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This paper presents a hybrid scheduling technique for generating the predictive schedules of

passenger trains. The algorithm, which represents a combination of simulated annealing and

a constraint-based heuristic, has been designed using an object-oriented methodology and is

suitable for a primarily single-track railway with some double-track sections. The search process

gets started from a good initial solution created by the scheduling heuristic and continues,

according to the simulated annealing search control strategy. The heuristic is also used in the

neighborhood exploration process. This hybrid approach solves the problem in a short span

of time. Simulation experiments, with the real data of manual timetables and two corridors

of Iran's railway, show the superiority of the hybrid method to the heuristic designed and the

manual system, in terms of the three performance measures used.

INTRODUCTION

The planning of train schedules, which is a crucial task
in rail operations planning, is an optimization problem
and its complexity has been addressed in various
publications. For a single-line network, one solution
methodology is to resolve the set of existing con
icts
on allocating track sections to the competing trains.
It can be shown that the size of solution space grows
exponentially as the number of con
icts increase [1].
To resolve a con
ict which involves two trains, either
of the two may get precedence. Accordingly, for a
problem including n con
icts, the number of solution
possibilities is 2n.

Traditionally, train scheduling experts manually
construct the timetables using a distance-time graph,
which shows the progress of any train toward its
destination with respect to time. It also represents
the potential train con
icts and possible decisions.
To facilitate the scheduling process and to increase
�nancial returns from huge investments made in the
rail industry, various classes of the problem have been
investigated and a number of practical decision support
systems have been developed and used in real environ-
ments. The goal of such systems would be to create
appropriate timetables, investigate the robustness of
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schedules in the presence of unforeseen events and to
analyze the capacity of the network with reference to
a given transport demand. The simulation approach
appears to have caught the attention of researchers
and service-planning professionals extensively and has
been embraced relatively well by the industry. A
few simulation tools have been developed and used in
practice. For example, VISION, SIMON, SIMU-PLAN
and CAPTURE/PROVING [2-5] have been used for
timetabling, TTS and LCAS [6,7] for capacity analysis
and Dispatch Analysis Model [8] for both purposes. A
general modeling framework has been proposed in [9]
for use in simulating rail operations. The complexity of
the problem and the possibility of simulating detailed
aspects of the problem have contributed to the inven-
tion and use of train dispatching rules.

The train scheduling problems have also been for-
mulated using analytical or OR-based techniques, in-
cluding (non-) linear (mixed) integer programming [10-
12] and network optimization models [13,14]. Amongst
the solution techniques developed to solve the problem
are branch & bound [1], heuristics [15], Lagrangian
relaxation [12] and the shortest path method [11, 13].
OR-based solution techniques have provided valuable
insights into the problems. However, few models have
solved `real-life' problems [9] and succeeded in practice.
The reasons could be in the simpli�ed assumptions,
the long computing time required and the di�cul-
ties in including the domain's knowledge. Promising
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works in the �eld of arti�cial intelligence encourage
further research in the �eld to solve the problem
more e�ciently. Examples are the works of [16,17]
in the �eld of knowledge-based systems and [18] in
constraint satisfaction methods. Additionally, AI-
based search techniques have been developed by [19-21]
and the combinations of knowledge-based techniques
with simulation and OR-based methods are presented
in [22,23].

This paper presents a hybrid train scheduling al-
gorithm, HeuSA, which is a combination of a simulated
annealing control strategy and the constraint-based
heuristic introduced in [20]. The hybrid model is tested
using the data of manually created timetables and the
rail network of Iran. The goal is to �nd appropriate
solutions in a short span of time through starting
the search process from a good solution and reducing
the likelihood of being trapped in local optima. In
addition, new performance measures can easily be used
with the model.

In the remainder of the paper, �rst, the problem
at hand is represented and brief discussions on simu-
lated annealing and constraint propagation is provided.
Then, insights into the hybrid algorithm developed are
provided and simulation results are presented. Finally,
concluding remarks are provided.

