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A New Set of Conservation Equations

Based on the Kinetic Theory

Applied to Gas Mixture Problems

R. Kamali1, H. Emdad1 and M.M. Alishahi�

In this work, the hydrodynamics of multicomponent ideal gas mixtures have been studied.
Starting from kinetic equations, the Eulerian approach is used to derive equations of motion
for a multicomponent system, where each component may have a di�erent velocity and kinetic
temperature. The equations are based on Grad's method of moment derived from the kinetic
model, in a Relaxation Time Approximation (RTA). Based on this model, a computer code
has been developed for numerical computation of compressible ows of a binary gas mixture in
generalized curvilinear boundary conforming coordinates. Since these equations are similar to
the Navier-Stokes equations for the single uid systems, the same numerical methods are applied
to these new equations. The Roe's numerical scheme is used to discretize the convective terms
of governing uid ow equations. The prepared algorithm and the computer code are capable
of computing and presenting the ow �elds of each component of the system separately, as well
as the average ow �eld of the multicomponent gas system as a whole. A comparison between
the present code results and those of a more common algorithm based on the mixture theory
in a supersonic converging-diverging nozzle provides the validation of the present formulation.
Afterwards, a more involved nozzle cooling problem with a binary ideal gas (Helium-Xenon) is
chosen to compare the present results with those of the ordinary mixture theory. The present
model provides the details of the ow �elds of each component separately which is not available
otherwise.

INTRODUCTION

Almost all ows encountered in nature and technology
are of a gas mixture. The ow of air is the most
common example, which is usually disregarded as a
multispecies ow of gas. In many practical ows,
involving pollutant dispersion, chemical processing and
combustor mixing and reaction, mass and momentum
transport within multispecies uids play an important
role. Recent years have witnessed a growing interest in
developing numerical methods suitable for computing
multicomponent ows, as well as their e�cient imple-
mentation in studying complex ow phenomena [1-13].

Modeling of the multicomponent uid ows can
be separated into two groups. The �rst one consists
of conservation equations, based on the Navier-Stokes
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equations [e.g., 14,15]. The second group of models is
based on the kinetic theory, i.e., models derived from
the Boltzmann equation [e.g., 16].

Based on the �rst model, the uid dynamics of
a mixture of gases (e.g., a binary gas mixture) is de-
scribed by the Navier-Stokes equations for the mixture
as a whole, with an additional equation expressing
conservation of mass for the �rst component. The last
equation, in conjunction with the conservation of mass
for the mixture, implies a conservation of mass for the
second component as well. This approach is called a
Mixture Model. Numerical modeling using the mixture
model is traditionally based on Euler solver methods.

Gases can be studied by considering the small
scale action of individual molecules or by considering
the large scale action of the gas as a whole. Although
one can directly measure, or sense, the action of
the gas, the action of the molecules can be studied
theoretically. This theoretical model, called the kinetic
theory of gases, assumes only that the molecules are
very small, relative to the distance between molecules.
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The molecules are in constant, random motion and
frequently collide with each other and with the walls
of any container.

The kinetic theory approach for a multicompo-
nent gas system is based on Boltzmann equations,
including collision integrals for each component of the
gas mixture. In the case of low Knudsen numbers,
de�ned as the ratio between the mean free path of
the molecules and the relevant macroscopic length
scale, these equations are solved using the traditional
Chapman-Enskog method [17] or Grad's method of
moment [18]. This process results in the equations
for the conservation (balance) of mass, momentum and
energy for a multicomponent gas mixture. Some of the
recent works in this area are, as follows.

In 1954, Bhatnagar, Gross and Krook (BGK) [19]
presented a model for molecular collisions for single
gas. The e�ect of the molecular collisions in this
model is represented by an exponential relaxation
toward a Local Thermodynamic Equilibrium (LTE).
In 1962, Sirovich [11] gave a generalization of the
BGK model for a gas mixture. In 1964, Morse [12]
presented free parameters, which were computed, based
on conservation relations. In 1971, Wu and Lee [13]
studied the one-dimensional binary gas mixture ow in
a shock tube, using the kinetic model. In 1989, Garzo,
Santos and Bery [14] proposed a kinetic model for
a dilute multicomponent gas system, especially when
the particle masses of the components are comparable.
In 1999, Lian and Xu, Kun [20] de�ned a gas-kinetic
scheme for a mixture of gases. They used a multi-
component gas-kinetic BGK-type scheme. They also
studied its application in chemical reactions. In 2003,
Luo and Girimanji [21] applied the Lattice Boltzmann
Model for the binary mixtures of gases. The model is
derived formally from the kinetic theory by discretizing
the Boltzmann equation. The proposed model can
simulate miscible and immiscible uids by changing the
sign of the mutual-collision term.

