�2i � �2j )
�1 � (�i � �j)

�1

(�k � �i)
�1(�j � �k)

�1 g(�i)� g(�j)

f(�i)� f(�j)

#
; (30)

�02=
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�i�j(�i � �j)

2 g
0(�k)

f 0(�k)

+ �k(�i + �j)� (�i � �j)
�2

(�k � �i)
�1(�j � �k)

�1 g(�i)� g(�j)

f(�i)� f(�j)

#
; (31)

�12 = �
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�i + �j)(�i � �j)

2 g
0(�k)

f 0(�k)

+ (�i + �j + 2 III ��1
i ��1

j )� (�i � �j)
�2

(�k � �i)
�1(�j � �k)

�1 g(�i)� g(�j)

f(�i)� f(�j)

#
;

(32)

�22 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�i � �j)

2 g
0(�k)

f 0(�k)

+ 2(�i � �j)
�2 � (�k � �i)

�1

(�j � �k)
�1 g(�i)� g(�j)

f(�i)� f(�j)

#
: (33)

In Equations 28 to 33, I, II, III are the three principal
invariants of U and � is expressible in terms of the
principal invariants of U, as follows:

� = 18 I II III + I2 II2 � 4 I3III� 4 II3 � 27 III2:
(34)
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The Case of Double Coalescent Principal

Stretches, i.e. m = 2; �1 6= �2

The expansion of Equation 25, with m = 2, leads to:

T(f) = �00T
(g) + �01(T

(g)U+UT(g))

+ �11UT
(g)U; (35)

where:

�00 =
1

(�1 � �2)2

 
�21

g0(�2)

f 0(�2)
+ �22

g0(�1)

f 0(�1)

� 2�1�2
g(�1)� g(�2)

f(�1)� f(�2)

!
; (36)

�01 =
�1

(�1 � �2)2

 
�1

g0(�2)

f 0(�2)
+ �2

g0(�1)

f 0(�1)

� (�1 + �2)
g(�1)� g(�2)

f(�1)� f(�2)

!
; (37)

�11 =
1

(�1 � �2)2

 
g0(�2)

f 0(�2)
+

g0(�1)

f 0(�1)

� 2
g(�1)� g(�2)

f(�1)� f(�2)

!
: (38)

The Case of Triple Coalescent Principal

Stretches, i.e., m = 1; �1 = �2 = �3 =: �0

Equation 25, with m=1, can be simpli�ed to:

T(f) = 
00T
(g); (39)

where:


00 =
g0(�0)

f 0(�0)
: (40)

EXAMPLES

In this section, some illustrative examples are pre-
sented as applications of the derived expressions. The
results of the previous sections are general, so, for
obtaining the relation between two speci�c conjugate
stresses, it su�ces to replace the scale functions,
f(�) and g(�), with the appropriate ones in the
corresponding equations, determining the scalar coe�-
cients.

The Biot Stress T(1) in Terms of the Second

Piola-Kirchhof Stress T(2)

The Biot stress, T(1), the stress conjugate to the
nominal strain E(1), is expressible in terms of the sec-
ond Piola-Kirchho� stress, T(2), and the right stretch
tensor, as follows [10]:

T(1) =
1

2
(T(2)U+UT(2)): (41)

Here, this expression is obtained using the derived
equations in this paper. This example has been selected
as validation of the general results derived in this paper.
With the aid of Equation 27, in the case of distinct
principal stretches, it is written that:

T(1) = �00T
(2) + �01(T

(2)U+UT(2))

+ �11UT
(2)U+ �02(T

(2)U2 +U2T(2))+

+ �12(UT
(2)U2 +U2T(2)U)

+ �22U
2T(2)U2; (42)

where the scalar coe�cients, �ij , are calculated using
Equations 28-33, by replacing f(�) and g(�) with (��
1) and (�2 � 1)=2, respectively. So, one obtains:

�00 = �11 = �02 = �12 = �22 = 0; (43)

and:

�01 =
1

2
: (44)

Substitutions of these coe�cients into Equation 42
results in Equation 41. In a similar manner, for the
case of double coalescent principal stretches, using
Equations 35 to 38 by replacing (� � 1) and (�2 �
1)=2 for f(�) and g(�), respectively, one arrive at
Equation 41. In the case of triple coalescent principal
stretches, i.e. �1 = �2 = �3 =: �0, Equations 39 and
40, with f 0(�) = (��1)0 = 1 and g0(�) = (�2�1)0=2 =
�, give us:

T(1) = �0T
(2): (45)

Noting that, in the case of �1 = �2 = �3 =: �0 =,
the right stretch tensor, U, can be written as �0I and
by substituting this into Equation 41, one arrives at
Equation 45.