PROBLEM REPRESENTATION

The problem consists of generating a predictive sched-
ule for a set of passenger trains traveling on a primarily
single-line railway that includes some double-line sec-
tions, using Iran's rail network and train data. For any
train being considered, the following data is speci�ed
by experts: Ready time for boarding at the origin
station, minimum stop time considered for reasons
such as boarding and alighting at the origin and any
intermediate station and point-to-point running time
on the track between two adjacent stations, called a
block. Data of train operations in the past can be
used to work out the above train attributes. Decision

variables associated with a train are departure times
at the origin and en route stations and arrival times
at the destination and en route stations. Thus, stop
time at each station is taken as a dependent variable
with a value equal to, or greater than, a minimum time
planned. The problem constraints are, as follows:

1. For each train, t, traveling between two adjacent
stations, namely from s to s+ 1:

Arrivalt;s+1 �Departuret;s = Running times;s+1:
(1)

2. For each train, t, at each station, s, en route:

Departuret;s �Arrivalt;s � Planned stop timet;s:
(2)

Planned stop time is a constant greater than, or
equal to, zero.

3. For any pair of trains, t1 and t2, traveling in the
same direction, either on a single or double-line
track (Figure 1: a, b, c) from station s to its
immediate adjacent station, s+ 1:

Departuret1;s �Arrivalt2;s+1 � 0;

or:

Departuret2;s �Arrivalt1;s+1 � 0: (3)

For any pair of opposite trains, t1 and t2, traveling
on a single-line track between immediate adjacent
stations, s and s+1, if t1 is traveling from s to s+1
(and t2 from s+ 1 to s):

Departuret1;s �Arrivalt2;s � Safety interval;

or:

Departuret2;s+1�Arrivalt1;s+1�Safety interval;
(4)

where the safety interval is the time interval be-
tween consecutive occupation of a single-line track
by opposite trains (in this model, safety interval =
1 minute) (Figure 1: d, e and f).

Figure 1. A distance-time graph for two trains traveling in the same direction in three situations: (a) A resource con
ict
exists; (b and c) The con
ict is resolved using one of the above constraints; (d, e and f) Similar graphs have been drawn
for opposite trains. In this type of graph, consecutive departure and arrival times of each train are connected by a line to
represent train movements and stops.
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4. For each train, t, at its origin station, o:

Departuret;o � Ready timet;o + Stop timet;o: (5)

The following safety constraints are added to
eliminate the possibility of collisions at stations.
These constraints ensure that two opposite trains,
t1 and t2, approaching do not enter station s
simultaneously.

Arrivalt1;s � Arrivalt2;s + Safety interval;

or:

Arrivalt2;s � Arrivalt1;s + Safety interval: (6)

5. Each station can accommodate trains using two
kinds of track, i.e., platforms and non-platforms;
passenger trains stopping for boarding and alighting
are planned to use platforms for the comfort of
passengers and trains stopping for other reasons
are routed to other lines. However, generating a
tight schedule for a set of long-distance trains on a
single-line railway may make the violation of such
a rule inevitable, let alone the consequences of any
unforeseen events in real life. For any station with
p platform and n non-platform lines at any point in
time, � , within the scheduling horizon:

The no. of trains stopped on platforms � p;

The no. of trains stopped on non-platforms�n:
(7)

In cases where the above line assignment rule has to
be overridden, the total number of trains stopped
must be less than, or equal to, p+ n.

The de�nition of a performance measure (math-
ematical objective function) can help measure the
quality of any solution and compare solutions generated
by di�erent scheduling methods. Such measures are
also used for directing moves across solution space
looking for higher quality solutions. In this work,
the term \imposed waiting time" is used to refer to
a delay imposed on a train at a station, due to the
occupation of the requested section of main line by
another train. When departure time at the origin
and running time on the track are predetermined, the
scheduling aim could be to distribute the imposed
waiting time amongst involved trains, with respect
to an appropriate criterion. In this paper, SWWT,
AUWT and MRWJ measures are used.

SWWT (The Sum of Weighted Waiting Time)

In the real world, trains are of di�erent value in the
eyes of passengers and managers of a railway system.

