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An Energy-Based Paradigm for

Reliability Assessment Caused by Creep

Damage in Axisymmetric Components

K. Zarrabi� and L. Ng Kiam Yam1

The creep of materials is a research topic of major signi�cance in the life assessment and design
of many pressure components used in various industries, such as power generation plants and
chemical plant re�neries. Often, these components are axisymmetric, both in terms of geometry
and loading. To predict the creep life of such components, one necessary ingredient is a creep
damage paradigm. The current creep damage paradigms are either too cumbersome to be readily
employed and/or not su�ciently accurate for practical applications. This paper describes a creep
damage paradigm that alleviates the major shortcomings of the existing paradigms, yet is simple
enough to be readily applicable to industrial cases. Comparison with experimental data shows
that the paradigm is capable of predicting creep life with an accuracy of 14% or better.

INTRODUCTION

There are several mechanisms by which a loaded
engineering component operating within a creep regime
may fail, such as, gross creep deformation/creep rup-
ture, creep deformation enhanced by cyclic loading,
creep damage in the presence of corrosion, fatigue,
elastic fracture, etc. The present work will concentrate
on a pragmatic engineering damage paradigm for cases
where the gross creep damage is dominant under con-
stant loading and uniform temperature and will study
the problem from the macroscopic (engineering) point
of view and not from the microscopic (material science)
point of view. An account of various mechanisms of
microscopic creep damage is presented elsewhere; see,
for example [1].

One of the simplest and most employed creep
damage paradigms is the Robinson time fraction
rule [2]:

nX
i=1

�ti(�r)

tri(�r)
= 1; (1)

where �ti(�r) is the ith time interval and is a function
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of the rupture stress, �r, and tri(�r) is the time-to-
rupture for the ith time interval that is also a function
of �r. The rupture stress is the stress component that
is responsible for creep damage and it is taken to be a
function of the principal stress, �1, (causing creep cav-
itation) and the e�ective stress, �, (causing dislocation
glide and/or grain boundary sliding) usually as [3,4]:

�r = ��1 + (1� �)�; (2)

where � is a material parameter whose value depends
on the temperature and is not known a priori. This
may be a major limitation of the time fraction damage
paradigm. It is worth noting that there are other
equations for expressing �r, in terms of the principal,
e�ective and hydrostatic stresses [4]. All of these equa-
tions contain one or more material parameter, whose
values are not known a priori and whose evaluations
may not be economical in practice.

Another creep damage paradigm is based on
the continuum damage mechanics that were originally
proposed by Kachanov and Rabotnov [5,6]. This
paradigm will be referred to as KR-CDM in this
paper. KR-CDM represents a signi�cant step forward
in �nding an engineering solution for the complex
creep damage problem. Kachanov/Rabotnov used a
scalar parameter (D) to represent creep damage [7] and
modi�ed Kachanov/Robotnov's paradigm to predict
the creep deformation and rupture more accurately.
Hayhurst also proposed that the damage should be
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a tensor and used two parameters to model creep
damage [7]. Fundamentally, KR-CDM is based on the
following coupled equations:

_"c = _"c0

�
�

�0(1�D)

�n
; (3)

_D = _D0

�
�

�0(1�D)

�v
; (4)

where _"c is the equivalent creep strain rate, _"c0 is the
equivalent creep strain rate at a reference e�ective
stress, �0, _D is the damage rate, _D0 is the damage
rate at the reference stress, �0, n is the creep stress
index and v is a material parameter. It is assumed that
D = 0 at t = 0 and D = Dr when t = tr, where tr is
time-to-rupture. Usually, Dr is taken to be unity but,
in practice, it may not be so. The other limitation of
KR-CDM is that the pertinent material data are often
not readily available. Furthermore, the calibration of
the paradigm, especially when the damage is taken
to be a tensor, is tedious and time-consuming. Also,
to date, KR-CDM has not been incorporated in most
commercial �nite element computer codes and, there-
fore, is not readily applicable to practical cases, where
the practicing engineer has limited time to predict the
creep life of an industrial component. Another major
problem is that, in KR-CDM, the damage is coupled
with � only and the e�ects of �1 on the damage are
ignored, which is strictly not correct.

There are other creep damage paradigms, but,
for the sake of brevity, they are not described here.
For more details, see, for example [1,8]. In summary,
the existing creep damage paradigms are either not
su�ciently accurate and/or the required data are not
readily available for pragmatic engineering applications
and, hence, the proposed paradigm.

