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Large Eddy Simulations of a Mixing

Tank with Axial Flow Turbine

P. Zamankhan
1

An understanding of solid-liquid mixing, with many aspects of mixing, dispersing and contacting,

is critical to the e�cient preparation of brine from sodium formate and other processes, such

as agitated leaching, in the mining industry, rubber crumb, crystallization and precipitations.

Generally speaking, solids can be porous catalysts for catalytic reactions, active agents for

adsorption, polymers and co-polymers for suspension polymerization or particles that need to

be dissolved or coated. In the present attempt, large-eddy simulations of a turbulent 
ow of a

mixture of solid-liquid in a ba�ed, cylindrical mixing vessel, with a large number of solid particles,

were formulated to obtain insight into the fundamental aspects of a solid-liquid mixing. The

impeller-induced 
ow at the blade tip radius of an axial turbine was modeled using the dynamic-

mesh Lagrangian method. The simulations were four-way coupled, which implies that both solid-

liquid and solid-solid interactions are taken into account. By using a phenomenological model,

based on the modi�ed Kelvin-Maxwell model, normal and tangential forces were calculated

acting on a particle, due to viscoelastic contacts with other neighboring particles. Simulations

were performed for the special case of dissolving solids, whose dissolution rate was assumed to be

mass-transfer controlled. The results suggest that the granulated form of dissolving solids, such

as sodium formate, may provide a mixture that allows faster and easier preparation of formate

brine in a mixing tank.

INTRODUCTION

Mixing processes are widely encountered in chemical,
food and mining industries. Stirred tanks are re-
quired to ful�ll several needs, including the blending
of miscible liquids, dispersion of gases or immiscible
liquids into a liquid phase, suspension of solid parti-
cles, heat and mass transfer enhancements, chemical
reactions in industrial processes, such as crystallization
operations [1], liquid-liquid extractions [2], biological
fermentations [3] and heterogeneous catalytic reac-
tions [4]. Among the various industrial unit operations
involved with multi-phase systems, the agitation of
solid-liquid systems are commonly encountered in cat-
alytic reactions, leaching and polymerization. Despite
their widespread use, complex 3-D recirculation and
turbulent 
ows in the tank usually makes the designing
and optimizing of the reactor limited to pilot plant
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tests and empirical formulation, even for single phase
applications.

A number of investigations have been carried out
on the 
uid dynamic properties of solid-liquid systems
in mixing tanks for achieving empirical information [5].
In addition, attempts with the criteria of suspension
include Zwietering [6]. The appropriate choice for
the geometry of the tank and impeller type can vary
widely, depending on the purpose of the operation to
be performed in the mixer. The ba�ed geometry,
as illustrated in Figure 1, has been most extensively
used in the preparation of brine from sodium formate.
Figure 1a displays a three phase gas-liquid-solid mixing
tank, in which the gas-liquid interface is located atH =
260 mm. The solid phase is shown to be deposited at
the bottom. Figure 1b depicts the bottom view of the
four blade pitched blade turbine with its characteristic
dimensions. Figure 1c represents a perspective view
of the axial 
ow impeller with some dimensions. The
revolving axis of the impeller is the z-axis.

Traditionally, the problem of the designing and
scaling up of mixing tanks has been tackled mainly by
means of semi-empirical methods. However, economi-
cal losses are huge as a consequence of uncertainties in
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Figure 1. Schematic of a standard ba�ed tank with an
axial 
ow turbine used in the present attempt. (a) Three
phase gas-liquid-solid in the mixing tank. The solid phase
is deposited at the bottom; (b) The bottom view of the
four blade pitched blade turbine; (c) A perspective view of
the axial 
ow impeller. All dimensions are in milliners.

the design of mixers [7]. It is believed that a signi�cant
improvement in mixing tank design can be obtained
by developing numerical models that take into account
the real 
ow �eld inside the vessel. E�orts have been
made during the last few years towards the develop-
ment of predictive methods, based on Computational
Fluid Dynamics (CFD), which are capable of providing
detailed information on the 
ow and turbulence �elds
of mixing tanks [8].

Notice that strong rotations in mixing tanks
were observed to considerably change the turbulence
dynamics leading to highly anisotropic structuring of
turbulent eddies [9]. In this light, advanced modeling
techniques, such as Large-Eddy Simulation (LES),
would be required in order to predict the 
ow dynamics
in a mixing tank correctly. Recent applications of LES
to the hydrodynamic simulation of stirred tanks have
been presented in recent articles [10].