The Second Piola-Kirchhof Stress, T(2), in

Terms of the Biot Stress, T(1)

The expression of T(2), in terms of T(1), in the case
of distinct principal stretches was derived in Farahani
and Naghdabadi [1] by solving a system of six linear
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equations for obtaining six scalar coe�cients. But,
with the aid of the method presented in this paper, the
desired expression can be obtained using Equations 27
to 33, only by considering f(�) = (�2 � 1)=2 and
g(�) = (�� 1) in the corresponding equations. Hence,
one gets:

T(2) = �00T
(1) + �01(T

(1)U+UT(1))

+ �11UT
(1)U+ �02(T

(1)U(2) +U2T(1))+

+ �12(UT
(1)U(2) +U2T(1)U)

+ �22U
2T(1)U2; (46)

where:

�00 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
��1
k �2i �

2
j (�i � �j)

2

+ 4 III �k(�i � �j)
�2(�k � �i)

�1

(�j � �k)
�1(�i + �j)

�1

#
; (47)

�01 = �
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�i�j(�i + �j)(�i � �j)

2��1
k

+ 2 III[2 + III ��2
i ��2

j (�i + �j)]� (�i � �j)
�2

(�k � �i)
�1(�j � �k)

�1(�i + �j)
�1

#
; (48)

�11 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�2i � �2j )

2��1
k

+ 2(I II� III)(�2i � �2j )
�1(�i � �j)

�1

� (�k � �i)
�1(�j � �k)

�1(�i + �j)
�1

#
; (49)

�02 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�i�j(�i � �j)

2��1
k

+ 2�k(�i � �j)
�2(�k � �i)

�1(�j � �k)
�1

#
; (50)

�12 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�i + �j)(�i � �j)

2��1
k

+ 2(�i + �j + 2 III ��1
i ��1

j )(�i � �j)
�2

� (�k � �i)
�1(�j � �k)

�1(�i + �j)
�1

#
; (51)

�22 =
X

(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�i � �j)

2��1
k + 4(�i � �j)

�2

(�k � �i)
�1(�j � �k)

�1(�i + �j)
�1

#
;

(52)

with � as given in Equation 34.
In the case of double coalescent principal

stretches, i.e. �1 6= �2 = �3, using Equations 35 to
38, with f(�) = (�2 � 1)=2 and g(�) = (� � 1), one
obtains:

T(2)=�00T
(1)+�01(T

(1)U+UT(1))+�11UT
(1)U;

(53)

where:

�00 =
1

(�1 � �2)2

 
�21�

�1
2 + �22�

�1
1

� 4�1�2(�1 + �2)
�1

!
; (54)

�01 =
�1

(�1 � �2)2

 
(�21 + �22)�

�1
1 ��1

2 � 2

!
; (55)

�11=
1

(�1��2)2

 
(�1+�2)�

�1
1 ��1

2 �4(�1+�2)
�1

!
:
(56)

In the case of triple coalescent principal stretches, i.e.,
�1 = �2 = �3 =: �0, Equations 39 and 40, with g

0(�) =
(�� 1)0 = 1 and f 0(�) = (�2 � 1)0=2 = �, give us:

T(2) =
1

�0
T(1): (57)

The Biot Stress, T(1), in terms of T(0)

Here, invariant expressions for the Biot stress, T(1), in
terms of the stress, T(0), conjugate to the logarithmic
strain, are presented. Similar to the previous examples,
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it su�ces to use the results of the previous section, with
suitable scale functions. In the case of distinct principal
stretches, using Equations 27 to 33, with g(�) = ln�
and f(�) = (�� 1), one obtains:

T(1) =
�
�00T

(0) +
�
�01(T

(0)U+UT(0))

+
�
�11UT

(0)U+
�
�02(T

(0)U2 +U2T(0))+

+
�
�12(UT

(0)U2 +U2T(0)U)