Therefore, each train can be assigned a weight and the
objective of a scheduling system may be to reduce the
SWWT, as represented below:

Minimize
TrainsX
i=1 

Weighti �
X

Stations

Im posed waiting time

!
:

AUWT (Average Unit Waiting Time)

The spread of delays, with respect to journey duration,
appears to be important where fast, slow, long- and
short-distance trains are involved. For a given journey,
a fast train is expected to face less delay than a train
with lower speed. This is justi�able with regard to
the investment made to provide a faster service and
the higher fares paid by the customers. Plus, a short-
distance train may not be expected to face the same
amount of delays as a long-distance train. Therefore,
the aim could be to minimize AUWT as represented
below, where unit waiting time is the ratio of waiting
time to minimum travel time for each train being
considered.

min
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The drawback of AUWT is the possibility of gen-
erating very good schedules for most trains at the
expense of generating very bad schedules for a few
others.

MRWJ (Maximum Ratio of Waiting Time to
Journey Duration)

MRWJ is better when allocating the same amount of
waiting time to a long-distance train, where a short-
distance train is undesirable and the problem includes
both types of train. MRWJ is represented as:

min
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For a given schedule, the lower the maximum ratio of
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delay to journey duration, the higher the quality of the
schedule would be.

SOLUTION TECHNIQUES USED

Simulated Annealing Algorithms

This technique refers to a process which simulates
the process of cooling a collection of hot vibrating
atoms. The basic annealing algorithm was pro-
posed by Metropolis, Rosenbluth, Rosenbluth, Teller
& Teller [24], while simulated annealing was initially
developed by Kirkpatrick, Gelatt & Vecchi [25] for
solving combinatorial optimization problems, which
yielded promising results. This technique originates
from the conjunction between the annealing process
and certain characteristics of the resulting substance.
It is believed that, in practical contexts, the state of a
substance at low temperature is remarkably a�ected by
the annealing process and, thus, a slow cooling process
is recommended.

The algorithm is a search control strategy for �nd-
ing the best, or nearly the best, solution for a problem
without exhaustive navigation of the solutions space. It
is intelligent in the sense that it is capable of escaping
local optimums and plateau and it is not a brute force
search technique. SA (Simulated Annealing)algorithms
operate under the assumption that a neighborhood
can be constructed for identifying adjacent solutions,
which can be reached from a solution already gener-
ated. The neighborhood mechanism depends on the
nature of the problem being treated and the way it is
modeled. For example, pair-wise exchanges (or swaps)
are frequently used in connection with permutation
problems to create a neighbor solution [26]. In a basic
algorithm, the search process gets started from an
initial solution generated randomly or by a heuristic
and continues in a loop through exploring a randomly
selected solution in the neighborhood of the current
solution at any iteration. For a minimization problem,
the move to a better solution (downhill move) is made
automatically and the move to an inferior one (uphill
move) probabilistically, with the probability of e��=T ,
where T is called temperature and � =(new solution's
objective function value-current solution's value). This
is a simple, general probabilistic guidance strategy for
avoiding the local search descent disadvantage [27].
T is initially set to an appropriately high value to
facilitate the selection of low quality solutions in early
stages. Then T declines gradually, by cooling rate �,
where 0 < � < 1, to reduce the probability of accepting
lower quality solutions and converge into better ones.
Also, the number of iterations using the same T value
increases gradually by � � 1 to allow more e�ort with
lower T values, hoping to achieve further improvement
in later stages of the search process. The process stops

when T reaches a value close to zero.

Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) involves a
�nite set of variables, where each variable has a �nite
domain and a set of constraints restricts the assignment
of values to the variables. The primary aim of solving
the problem is to �nd a solution, which satis�es the
constraints involved. In this context, constraints can
contribute to the e�ciency of a solution method in
di�erent ways. A major contribution of the constraints
is to problem modeling; constraints make sure that
the encoding of a correct model of the problem is
indeed a step towards an e�cient running programme.
Another contribution of the constraints is propagation,
which spontaneously produces the consequences of a
decision [28]. Constraint propagation may be viewed as
a way of using constraints to reduce the computational
e�orts required to solve a problem, where constraints
are not used only for testing the validity of solutions,
but, instead, are used to detect inconsistencies and
reduce the domains of variables. For example, if
variables x and y denote integers, from (x < y) and
(x > 10), one can deduce that the value of y is at
least 12 and smaller values must be removed from
its domain. If constraint (y � 11) is added later,
a contradiction is detected. Without propagation,
the test (y � 11) cannot be performed before the
instantiation of y.