Large-Eddy Simulation (LES) is a simulation
technique [11] based on the decomposition of the 
ow
�eld into large and small-scale structures. In this
case, large-scale structures are directly simulated in a
three-dimensional, time dependent mode, whereas the
feed-back e�ects of small-scale structures are modeled.
Notice that accurate experimental data would be re-
quired on the mean 
ow �eld and on the turbulence
characteristics of mixing tanks, to serve as empirical
input to predictive models or as validation benchmarks
for the computational methods. The 
ow �eld can be
globally characterized by the power requirement, the
pumping capacity of the impeller and the recirculation
time through the tank. However, much more detailed
information about the mean 
ow would be needed, in

order to improve the design of the equipment or the
mixing process. In particular, knowledge of the solid-

ow �eld in mixing tanks is of paramount importance
in industrial applications, such as brine-mixing tanks.

The preparation of brine from sodium formate is
one of the important applications of solid-liquid mixing.
Sodium formate, as illustrated in Figure 2, consists of
white hygroscopic crystalline odorless granules and has
been widely used to prepare drilling and completion

uids). The solids, as displayed in Figure 2b, are
generally added to the surface of the mixing tank.
Although the solid density is greater than the liquid
density, the solids may initially 
oat and gel with each
other. The gel creates a \protective layer" around the
solids, making it nearly impossible for the solids inside
the gel to be wetted out. However, the granulate form,
as shown in Figure 2c, e�ectively dissolves in a mixing
tank. Sodium formate is often used in challenging
environments, such as in the Barents Sea. Solutions
of sodium formate, including those made from sodium,
are used in oil�elds as drilling 
uids, where 
uid
viscosity must be low. These 
uids are made up of
the formate solution itself and water soluble polymers.
The 
uids are colorless and can be used to drill into
the pay zone without threat of plugging or damaging
formations.

Sodium formate chemically reduces other compo-
nents by donating an electron or electrons. Formic
acid and oxalic acid are prepared from sodium formate.
Sodium formate is used in the manufacture of sodium
hydrosul�te, a common reductive bleaching chemical.
More applications of sodium formate, such as the
recovery of precious metals from acidic e�uents, have
been discussed in [12]. In addition, sodium formate is
used to improve the brightness and color in printing

Figure 2. (a) Chemical formula of sodium formate; (b)
Sodium formate (white crystal powder); (c) Granular
sodium formate; (d) A sample of sodium formate used in
the computer simulation reported in the present attempt.
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fabrics and paper.
The process using sodium formate powder is a

di�cult one, because the individual particles of powder
can stick together during storage and fuse into a solid
mass that is di�cult to break up and hydrate in a brine-
mixing tank. Limited published data for the solubilities
of sodium formate in water include Groscu� [13] and
Sidgwick and Gentle [14].

In this paper, the governing equations of the
liquid phase with air above (as illustrated schemat-
ically in Figure 1a) are solved using a Large Eddy
Simulation technique. The particle motion is predicted
by a Lagrangian method. Particles are assumed to
behave as visco-elastic solids during interactions with
their neighboring particles, and inter-particle normal
and tangential contact forces between particles are
calculated using a generalized Hertzian model [15]. The
other forces on a particle that are taken into account
are gravitational and drag force, resulting from velocity
di�erence with the surrounding liquid. An Eulerian-
Lagrangian type simulation of liquid-particle 
ow is
performed for predicting the 
ow dynamics of a dense
mixture of liquid and particles in a mixing tank.

This attempt may help in overcoming the di�-
culties which lie in building a comprehensive hydro-
dynamic theory for the next generation of liquid-solid
mixing tanks. Further exploration of a mixing tank
requires a di�erent routine, along with the present
approach. For example, the continuum approach, as
suggested in previous works [16], can be generalized to
investigate the dynamics of liquid-particle 
ows in a
mixing tank.

This paper is organized as follows. In the fol-
lowing section, an overview is presented of rotating
turbulence, as well as collective processes in liquid-
particle 
ows, useful for developing a simpli�ed model
for molecular dynamic type simulations of dense liquid-
particle 
ows. In addition, the developed model is
applied to the speci�c example of a dense liquid-particle
mixture under strong rotation in a brain-mixing tank,
as illustrated in Figure 1a. Then, the continuum
approach is brie
y presented, which requires much
fewer computational resources for further exploration
of brine-mixing tanks. Finally, the concluding remarks
are given, which may be of use in creating ideal
processing conditions in industrial mixing tanks.