PROPOSED CREEP PARADIGM

Consider a defect-free component. The paradigm
allows the material to undergo elastic-creep deforma-
tion, therefore, the dominant damage mechanism is
creep and, at the point of failure, the component fails
by excessive creep deformation and/or creep rupture.
Consider a component that is subjected to several
mechanical loads that, taken together, constitute a
set: fFg = fF1; F2; � � �Fng. These loads are increased
in their respective magnitudes from zero to their
operational levels, fF0g, over relatively short periods
of time, so that it can be assumed that, at t =
0, they instantly cause elastic deformation. Having
reached their respective operational levels, the loads
are taken to be constant until the point of failure.
The component is also subjected to a constant and
uniform material temperature. As time progresses, the

material undergoes creep deformation. The paradigm
assumes that the creep damage induced in the material
(D) is proportional to the average internal energy (W )
absorbed within a damaged zone of volume, VD , by the
material. Also,

W =Ws +
fF0g � fFg

fF0g
Wt; (5)

whereWs is the average internal energy in the damaged
zone due to mechanical loads, i.e., strain energy andWt

is the average internal (thermal) energy in the absence
of stress in the damaged zone. The paradigm postu-
lates that, under normal operational stresses/strains
where fFg = fF0g, Ws is the dominant term in
Equation 5 and W � Ws. As the stresses/strains
approach zero, Wt becomes the dominant term in
Equation 5 and W � Wt. In addition, the damage
zone is taken to be the entire cross-section of the
axisymmetric component; (see the next section for
veri�cation of these assumptions). In the following, the
superscript, e, refers to elastic and c refers to creep. At
time t, the rate of the total internal energy per unit of
volume (i.e., the internal energy density rate), d _W , is
the sum of the rates of elastic internal energy per unit
of volume, d _W e, and creep internal energy per unit of
volume, d _W c. Thus:

d _W = d _W e + d _W c: (6)

This may be expressed in terms of stress (�ij ) and
strain rate ( _"kij) components, as follows:

d _W = �ij( _"
e
ij + _"cij) +

fF0g � fFg

fF0g
_Wt: (7)

The average total internal energy within the damaged
zone of volume VD can be calculated by integrating
Equation 7, with respect to volume and time:

W =
1

VD

Z Z
f[�ij( _"

e
ij+ _"cij)]dV gdt+

fF0g�fFg

fF0g
Wt:

(8)

To compute W using Equation 8, �rst, the stress
and strain components, as a function of time, should
be calculated up to the rupture time. For simple
problems, this may be achieved analytically and, for
more complex cases, a numerical method, such as the
Finite Element Method (FEM), may be employed. In
determining the stress and strain �elds as functions of
time, creep constitutive relationships are used. These
data are part of the essential ingredients of any creep
analysis and obtained from the uniaxial creep tests. If
no direct material data are available, published generic
data may be utilized, with appropriate sensitivity
analyses to cover the uncertainties. Using Equation 8,
W , as a function of time, is computed. Then, the



452 K. Zarrabi and L. Ng Kiam Yam

paradigm proposes to modify the time fraction rule and
assumes that the creep rupture occurs when:

nX
i=1

�ti(W )

tri(W )
= 1: (9)

To calculate creep life, the expression for the uniaxial
internal energy is also needed. This expression depends
on the creep constitutive equation, e.g., for the Norton
power law, for the non-zero operational stress/strain
levels (Wt � 0):

W = B�(n+1)tr +
�2

2E
; (10)

where B is the Norton stress coe�cient and E is the
modulus of elasticity. Other terms have previously
been de�ned. Note that the relationship between �
and tr in Equation 10 is also known from the uniaxial
rupture data, so that:

� = f(tr): (11)

Combining Equations 10 and 11 gives:

W = B[f(tr)]
(n+1)tr +

[f(tr)]
2

2E
: (12)

The algorithm for creep life calculations will then be,
as follows:

(a) CalculateW =W (t) analytically or by FEM using
Equation 8;

(b) Select su�ciently small time intervals, �ti;

(c) For each time interval, calculate W from Step a;

(d) Using W from Step c and the uniaxial data
(Equation 12), calculate tri;

(e) Compute D =
P �ti(W )

tri(W ) . If D = 1, then, take

tr =
P

�ti, otherwise, go to Step c and repeat
the calculations for the next time interval.

Note that in the above algorithm there is no
need to determine �r yet, as the paradigm allows for
contributions to the creep damage from various stress
components.