The Eulerian multiuid approach for the mixture
of gases, based on the kinetic theory without actually
determining the form of the distribution function, has
not been evaluated yet and has been done in the present
work. Contrary to most of the known models, this
model consists of separate conservation equation sets
for each component of the mixture and which, there-
fore, is capable of presenting, in detail, the behavior of
each component. Using this new formulation, di�usion
processes can be automatically modeled without use
of any coe�cients of an ordinary pressure and thermal
di�usion, which are required in the ordinary mixture
models.

In this paper, starting from kinetic equations,
the Eulerian approach is used to derive hydrodynamic
equations of motion for a multicomponent gas system.
These equations are based on Grad's method of mo-

ment in a relaxation approximation. Based on this
model, an individual set of ow equations is obtained
for each species. Since these equations are similar to
the Navier-Stokes equations for single uid systems, the
same conventional numerical methods can be applied.
A computer code has been developed for numerical
computation of these separate sets of equations for
compressible ows of a binary gas system in generalized
curvilinear coordinates.

MODEL EQUATIONS

In the kinetic theory, the state of a mixture of z ideal
gases is characterized by the set of one-particle velocity
distribution functions f�(x; c�; t)(� = 1; 2; � � � ; z),
such that f�(x; c�; t)dxdc� gives, at time t, the number
of particles of constituent � in the volume element
between x and x+ dx, with velocities between c� and
c� + dc�. In the absence of external forces, the one-
particle velocity distribution function of constituent �
satis�es the Boltzmann equation [22]:

@f�
@t

+ c�i
@f�
@xi

= K�� +

zX
� 6=�

K��; (1)

where K denotes the non-linear Boltzmann collision
operators. This collision term poses the greatest
mathematical di�culties. The �rst term, on the right-
hand side of Equation 1, is the standard collision
operator for a gas of a single species, while the second
term represents the e�ect of inter-collision between the
two di�erent species. While the term \collisions" may
stand for various kinds of encounters between two par-
ticles, it is used here only for elastic collisions of non-
reacting gases. The mathematical complexity of the
collision term in gaseous mixtures can be avoided if one
replaces the collision operators by simple relaxation-
time terms, based on the work of Gross and Krook [23].
Let the mixture consist of two components; gas � and
gas �, with number densities, n� and n� , and masses
of gas molecules, m� and m� . Each component has
its own temperature, T�, and its macroscopic or ow
velocity, v�, with molecular velocity, c�, and peculiar
velocity, C� = c��v�. According to Wu and Lee [13]:
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where f� and f� are the velocity distribution functions
for species � and �, respectively, ��� and ��� are the
frequencies for self-collisions and ��� and ��� are the
frequencies for cross-collisions between species � and �.
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The total number of collisions between species � and
� should be balanced, i.e.,

n���� = n����: (4)

The Maxwellian distribution functions, F�, F� ,
�

F� and
�

F � are de�ned as follows:
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The collision parameters,
�

T�,
�

T� ,
�
v� and

�
v� , in terms

of macroscopic velocities and temperatures are [12], as
follows:

�
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where k is the Boltzmann constant.
Starting from Equations 2 and 3, the hydrody-

namics equations are obtained by taking the di�erent
velocity moments of those equations, i.e., the zeroth,
the �rst and the second moments. Namely, multiplying
both sides of the kinetic equations by 1, c and c2=2,
for each component and integrating over the velocity,R
d3c, the equations of mass, momentum and energy

conservation will be obtained. This is compatible
with the so-called Grad's 5-moment theory. Using this
method of moments, it can be easily shown that, for the
inviscid binary gas system, the conservation equations
of each component will become, as follows:
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@

@x
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where Sm, Sv and SE refer to mass, momentum and
energy exchange terms, respectively and P� and P�

are the partial pressure tensors for the species.
Summing up Equations 12 and 15, the continuity

equation for the average ow �eld of the gas mixture
as a whole is obtained, as follows :

@(nm)

@t
+

@

@x
:(nmv) = S��m + S��m ; (18)

where n = n� + n� and m =
n�m�+n�m�

n�+n�
.