DISCRETE MODELS FOR A MIXING

TANK

Turbulence in a steadily rotating 
uid, such as that
found in brine-mixing tanks, plays an important role in
solid dispersion. Figure 3a illustrates the instantaneous
velocity vector �eld in a cutting xz-plane passing
through the revolving axis of the impeller of the mixing
tank, whose schematic is illustrated in Figure 1a, at the

Figure 3. (a) The instantaneous velocity vector �eld in a
cutting xz-plane passing through the revolving axis of the
impeller at the Reynolds number of Retank � 110000; (b)
The instantaneous velocity vector �eld after 0.00175 sec
from that in (a). Upper inset: The interface of air and
water in the mixing. Lower inset: A high resolution
version of the velocity �eld in a cutting xy-plane located
below the impeller.

Reynolds number of Retank � 110000. Figure 3b shows
the instantaneous velocity vector �eld after 0.00175
sec from that shown in Figure 3a. As illustrated in
Figure 3, su�ciently strong rotation is observed to
considerably alter the turbulence dynamics, in partic-
ular, leading to anisotropic structuring of turbulent
eddies. The importance of rotation for the large scales
of turbulence is determined by the reciprocal of the
turbulent Rossby number, namely L=u0!. Notice that
the Rossby number is the ratio of a rotation time scale
to a characteristic time for evolution of the large scales
of the turbulence in the absence of rotation.

A large Rossby number represents a case with
small e�ects of rotation. On the one hand, at a
su�ciently high Rossby number, the e�ects of rotation
may be neglected altogether. On the other hand, a
small enough Rossby number implies strong rotation
and, therefore, not enough time for the large scales of
turbulence to act on themselves signi�cantly during a
rotation period.

Air-Solution Flows

A rotating air-sodium formate solution (which is called
\solution" hereafter) system, as illustrated in Fig-
ure 1a, may be described using the Volume-Of-Fluid
(VOF) technique [17]. This technique provides an
excellent approximation when the ratio of liquid to
gas densities is large. In the present study, the
VOF is used for modeling 
ows of air and solution
as immiscible 
uids with interface e�ects in a brine-
mixing tank. Here, the computations are performed on
a Cartesian grid, with the interface (between solution
and air, in which air can only apply a pressure on
solution) being localized by calculating the fraction of
each computational cell occupied by one of the two
phases. Surface tension e�ects may be incorporated
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by modeling the capillary stresses as the equivalent
body force acting in the immediate vicinity of the
interface. In this case, an algorithm is required to
track the surface as a sharp interface moving through
a computational grid.

In the VOF, the velocity of air and solution
is considered equal at the interface. In the current
attempt, the aim is to combine the best features of
the VOF method with those of the LES, in order to
achieve more accurate simulations of air-solution 
ows
in a brine-mixing tank.

The �ltered continuity, momentum equation for
an isothermal air-solution system may be given as:

@
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is the viscous stress tensor [18]. Here, the unresolved
part of F s�

i is neglected.
Applying a Gaussian spatial �lter, such as:
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);

the subgrid scale stress tensor may be modeled as
follows:

�ij = Cij +Rij = uiuj � uiuj :

Here, Cij = uiu0j + uju0i represents the interaction

between the large and small scales and Rij = u0iu
0

j

represents the interaction between the subgrid scales.
Note that the uiuj term in Equation 2 requires a

second application of the �lter. To remedy this further,
decomposition is required:

uiuj = (uiuj � uiuj) + uiuj = Lij + uiuj : (3)

Using Equation 3, the �ltered momentum equation
may be given as:
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where
^
� ij = Lij + Cij +Rij = uiuj � uiuj .

In order to model the subgrid scale tensor, Menon
and Kim [19] suggested that, based on the similarity
assumption of a di�erent scale �ij = CkLij , a kinetic
energy, ktest, can be de�ned of a test level that includes
all energy between two length scales (� < l < �̂), given
as:

ktest =
1

2
(bukbuk � bukbuk): (5)

Assuming a similar representation of these two levels,
expressions may be obtained for subgrid stress tensor:

�ij = �2C��k1=2sgsSij + �ij=3�kk; (6)

where C� = 1=2Lij�ij=�pq�pq and �ij = ��̂k1=2test
bSij .