VERIFICATION

To evaluate the proposed paradigm, the experimental
data from Brown [9] and Kwon et al. [10] were used.
The experimental data in [9] were obtained from tests
on thick and thin tubes and those described in [10]
were obtained using notched bars. Evaluation of the
proposed paradigm using each of these components is
described below. In what follows, the MSC.MARC
�nite element code [11] was employed using 6-node tri-
angular axisymmetric elements for each �nite element
analysis.

Thick Tube

The thick tube had an internal diameter of 20 mm,
external diameter of 40 mm and was subjected to a
uniform internal pressure of 106.67 MPa and a uniform
temperature of 565�C. Its material was 0.5% Cr0, 5%
Mo and 0.25% V steel, with the modulus of elasticity at
the test temperature of E = 0:1542� 106 MPa. Also,
n = 11:98 and B = 6:1033� 10�33, where these values
gave time in hours and stress in MPa. The uniaxial
creep rupture data was described by:

� = �57:774 log tr + 367:79: (13)

The tests resulted in an average experimental tube life
of 9,000 hours. To apply the creep damage paradigm
and algorithm, described in the previous section, to
the thick tube, it was analyzed using the 1000 6-node
axisymmetric triangular elements and its �nite element
mesh is shown in Figure 1. Because of symmetry, half of
the length of the tube was modeled imposing symmetry
conditions at one end and applying a uniform axial
traction of 35.56 MPa at the opposite end to simulate
the end pressure loading. A uniform internal pressure
of 106.67 MPa was applied to the inner face of the
model in the radial direction.

The computed tangential and von Mises e�ective
stresses versus radial distance at various time points
are plotted in Figures 2 and 3, respectively.

Using the �nite element results and Equation 8
and noting that, at operational pressure, the second
term in Equation 8 vanishes, the average strain energy
across a tube section (the damaged zone) was com-
puted, as follows:

W =4� 10�13t3�3� 10�8t2 + 1� 10�4t+ 0:1586;
(14)

where W is in Nmm/mm3 and t is in hours. Using
the data described in this section and in the algorithm
of the previous section, the creep life of the tube was
predicted as 8,840 (see Table 1).

Thin Tube

The thin tube had an internal diameter of 33.40 mm,
external diameter of 40 mm and subjected to a uniform

Figure 1. Finite element mesh of the thick tube.
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Figure 2. Tangential stress versus radial distance at
various time points for the thick tube.

Figure 3. von Mises e�ective stress versus radial distance
at various time points for the thick tube.

Table 1. Comparison of the experimental and predicted
lives of the tubes

Thick Tube Thin Tube

Method Life (Hours) Life (Hours)

Experimental 9,000 5,000

Proposed paradigm 8,840 4,974

Error (%) 1.78 0.52

internal pressure of 28.77 MPa. Also, its material
and temperature were the same as for the thick tube.
The tests resulted in an average experimental tube
life of 5,000 hours. Similar to the analysis of the
previous section with the title of \Thick Tube", to
apply the creep damage paradigm and algorithm,
described previously, to the thin tube, it was analyzed
using 2000 6-node axisymmetric triangular elements.

The mesh, boundary conditions and computed stress
patterns were similar to those of the thick tube and, for
the sake of brevity, they are not depicted here. Using
the �nite element results and Equation 8 and noting
that at the operational pressure, the second term in
Equation 8 vanishes, the average strain energy across
a tube section (the damaged zone) was computed, as
follows:

W = 5� 10�11t3 � 2� 10�7t2 + 3� 10�3t+ 0:0792;
(15)

where W is in Nmm/mm3 and t is in hours. Using
the data described in this section and the algorithm
represented in the previous section of \Proposed Creep
Paradigm", the creep life of the thin tube was predicted
as 4,974 hours (see Table 1).

Notched Bars

There were four di�erent notched bars. The nominal
geometry and dimensions of the bars were the same,
but they di�ered in the details of the notch. The
notched bars were:

(i) A bar with the modi�ed British standard notch,
as shown in Figure 4,

(ii) A bar with the Bridgman notch, as shown in
Figure 5,

(iii) A bar with the modi�ed Bridgman I notch, as
shown in Figure 6,

Figure 4. Bar with the modi�ed British standard notch.

Figure 5. Bar with the Bridgman notch.
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Figure 6. Bar with the modi�ed Bridgman I notch.

Figure 7. Bar with the modi�ed Bridgman II notch.

(iv) A bar with the modi�ed Bridgman II notch, as
shown in Figure 7 (for more details regarding
these notched bars, see [10]).