The momentum and the energy equations for the
average ow �eld of the gas mixture as a whole can be
obtained in a similar manner, as follows:

@(nmv)
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+

@

@x
:(nmvv +P) = S��v + S��v ; (19)

@E
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@

@x
:((E +P)v) = S��E + S��E : (20)

It will be seen that the right hand sides of Equations 18
to 20 are equal to zero.

COMPUTATION OF EXCHANGE TERMS

The exchange terms can be calculated by direct inte-
gration of the zeroth, the �rst and the second moment
of the right hand sides of Equations 2 and 3. From
the kinetic theory, the distribution functions have the
following relations with macroscopic parameters of the
gas:
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Z
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2
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Z
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2
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Z
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2

�

F�dc� =
�

E�: (21)

It is noted that, since only elastic collisions are con-
sidered here, self-collisions conserve mass, momentum
and energy in each component and, therefore, the three
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moments of the self-collision terms on the right-hand
sides of Equations 2 and 3, will vanish [14], as follows:

Z
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2
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According to Expression 18, integration over the mo-
ments of the inter-collision terms on the right-hand
sides of Equations 2 and 3 gives:
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Therefore, for gases � and �, the exchange terms are
of the following forms:

S��m = S��m = 0; (25)
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According to Equation 4 (n���� = n���� = A):
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And, in a similar manner:

S��E + S��E = 0; (29)

that coincides with momentum and energy conserva-
tion. In conclusion, the present formulation, i.e., Equa-
tions 18 to 20, is compatible with ordinary conservation
of mass, momentum and energy for the mixtures that
were derived in the above equations.

The collision frequency, ��� , which depends on
temperature and the law of interaction between the
particles, can be calculated from Chapman-Cowling

collision integrals, 

(l;r)
�� [24], as follows:

��� =
16

3
n�


(1;1)
�� : (30)

Finally, the 

(i;j)
�� are the Chapman-Cowling inte-

grals [16], which, for the rigid sphere interaction, read,
as follows:
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�
�kT
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� 1

2

�
d� + d�

2

�2

; (31)

where d� and d� are the particle diameters and m�� is
called reduced mass, i.e.:

m�� =
m�m�

m� +m�

: (32)

The Relaxation Time Approximation (RTA) approach
interprets the e�ect of collisions as a combination of
two di�erent relaxation processes, as follows:

(i) Collisions between the same particles, e.g., of uid
�, which tend to relax this uid into its own Local
Thermodynamic Equilibrium (LTE) state. This is
the faster of the two processes;

(ii) Intercollisions between particles of uids � and �,
which tend to relax each uid from its own LTE
towards a common LTE. In this common LTE, the
two uids have the same ow velocity and kinetic
temperature.
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NUMERICAL PROCEDURE

To solve Equations 12 to 14 and Equations 18 to 20,
an explicit di�erence scheme was applied, where the
steady-state solution was obtained as the limit of a
time-evolving process. Roe's numerical scheme is used
to discretize the convective terms of the uid ow
equations. The equations in Cartesian coordinates, in
the conservative form are, as follows:

Q�
t + (E�

�E�
� )x + (F�

� F�
� )y = H�; (33)
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and the quantities ��� , ��� and M�� are transport co-
e�cients associated with viscous, thermal and thermal-
di�usion e�ects, respectively, which can be calculated
using the Chapman-Cowling collision integrals [17].

RESULTS

To validate the formulation and the algorithm, a
compressible ow in a two dimensional supersonic
converging-diverging nozzle for a binary perfect gas
mixture (He-Xe) has been considered. The problem
properties are, as follows:

1. Nozzle geometry:

area ratio: Ae

At
= 1:38,

length of nozzle = 2cm,

inlet and exit diameters = 2cm.

2. Reference properties:

pr = 5000 pa,
Tr = 700 k,

and, at the inlet: p0
pr

= 1:4,
T0
Tr

= 1:1,
c = 0:85.

where, Ae and At denote exit and throat areas,
respectively, subscript r denotes reference, subscript
0 represents stagnation conditions and c shows the
concentration ( �He

�He+�Xe
) distribution for the gas mix-

ture. The problem was solved using 1072(151�71) grids
with a stretching ratio of 1.05 in a normal direction,
according to the Robertson formula [25] (Figure 1).
When re�ning the grid by a factor of 2, the di�erences
between the computational results were extremely
small, which meant that grid independency had been
reached. The comparisons of the obtained results at
the centerline of the nozzle are given in Figures 2 to 4,

Figure 1. Geometry and grids for the nozzle.
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Figure 2. Temperature distribution.