Note that dissipation of energy at the test level takes
place between the two length scales and may be
expressed as:
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Thus:
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:

The model of Menon and Kim [19] gives a transport
equation for kSGS that uses the local value of C� in the
di�usion and C" in the dissipation term. That is:
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where �t = C��k
1=2
SGS.

Treating the gas in the tank as incompressible
greatly simpli�es the analysis. However, a careful
treatment of free surface is required to avoid producing
any incorrect motion of the surface, since it is assumed
to move with the average velocity of air and solution.

Following Chen et al. [20], the density and vis-
cosity in the momentum Equation 2 may be expressed
as:

�m = �g(1� F ) + F�sol;

�m = �g(1� F ) + F�sol; (9)

where F (0 � F � 1) represents the fraction of a control
volume occupied by the liquid.

Combining the interface transfer equation in
terms of F , namely @F=@t+ �iF;i = 0, with continuity
(Equation 1), gives:

@F

@t
+ (�iF );i = F�i;i: (10)
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Here, the F is used to track the interface instead of
a rapid change in density. Note that the unit normal
vector for the interface is given by ni = F;i=jF;ij. This
scheme results in somewhat sharp interfaces localized
in one control volume. However, the interface having
surface tension may not be necessarily aligned with
logical mesh coordinates. In this light, the interface,
in the computational domain, may only be represented
as a �nite thickness transition region comparable to
mesh spacing, through which the liquid volume fraction
varies from zero to one.

An expression for the volume form of the surface
tension force, FS�

i , is given by [17]:

FS�
i = ��

F;i
[F ]

; (11)

� represents the curvature of the interface and is
de�ned as:

� =
1

jF;ij
�
F;j
jF;ij jF;ij;j � F;ii

�
:

Notice that FS�
i is non-zero only within the transi-

tion regions, where the liquid volume fraction varies
smoothly from zero to one. The square brackets in
Equation 11 represent the jump in the value of F across
the interface.

The large eddy simulations discussed in this sec-
tion are performed for a mixing tank, which contains
solution with air above, with a four blade pitched blade
turbine, as illustrated schematically in Figure 1b. The
focus is limited to a case with the Reynolds number
of Retank � 110000. A dynamic-mesh Lagrangian
method mesh is used, by which the 
ow pattern can
be calculated without the use of any experimental
boundary conditions. No-slip boundary conditions are
employed at the impeller blades, the ba�es and the
tank walls.

The governing equations listed in this section are
fully solved, based on a control volume technique. A
similar method to that detailed in Chen et al. [20] is
implemented for the interface tracking. The sample
results, as presented in Figure 3, are obtained using a
total number of grid nodes that is more than 8� 106.
Notice that the central di�erencing scheme is used for
spatial discretization and the time is advanced via a
second-order implicit scheme.

Particle-Solution Flows

Solid Particles

In general, solid particles, such as those shown in
Figure 2c, with mass, m, in a liquid, obey the Langevin
equation given as:

m
dV p

i

dt
= F f

i + F g
i + F i

i + F b
i : (12)

To simplify the equation of motion for the solid par-
ticles, it would be useful to de�ne the dimensionless
quantities given as below:
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The Froude number, Fr, is the ratio of the total
kinetic energy of the particle to the gravitational
potential. Using the data presented in Table 1, the
order of magnitude of dimensionless quantities listed
in Equation 13 for the mixing tank, as illustrated in
Figure 1, are estimated as Rep � 100, St � 100, and
Fr << 1. Since the work done by the drag force
over the size of particle is much greater than that of
thermal energy, the random force, F b

i , can be neglected.
Thus, for the case Rep � 100, and St � 100 with non-
linear, visco-elastic, particle-particle interactions, the
Langevin equation for translational motion of the jth
particle, including buoyancy e�ects, may be reduced
to:
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i;jp; (14)

where an expression for the drag force on particles
with both the translational and rotational motion, as
illustrated in Figure 4a, may be given by [21]:
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Notice that the drag force (Equation 15) includes the
lift force due to particle rotational velocity relative to
liquid vorticity, which is di�erent from the lift force,
due to the velocity gradient.