All bars were made of 2.25%Cr1%Mo steel and were
subjected to a uniform temperature of 550�C, resulting
in a modulus of elasticity of E = 0:157 � 106 MPa,
and creep properties of: n = 9:0, B = 6:408 � 10�24

(1/hour)/MPan, with uniaxial creep rupture properties
of:

� = (tr=2:183x10
20)(�1=7:9): (16)

The �nite element models of the bars were similar and,
therefore, for the sake of brevity, the mesh and stress
distributions for the bar with the modi�ed British
standard notch are shown in the next section as typical
examples.

Bar-Modi�ed British Standard Notch

The �nite element model is shown in Figure 8. Because
of symmetry, only half of the length of the bar was mod-
eled. The mesh consisted of 3600 6-node axisymmetric
triangular elements and the loading was a uniform axial
traction of 94.76 MPa. The tests resulted in an average
experimental life of 753 hours. The computed axial and
von Mises e�ective stresses are plotted in Figures 9 and
10, respectively.

Using the �nite element results and Equation 8
and noting that, at the applied load, the second term
in Equation 8 vanishes, the average strain energy

Figure 8. Finite element mesh of the bar with the
modi�ed British standard notch.

Figure 9. Axial stress versus radial distance at the notch
root section for various time points for the bar with the
modi�ed British standard notch.

across the notch root section (the damaged zone) was
computed, as follows:

W =2�10�7t3 � 1�10�5t2+1:06�10�2t+0:2442;
(17)

where W is in Nmm/mm3 and t is in hours. Using the
above data and the algorithm in the previous section,
the creep life of the bar was predicted as 831 hours (see
Table 2).

Bar-Bridgman Notch

The mesh consisted of 2250 6-node axisymmetric tri-
angular elements and the loading was a uniform axial
traction of 80.22 MPa. The tests resulted in an average
experimental life of 3,899 hours. Using the �nite
element results and Equation 8 and noting that, at the
applied load, the second term in Equation 8 vanishes,
the average strain energy across the notch root section
(the damaged zone) was computed, as follows:

W = 2� 10�9t3 � 4� 10�6t2 + 0:0059t+ 0:1491;
(18)

where W is in Nmm/mm3 and t is in hours. Using
the above data described and the algorithm represented
in the previous section, the creep life of the bar was
predicted as 3,860 hours (see Table 2).
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Table 2. Comparison of the experimental and predicted lives of the notched bars.

Modi�ed British

Standard Notch

(Kt = 3:33)

Bridgman

Notch

(Kt = 1:61)

Modi�ed

Bridgman I

Notch (Kt = 2:44)

Modi�ed

Bridgman II

Notch (Kt = 1:38)

Method Life (Hours) Error (%) Life (Hours) Error (%)

Experimental 753 3,899 1,041 4,933

Proposed paradigm 831 3,860 1,152 4,282

Error (%) -10.36 1.00 -10.66 13.20

Note: Kt is the elastic stress concentration factor at the notch root.

Figure 10. von Mises e�ective stress versus radial
distance at the notch root section for various time points
for the bar with the modi�ed British standard notch.

Bar-Modi�ed Bridgman I Notch

Because of symmetry, only half of the length of the
bar was modeled for the �nite element analysis. The
mesh consisted of 2136 6-node axisymmetric triangular
elements and the loading was a uniform axial traction
of 91.48 MPa. The tests resulted in an average
experimental life of 1,041 hours. Using the �nite
element results and Equation 8 and noting that, at the
applied load, the second term in Equation 8 vanishes,
the average strain energy across the notch root section
(the damaged zone) was computed, as follows:

W =1� 10�7t3�4� 10�5t2+8:7� 10�3t+ 0:1993;
(19)

where W is in Nmm/mm3 and t is in hours. Using the
above data and the algorithm described in the previous
section, the creep life of the bar was predicted as 1,152
hours (see Table 2).

Bar-Modi�ed Bridgman II Notch

Because of symmetry, only half of the length of the
bar was modeled for the �nite element analysis. The
mesh consisted of 2136 6-node axisymmetric triangular

elements and the loading was a uniform axial traction
of 72.72 MPa. The tests resulted in an average
experimental life of 4,933 hours. Using the �nite
element results and Equation 8 and noting that, at the
applied load, the second term in Equation 8 vanishes,
the average strain energy across the notch root section
(the damaged zone) was computed, as follows:

W =7�10�10t3�2�10�6t2+7:7�10�3t+0:1169;
(20)

where W is in Nmm/mm3 and t is in hours. Using
the above data described and the algorithm represented
in the previous section, the creep life of the bar was
predicted as 4,282 hours (see Table 2).