Figure 3. Mach number distribution.

which show good agreement with numerical results
obtained by the commercial FLUENT software that
uses the mixture model.

The high gradient region caused by the shock
wave (Figures 2, 3 and 5), is equally well resolved
by both algorithms. Therefore, a new formulation
provides the same results for such a nozzle problem.

WALL-COOLING OF THE NOZZLE

As the next example, the wall-cooling of a two dimen-
sional supersonic converging-diverging nozzle has been
considered. The same nozzle geometry and the same
grids as in the preceding example are chosen here. The
problem properties are:

pr = 5� 103 pa;

Tr = 700 K;

Figure 4. Concentration contours from the present and
the mixture models.

Figure 5. Pressure distribution.
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and, at the inlet:

p0
pr

= 1:4; and
T0
Tr

= 1:1:

A binary ideal gas system (Helium-Xenon) is chosen
as the media. Lighter gas (He) enters from the inlet of
the converging part of the nozzle with a temperature of
about 740 K and the heavier gas (Xe), as the coolant,
is blown from the wall from x = 1:145 cm, afterwards,
with a temperature of about 300 K and with Cartesian
velocity components equal to (100,5) m/s.

Figure 4 shows the concentration distribution
for the mixture ( �He

�He+�Xe
) obtained from the present

method and the mixture model (FLUENT), respec-
tively. The comparison of the results shows that
the present method is more di�usive. This may be
due to the di�usive nature of the exchange terms in
the conservation equations. This method can provide
details of the ow �elds of each component of the
mixture separately, e.g. the Mach number contours for
helium and xenon are shown in Figure 6. It is seen that,
although the gas mixture ow is subsonic, Figure 7, the
xenon component is supersonic in most of the region.
This is due to the large di�erence in the properties
of each component of the mixture. Additionally,
the x-velocity and temperature distributions of each
component are presented in Figures 8 and 9. As
seen, both components have the same temperature and
velocity at each location of the nozzle. This means that
the components of the mixture have reached the same
thermodynamics equilibrium. In fact, although at the
interface of the helium and xenon mixing, the particles
of the two gases meet each other with two di�erent
temperatures, the relaxation time is too small to detect
this temperature di�erence transition zone.

Figure 7 shows the Mach number contours for
the whole mixture obtained from the Fluent computer
code, based on the mixture model, which is almost
identical with the mixture results obtained from the
present model. From Figure 7, it is seen that the e�ec-
tive shape of the nozzle would be converging instead of
the converging-diverging nozzle, due to xenon blowing
from the diverging part downstream. Therefore, the
main ow remains subsonic, as can be seen in Figure 7.

CONCLUSION

In this work, starting from kinetic equations, the Eule-
rian approach was used to derive new hydrodynamic
equations of motion for a multicomponent system,
where each component may have a di�erent velocity
and kinetic temperature. The new equations are
based on Grad's method of moment, derived from the
kinetic model in a Relaxation Time Approximation
(RTA). Based on this binary model, which contains

Figure 6. Mach no. contours for the helium and the
xenon from the present model.

Figure 7. Mach no. contours for the whole mixture from
the mixture model.
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Figure 8. X-velocity distribution for helium and xenon.

a separate equation set for one component of the
system and an equation set for average quantities
of the mixture, a computer code was developed for
numerical computation of compressible ows of binary
gas mixtures in generalized curvilinear boundary con-
forming coordinates. Since these equations are similar
to the Navier-Stokes form for the single uid systems,
they can be solved by conventional numerical schemes,
which are also used for solving Navier-Stokes equations.
The prepared algorithm and the computer code are
capable of computing and presenting the ow �elds of
each component of the system separately, as well as
the ow �eld of the gas mixture as a whole. Some
examples were used to evaluate the model and the
relevant computer code. It was concluded that, for
most ordinary problems, the results of the Eulerian
multiuid model and the mixture model are almost
identical, mainly due to small relaxation times. It is
suggested that the separate uids treatment is crucial
when considering time scales on the order of (or shorter

Figure 9. Temperature distribution for helium and
xenon.

than) intercollision relaxation times. Therefore, one
may �nd more applications of this new formulation and
the algorithm in unsteady problems, including sudden
changes in the ow properties or ows of rare�ed gases
that bring about larger relaxation times.
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