The e�ect of the local pressure gradient, as de-
picted in Figure 4b, gives rise to a force in the direction
gradient. In Figure 4b, the two particles on the left are
brought into contact by their translational motion. By
assuming that the pressure gradient is constant over
the volume of the particle, the net pressure force per
unit mass acting on the particle may be given as:

F p
i = � 1

�p

@p

@xi
: (16)
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Figure 4. (a) The complex velocity vector �eld around rotating grains of Sodium Format in a solution. Inset, the velocity
vector �eld around the bottom left particle is magni�ed to provide a better resolution. Vectors are color-coded by their
velocity magnitudes, where the red is for highest velocity and blue represents the lowest; (b) The contours of the pressure
around the grains in a mixing tank.

Table 1. Physical and chemical properties of materials used in the simulation.

Material Properties Value

Reported Used in the Model

Relative Density
1.258 at 20�C (solution)

1.92 at 20�C (solid phase)

Solubility 97 g/100 g water at 20�C

Material Type
White, deliquescent, granules or

crystalline powder

Spherical particles as illustrated

in Figure 2b

Surface Friction

Coe�cient
Not reported 0.65 (measured)

Sudium Poisson's Ratio Not reported 0.244 (assumed)

Formate
Instantaneous

Shear Modulus
Not reported 2:53� 1010 kg/m.s (assumed)

Long Time

Shear Modulus
Not reported 0 kg/m.s (assumed)

The Relaxation

Time
Not reported 9:87 � 10�6 s (assumed)

Elastic Modulus Not reported 6:3� 1010 Pa (assumed)

Chemical Formula HCOONa

Molecular Weight 68.01

Temperature 20�C

Water Kinematic Viscosity 10�6 m2/s

Density 998.2 kg/m3

Temperature 20�C

Air Kinematic Viscosity 1:5� 10�5 m2/s

Density 1.2 kg/m3

Poisson's Ratio 0.29

Steel Elastic Modulus 2:1� 1011 Pa

Density 7890 kg/m3
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Crowe, Sommerfeld and Tsuji [22] suggested that, if
the acceleration of the solid and the liquid phase are of
the same order, then, the pressure gradient force is of
the order of the acceleration and, therefore, cannot be
neglected. Thus, the equation of motion of a particle
may be given by:

dV j
i

dt
=
FD
i
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� g

�
1� �sol
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�
�iz� 1

�p
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F
(n)
i;jp:
(17)

The sodium formate particles have surface roughness
on many di�erent length scales. When two particles
are brought into contact, the area of contact will only
be a fraction of the nominal contact area. The contact
regions are small areas, where asperities from one
ball are squeezed against those of the other ball. By
assuming that the asperities will deform elastically with
a �nite viscous relaxation time, � [23], an expression
may be obtained for the contact force per unit mass
acting on the jth particle, due to contacts between
this particle and its neighboring pth particles at time
t, given as [15]:
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where the deformation of the largest asperities is

characterized by
_

� jp (which represents overlapping
between the pth and jth particles). The surface as-
perities are responsible for the tangential forces acting
between the colliding pairs. The �rst and second terms
on the right hand side of Equation 18 represent the
normal and tangential components of the contact force,
respectively. Following Silbert et al. [24], the tangential
displacement is denoted by �jp.

In Equation 18, ei is the tangential unit vector
de�ned as ei = "imqkm;jp("qste

V imp
s;jp kt;jp), where e

V imp
s;jp

represents the unit vector in the direction of the relative
impact velocity de�ned as eV imp

s;jp = V imp
s;jp =jV imp

s;jp j.
In this case, the Coulomb friction law describes the
friction between two colliding grains, with a surface
friction coe�cient, �p, when there is mutual slipping
at the point of contact. The magnitude of �jp, which
represents the tangential displacement, is calculated as
necessary to satisfy jFtjpj = �pjFi;njpki;jpj. Otherwise,
the contact surfaces are considered as stuck, while
jFtjpj < �pjFnjpj. jFtjpj and jFnjpj are the magnitude
of the normal and tangential components of the contact
force, respectively.

Here, the rate of change of tangential displace-
ment, �jp, is given by d�jp=dt = V imp

i;jp ei. The
displacement, �jp, should be set initially to zero when
a new contact is established, and, once the contact is
broken, all memory of the prior displacement will be
lost. As illustrated in Figure 5, frictional forces induce
torques on particles. The total torque on particle j
may be de�ned as [15]:

Ti;j = �1=2
NX
p=1

"iqrmjrjpkq:jpFr;jp

+ 2:01�sold
3
p(1=2"ijk@uk=@xj

� !
(p)
i;j )(1 + 0:201 Re1=2! ); (19)

where Re! = j!(p)i;j jd2p=�sol. The second term on the left
hand side of Equation 2 represents the torque applied
to particle j, due to liquid shear stress distribution on
the particle surface [22].