There are certain methods which use constraint
propagation to increase the e�ciency of search tech-
niques for solving hard combinatorial problems; for
example, look-ahead techniques propagate constraints
after labeling any variable by assigning a value, in order
to reduce the domains of unlabelled variables and to
detect if the problem is insoluble [29]. Once a variable
is labeled, domains of unlabelled variables are pruned
by removing values, which are inconsistent with the
values already allocated to labeled variables.

\HeuSA", THE HYBRID MODEL

The scheduling model, HeuSA, represents a combina-
tion of simulated annealing with a constraint-based
heuristic (CBH) and constraint propagation technique.
First, a feasible solution is generated using CBH, then,
the neighborhood exploration process starts, according
to SA strategies. In fact, the CBH creates the �rst
feasible solution from where the search process gets
started. To create a solution, it resolves con
icts
between trains requesting a block, according to the
earliest time they leave the block; thus, the train which
releases the track earlier is given priority to occupy it.
Ties are broken, according to the earliest time they are
ready to occupy the block, i.e., the train with minimum
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start time gets precedence. In this process, the station
capacity constraints are also taken into account. CBH
tends to minimize total local waiting time over all
trains involved.

What is the neighborhood concept of SA in this
context? For a given feasible schedule, a neighbor
solution is a schedule in which the sequence of occupy-
ing a block by two requesting trains with overlapping
time intervals is changed, and the destructed part of
the schedule resulting from the swap is identi�ed and
rescheduled using the same heuristic.

A move in the neighborhood of a solution is
conducted using the following steps:

1. Identifying a potential move randomly, which is a
train delayed at a station for another moving train
to �nish the occupation of the requested block;

2. Swapping the sequence of activities (occupying the
block by the two trains competing); the earliest
start time of the two activities are updated and
constraints are posted for propagation;

3. Propagating constraints to identify the activities
whose start times must be updated; this process
could reveal violations of the resource constraints
for the part of the schedule a�ected by the swap-
ping process. (A look-ahead propagation method is
used. Further discussions are provided in [20]);

4. Repairing the schedule to modify the earliest start
times of the activities a�ected by the swap;

5. Evaluating the quality of the new schedule in terms
of the performance measure selected;

6. Determining the new current schedule using the

simulated annealing move strategy. Checking the
threshold to stop the algorithm appropriately. The
search process continues as long as T is greater than
a limit close to 0. However, the algorithm stops if
the number of iterations exceeds a prede�ned large
number (i.e., 5000 used in this work).

SIMULATION EXPERIMENTS

The passenger trains scheduling model has been tested
using the data of two corridors of Iran's railways. Data
are working timetables of passenger trains generated by
train planning experts for Tehran-Mashad and Tehran-
Tabriz, connecting the capital to two major cities in the
northeast and northwest of the country, respectively.
The two routes are transit lines connecting Turkey in
the northwest to Turkmenistan in the Northeast. Five
cases have been considered in this work, where a case
includes a predictive schedule produced manually for
a 
eet of trains. The schedule speci�es origin and
destination stations, departure time from the origin,
running time between immediate adjacent stations en
route and stop time at any station en route for rea-
sons such as boarding, alighting and meeting opposite
trains. In practice, the schedule covers about 24 hours
and it is repeated daily or weekly. Table 1 shows further
details of the cases solved.

Tables 2 to 4 compare schedules generated by
HeuSA and CBH with manual timetables in terms
of SWWT, AUWT and MRWJ. Figures associated
with SWWT are in terms of minutes and the �g-
ures associated with AUWT and MRWJ have been
multiplied by 100 to make them more understandable

Table 1. The speci�cations of cases solved by the HeuSA.