+
�
�22U

2T(0)U2; (58)

where:

�
�00 =

X
(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
��1
k �2i �

2
j (�i � �j)

2

+ 2 III �k(�i � �j)
�2(�k � �i)

�1

(�j � �k)
�1(�i � �j)

�1 ln
�i
�j

#
; (59)

�
�01 = �

X
(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�i�j(�i + �j)(�i � �j)

2��1
k

+ III [2 + III ��2
i ��2

j (�i + �j)](�i � �j)
�2

(�k � �i)
�1(�j � �k)

�1(�i � �j)
�1 ln

�i
�j

#
;

(60)

�
�11 =

X
(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�2i � �2j )

2��1
k

+ (I II� III)(�2i � �2j )
�1(�i � �j)

�1

(�k � �i)
�1(�j � �k)

�1(�i � �j)
�1 ln

�i
�j

#
; (61)

�
�02=

X
(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
�i�j(�i��j)

2��1
k +�k(�i + �j)

(�i � �j)
�2(�k � �i)

�1(�j � �k)
�1

(�i � �j)
�1 ln

�i
�j

#
; (62)

�
�12 = �

X
(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�i + �j)(�i � �j)

2��1
k

+ (�i + �j + 2 III ��1
i ��1

j )(�i � �j)
�2

(�k � �i)
�1(�j � �k)

�1(�i � �j)
�1 ln

�i
�j

#
;

(63)

�
�22=

X
(i;j;k)=(1;2;3);
(2;3;1);(3;1;2)

"
1

�
(�i � �j)

2��1
k + 2(�i � �j)

�2

(�k � �i)
�1(�j � �k)

�1(�i � �j)
�1 �i

�j

#
: (64)

In the case of double coalescent principal stretches, i.e.
�1 6= �2 = �3, Equations 35 to 38, with g(�) = ln�
and f(�) = (� � 1), give:

T(1)=
�

�00T
(0)+

�

�01(T
(0)U+UT(0))+

�

�11UT
(0)U;

(65)

where:

�

�00 =
1

(�1 � �2)2

 
�21�

�1
2

+ �22�
�1
1 � 2�1�2(�1 � �2)

�1 ln
�1
�2

!
; (66)

�

�01 =
�1

(�1 � �2)2

 
(�21 + �22)�

�1
1 ��1

2

� (�1 + �2)(�1 � �2)
�1 ln

�1
�2

!
; (67)

�

�11 =
1

(�1 � �2)2

 
(�1 + �2)�

�1
1 ��1

2

� 2(�1 � �2)
�1 ln

�1
�2

!
: (68)

In the case of triple coalescent principal stretches, i.e.
�1 = �2 = �3 =: �0, considering Equations 39 and 40,
with g0(�) = (ln�)0 = 1=� and f 0(�) = (� � 1)0 = 1,
one gets:

T(1) =
1

�0
T(0): (69)

The expressions representing the Biot stress, T(1), in
terms of the stress T(0), have not been presented in the
literature, as far as the authors know.
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CONCLUSIONS

In this paper, a general and uni�ed intrinsic relation
between two arbitrary stresses, T(f) and T(g), conju-
gate to arbitrary strain tensors, E(f) and E(g), in Hill's
general class of strains, are obtained. The approach is
based on the eigenprojection expansion of symmetric
tensors. The result that is obtained in Equation 25
is uni�ed, in the sense that is generally valid for
all di�erent cases of coalescent and distinct principal
stretches. Also, this equation is valid for a Euclidean
inner product space with arbitrary dimensions. Equa-
tion 25 represents T(f) as an isotropic tensor valued
function of T(g) andU that is linear in T(g). Moreover,
for three-dimensional Euclidean inner product space,
i.e., n = 3, speci�c results are derived from Equation 25
for all cases of repeated and distinct principal stretches,
i.e., for m = 1, 2, 3. The merit of the derived
general results of this paper is that they can be used
to obtain speci�c expressions for conjugate stresses,
only by substituting the appropriate scale functions in
the corresponding equations. As applications of the
derived general results, three examples are presented,
which relate some speci�c conjugate stress tensors to
each other through intrinsic expressions for di�erent
cases of coalescence principal stretches.
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