RESULTS AND DISCUSSION

The stress distributions for the tubes typi�ed the creep
behavior of the 0.5%Cr0.5%Mo0.25%V steel at 565�C,
i.e., initially, the stresses were higher at the inner
surface and redistributed from the inner surface to the
outer surface with creep deformation. Referring to
Table 1, the maximum di�erence between the predicted
and experimental creep lives of the tubes was 1.78%,
indicating that the assumptions stated in the section of
\Proposed Creep Paradigm" were justi�ed. The creep
life error was less for the thin tube compared with that
for the thick tube. This might be due to the more
accurate experimental data, although the accuracy of
measurements was not speci�ed in [9].

Considering the notched bars, as might be ex-
pected, the elastic stresses at the notch roots were
initially high and then redistributed across the notch
section with time, due to creep deformation. Referring
to Table 2, the creep lives of the bars with the
Bridgman (the elastic stress concentration factor at
the notch root of Kt = 1:61) and modi�ed Bridgman
II (Kt = 1:38) notches were conservatively predicted,
with an error of less than 14%. The creep lives of
the bars with the modi�ed British standard (Kt =
3:33) and modi�ed Bridgman I (Kt = 2:44) notches,
with an error of less than 11%, but, they were non-
conservative. This may be due to: (a) Damage being
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concentrated closer to the notch, due to the high value
of Kt, causing the damaged zone to be less than
the entire notch root section and/or (b) Inaccuracy,
associated with creep testing. Kwon et al. from
which the experimental data of the notched bars were
obtained, do not state the accuracy of their results. To
investigate the cause (a) the damage zones for bars with
the modi�ed British standard and modi�ed Bridgman I
notches were reduced until the predicted lives matched
the respective experimental lives. For the bar with
the modi�ed British standard notch, this reduced the
damage zone diameter in the notch root section from 6
mm to 5.75 mm, i.e., a reduction in diameter of 4.17%.
For the bar with the modi�ed Bridgman I notch, this
reduced the damage zone diameter in the notch root
section from 6 mm to 5.86 mm, i.e., a reduction in
diameter of 2.33%. This may be explained as follows.
As the notch becomes sharper, the stresses/strains
and internal energy causing damage are concentrated
closer to the notch root and the damage zone reduces.
However, noting the complexity of high temperature
creep testing, it is also likely that the experimental
creep lives contain an error of more than 14%. Further
testing and research is currently in progress to clarify
this matter. Meanwhile, one may conservatively apply
a factor of safety and reduce the predicted creep lives,
using the proposed paradigm, by 14-15%. Noting
that the current practice is to apply a safety factor of
200% or higher, the proposed paradigm is a signi�cant
improvement for predicting the creep lives of high
temperature components.

CONCLUSIONS

The proposed new paradigm has several advantages
over the existing creep damage paradigms. At a
fundamental level, the experimental evidences have
shown that the creep damage should be a multiax-
ial paradigm and the proposed paradigm takes into
account the contributions from all the stress/strain
components. The proposed paradigm is based on the
exhaustion of the average total internal energy in the
highly stressed/strained zone in the material. This
is a measure of total deformation, as well as internal
loading, in the component and, therefore, it should
be the most appropriate for characterizing gross creep
damage. In practical terms, the paradigm does not
require quantities, such as the rupture stress (�r)
and some material parameters that are cumbersome
to determine and/or employ in practice. Therefore,
the proposed paradigm should be more practical and
should result in more accurate predictions for the creep
life of components. Another advantage of the proposed
paradigm is that it is simple, can be used in conjunction
with any commercial �nite element code with creep
analysis capabilities and does not need �nite element

software modi�cations, as required by KR-CDM. It
is shown that the proposed paradigm is capable of
predicting creep lives with an accuracy of 14% or
better.

NOMENCLATURE

B; n; �; v material property

E Young's Modulus

T temperature

� e�ective stress

�ij stress tensor

�r rupture stress

�0 nominal e�ective stress

�1 major principal stress

"ij strain tensor

"eij elastic strain tensor

"cij creep strain tensor

_"c e�ective creep strain rate

_"c0 e�ective creep strain rate at a nominal
e�ective stress

D creep damage parameter

_D0 damage rate at the nominal stress

Dr creep damage at rupture time

W internal energy parameter

Ws average internal (strain) energy

Wt average internal (thermal) energy

d _W internal energy density rate

d _W e elastic internal energy density rate

d _W c creep internal energy density rate

VD creep damage volume

F0 operational load

t time

tr time to rupture

�ti small time step intervals
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