Case Route Trains No. of Blocks No. of Route

Up Down Total Single Double Stations KM

P1 Tehran-Mashad 11 11 22 40 10 51 926

P2 Tehran-Tabriz 8 8 16 47 0 48 736

P3 Tehran-Mashad 8 9 17 40 10 51 926

P4 Tehran-Tabriz 5 5 10 47 0 48 736

P5 Tehran-Mashad 8 8 16 36 5 42 795

Table 2. Comparison on the SWWT.

Case P1 P2 P3 P4 P5

Manual timetable (MT) 446.0 230.0 365.5 139.0 249.5

Constraint-based heuristic (CBH) 423.5 200.0 301.5 101.0 217.0

HeuSA 388.7 204.5 292.3 101.0 215.0

CBH over MT 5.04 13.04 17.51 27.34 13.03

Improvement (%) HeuSA over CBH 8.22 -2.25 3.05 0.00 0.92

HeuSA over MT 12.85 11.09 20.03 27.34 13.83
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Table 3. Comparison on the AUWT.

Case P1 P2 P3 P4 P5

Manual timetable (MT) 3.27 2.23 2.86 1.97 2.40

Constraint-based heuristic (CBH) 2.42 1.98 2.22 1.43 2.05

HeuSA 2.31 2.02 2.16 1.43 2.06

CBH over MT 25.99 11.21 22.38 27.41 14.58

Improvement (%) HeuSA over CBH 4.55 -2.02 2.70 0.00 -0.49

HeuSA over MT 29.36 9.42 24.48 27.41 14.17

Table 4. Comparison on the MRWJ.

Case P1 P2 P3 P4 P5

Manual timetable (MT) 7.13 4.74 5.38 4.70 5.80

Constraint-based heuristic (CBH) 6.58 4.54 5.26 3.67 5.69

HeuSA 5.13 4.51 4.65 3.60 4.87

CBH over MT 7.71 4.22 2.23 21.91 1.90

Improvement (%) HeuSA over CBH 22.04 0.66 11.60 1.91 14.41

HeuSA over MT 28.05 4.85 13.57 23.40 16.03

in percent. Since random variables are incorporated
into the neighborhood exploration, each case is solved
using six random generator seeds and the average value
is reported for each objective function. Simulation
experiments show that all solutions created by CBH
and HeuSA are better than the manual ones; how-
ever, the degree of improvement varies with case and
objective function. Test results for CBH show that
SWWT has decreased by between 5.04% and 27.34%,
AUWT by between 11.21% and 27.41% and MRWJ by
between 1.90% and 21.91%. On average, improvements
achieved by HeuSA are between 11.09% and 27.34% for
SWWT, 9.42% and 29.36% for AUWT and 4.85% and
28.05% for MRWJ.

In three out of thirty experiments (�ve cases,
three objective functions, two algorithms, i.e. CBH and
HeuSA), HeuSA did not make any improvement over
CBH, although solutions were, in terms of objective
function value, only slightly di�erent. In fact, the
probabilistic search process started from a very good
solution generated and navigated solution space by
CBH and no improvement achieved by SA. SA can be
tuned to progress the search process more carefully and
for a longer period of time to outperform the CBH.

Table 5 shows search e�orts made by HeuSA in
terms of CPU time and the number of visited solutions,
which is represented by the number of iterations. CBH
created the initial solution for each case in less than
two seconds. Experimental results reveal that between
4.85% and 29.36% improvements have been achieved,
whilst consuming 48 to 228 seconds CPU time of a
personal computer of type COMPAQ Pentium. The
�gures in the above tables show that the HeuSA outper-

forms the manual system in terms of the performance
measure value and schedule production time. HeuSA
also outperforms CBH, since it yields better solutions
in 12 out of 15 tests and the gap is very narrow in
the three other tests. From a managerial viewpoint,
improvements on SWWT, AUWT and MRWJ appear
well enough to encourage the use of the scheduling
methods presented as the advisory system for the
scheduling of passenger trains.

As explained previously, key algorithm knobs are
T , � and �. The initial T value in the model is
equal to (�f(Q)= log(0:6)), where f(Q) denotes the
performance measure associated with the �rst solution
from where the search started. In fact, the probability
of making an uphill move to a solution with f(Q0) =
2 � f(Q) is set to be 0.60. The above formula is
used to limit the search e�ort, taking advantage of
the high quality of the �rst solution created by the
heuristic. Another advantage is that the initial T
value is automatically calculated for any problem being
solved and the performance measure used.

Table 5. Performance in terms of CPU time and
iterations.

Case SWWT AUWT MRWJ

Iter. CPU Iter. CPU Iter. CPU

P1 1005 228 543 136 387 120

P2 864 110 507 69 367 65

P3 924 181 531 110 377 102

P4 741 72 462 48 357 48

P5 879 128 519 80 372 75



448 M.T. Isaai

Table 6. Parameters used to solve P1 to P5.

Parameter SWWT AUWT MRWJ

� 0.92 0.92 0.91

� 1.015 1.02 1.01

Iterations 1 1 1

Table 6 shows the values allocated to � and � for
SWWT, AUWT and MRWJ. Typically, � is chosen in
a range between 0.90 and 0.99 [30]. The initial values
of � and � used to start the experiments for tuning
the HeuSA, were 0.95 and 1.05 respectively. The �nal
values are shown in Table 6. The table also shows
the number of iterations for each T during the search
process.

CONCLUSIONS

This paper represented a combination of the simulated
annealing and a constraint-based heuristic. Starting
the search process from a good solution created by
the heuristic, the algorithm improved solution quality
while avoiding exhaustive search and reducing the
possibility of being trapped in local optima. Train
scheduling experts were able to run CBH or HeuSA,
using the objective function desired. HeuSA was fast
enough to encourage users to modify input data to
enhance quality. This is the practical advantage of the
automated advisory system introduced; this encour-
ages further research to devise interactive intelligent
techniques capable of tackling real world problems.
Data mining can also be used to extract the knowledge
of scheduling experts to create an initial solution of
higher quality. In fact, technical experts who create
timetables manually may �nd it very di�cult to explain
the heuristics they use or might be reluctant to transfer
their expertise; in such cases, existing train schedule
databases, created in the past, can be explored using
data mining techniques to learn about rules and facts
used by experts.

REFERENCES

1. Higgins, A. Kozan, E. and Ferreria, L. \Optimal
scheduling of trains on single line track", Transporta-
tion Research-B, 30(2), pp 147-161 (1996).

2. Mcguire, M. and Linder, D. \Train simulation on
British rail", in Proc. COMPRAIL 94, 2, pp 437-444,
Madrid, Spain (Sept. 1994).

3. Backman, J. \Railroad capacity and tra�c analysis
using SIMON", in Proc. COMPRAIL 96, 1, pp 183-
192, Berlin, Germany (Aug. 1996).

4. Klahn, V. and Dannenberg, H. \Computer aided
construction of timetables on long route sections", in
Proc. COMPRAIL 94, 1, pp 27-34, Madrid, Spain
(Sept. 1994).

5. Wardrop, A.W. et al. \Timetable capture and train

ow modeling", in Proc. COMPRAIL 92, 1, pp 177-
190, Washington DC, USA (Aug. 1992).

6. Lid�en, T. \The new train tra�c simulation program
developed for Banverket and its design", in Proc.
COMPRAIL 92, 1, pp 533-544, Washington DC, USA
(Aug. 1992).

7. Van Dyke, C.D. and Davis, L.C. \Computer dis-
patching simulation of high density, mixed freight and
passenger train operations", in Proc. COMPRAIL 92,
2, pp 119-130, Washington DC, USA (Aug. 1992).

8. Wolf, G.P. and Baugher, R.W. \Development and
application of an advanced microprocessor-based line
capacity and train scheduling model", in Proc. COM-
PRAIL 92, 1, pp 569-588, Washington DC, USA (Aug.
1992).

9. Peterson, E.R. and Taylor, J. \A structured model for
rail line simulation and optimization", Transportation
Science, 16(2), pp 192-206 (1982).

10. Carey, M. and Lockwood, D. \A model, algorithms
and strategy for train pathing", Journal of Operational
Research Society, 46(8), pp 988-1005 (1995).

11. Mills, R.G.J. et al. \Dynamic rescheduling of long-haul
trains for improved timekeeping and energy conserva-
tion", Asia-Paci�c Journal of Operational Research, 8,
pp 146-165 (1991).

12. Br�annlund, U. et al. \Railway timetabling using La-
grangian relaxation", Transportation Science, 32, pp
358-369 (1998).

13. Mees, A.I. \Railway scheduling by network optimiza-
tion", Mathl. Comput. Modeling, 15(1), pp 33-42
(1991).

14. Goh, C.J. and Mees, A.I. \Optimal control on a graph
with application to train scheduling problems", Mathl.
Comput. Modeling, 15(2), pp 49-58 (1991).

15. Cai, X. and Goh, C.J. \A fast heuristic for the
train scheduling problem", Computers and Operations
Research, 21(5), pp 499-510 (1994).

16. Lin, H-C and Hsu, C-C \An interactive train schedul-
ing work-bench based on arti�cial intelligence", in
Proc. of the 6th International Conference on Tools with
Arti�cial Intelligence, New Orlean, LA, IEEE Comput.
Soc. Press, pp 42-48 (Nov. 1994).

17. Schaefer, H. and Pferdmenges, S. \An expert system
for real-time train dispatching", in COMPRAIL 94, 2,
pp 27-34, Madrid, Spain (1994).

18. Chiu, C.K. et al. \A constraint-based interactive train
rescheduling tool", in Proc. of the 2nd International
Conference on Principle and Practice of Constraint
Programming-CP96, Cambridge, USA (Aug. 1996).

19. Higgins, A. et al. \Heuristic techniques for single line
train scheduling", Journal of Heuristics, 3(1), pp 43-62
(1997).

20. Isaai, M.T. and Singh, M.G. \An object-oriented
constraint-based heuristic for a class of train schedul-
ing problems", IEEE Transactions on Systems, Man



Solving Train Scheduling Problems 449

and Cybernetics, Part C: Applications and Reviews,
30(1), pp 12-21 (2000).

21. Isaai, M.T. and Singh, M.G. \An intelligent constraint-
based search method for single-line passenger-train
scheduling problems", in Proc. of the 2nd International
Conference on the Practical Applications of Constraint
Logic Programming, pp 79-91, Manchester, UK (April
2000).

22. Sharma, G. et al. \A knowledge-based simulation
approach (K-SIM) for train operation and planning",
Simulation, 62(6), pp 381-391 (1994).

23. Tomii, N. and Ikeda, H. \A train rescheduling simu-
lator combining pert and knowledge-based approach",
in Proc. of the 7th European Simulation Symposium,
ESS'95, pp 534-538, Erlangen-Nuremberg (Oct. 1995).

24. Metropolis, N. et al. \Equation of the state calculations
by fast computing machines", Journal of Chemical
Physics, 21, pp 1087-1091 (1953).

25. Kirkpatrick, S. et al. \Optimization by simulated an-
nealing", Science, 220(4598), pp 671-680 (May 1983).

26. Glover, F. et al., Genetic Algorithms and Tabu Search:
Hybrids for Optimization, Graduate School of Busi-
ness, University of Colorado at Boulder (July 1992).

27. Osman, I.H. and Kelly, J.P. \Meta-heuristics: An
overview", I.H. Osman and J.P. Kelly, Eds., in Meta-
Heuristics: Theory and Applications, USA, Kluwer
Academic Publishers, 2nd Printing, pp 1-21 (1997).

28. Wallace, M.G. \Practical applications of constraint
programming", Constraints Journal, 1(1), pp 139-168
(1996).

29. Tsang, E., Foundations of Constraint Satisfaction,
London: Academic Press Limited (1993).

30. Elmohamed, M.A.S. et al. \A comparison of annealing
techniques for academic course scheduling", in Proc.
of the 2nd International Conference on Practice and
Theory of Automated Timetabling (in: LNCS 1408),
pp 92-112, Canada (Aug. 1997).