Hence, Equation 17 must be augmented by a
torque equation for the rotational motion of particle
j, which is given as:

Jj
d!

(p)
i;j

dt
= Ti;j : (20)

Assuming that the apparent surface of contact is
built up of a larger number of hierarchically ordered
asperities, Brilliantov et al. [25] suggested that the
friction coe�cient, �p, may be expressed in terms
of mesoscopic parameters. However, in the present
attempt, the friction coe�cient is found by comparing
the geometry of a dry spill of sodium formate particles
observed experimentally and to that obtained using
simulations. A detailed description of the method for
estimating the coe�cient of friction is presented in the
following.

To obtain an expression appropriate to spherical
particle-
at wall contact from Equation 18, dp=2 has
to replace dp.

Figure 5. Temporal evolution of the velocity of colliding
particles with diameter of dp = 5 mm. The physical
properties including the coe�cient of friction are reported
in Table 1. The particles are color-coded using their
velocity magnitudes. Instantaneous con�gurations are
each separated by t � 5� 10�7 sec.
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An Estimation of Coe�cient of Friction

This section addresses spills of sodium formates onto a

at surface, which collect in a pile. Molecular dynamic
type simulation techniques may provide insights into
the dynamics of the pile, which are not very well
understood. Traditional molecular dynamics analysis
relies on the classical Hertzian impact theory and
uses particle contacts of �nite duration. In this
case, a model for collision between particles was used
by arti�cially increasing the duration of a contact
between the particles, as suggested by Silbert et al. [24].
However, the disadvantage of the traditional approach
is that the softer, normal interactions between the
particles have to be assumed. Hence, prediction of
the contact network, composed of frictional contacts,
by the traditional model, should be considered with
caution. By extending the existing formalism, an
accurate contact dynamics algorithm is proposed, by
which the collective intermittent dynamics found in
piles may be captured.

Here, the results of a molecular dynamic type
simulation of spills of rough sodium formate, whose
physical properties are listed in Table 1, consisting of
�ve hundred and seven mono-sized spherical particles,
are presented, using the generalized model discussed in
the preceding section. The resulting shape of the spill
of beads may be controlled by the distance between
the leak and the surface, where the leak collects, and
the smoothness of the surface on which the material
collects. In this light, the simulation includes the
e�ect of static friction, which is found to be crucial in
maintaining a stable spill. Moreover, the diameter of
beads are set to � = 1:5 mm, which is large enough so
that no aggregates can be produced via Van der Waals
forces.

As illustrated in Figure 6a, which represents the
result of experimentation using rough beads with a
diameter of � = 1:5 mm, a typical spill exhibits
di�erent distinct parts including a rounded shape on
top, a linear region characterized by the angle of repose
and a tail at the bottom. The straight line in Figure 6a
represents the slope of the linear region. In this case,
the angle of repose is roughly 33�. The physical
properties of particles are found in Table 1. Note that
the angle of repose, which is the angle made between
the surface and the outside of the cone, achieved in
a system, as shown in Figure 6a, seems to be slightly
less than the maximum angle of repose produced using,
simulation techniques detailed in the preceding section.
The ease with which spilled material can move along
the collecting surface, may slightly a�ect the spill
geometry.

Figure 6b represents the resulting shape of the
spill of beads using simulations, where a static coe�-
cient of friction, �p = 0:65, is used. The linear region

Figure 6. (a) A snapshot of a spill of roughly mono-sized
sodium formate granules onto a 
at surface. The particle
diameter is dp � 1:5 mm. The straight line represents the
slope of the linear region. In this case, the angle of repose
is roughly 33�; (b) An instantaneous con�guration of
particles slightly before the 507th particle collides in the
pile.

characterized by the angle of repose, as depicted in
Figure 6a, is satisfactorily reproduced by the model
detailed in the preceding section, whose results are
shown in Figure 6b. A slightly higher coe�cient of
static friction has to be used to model the sliding
movements of particles over a 
at surface made of
steel. Here, the coe�cient of static friction is set to 0.8
for grain-steel sliding contacts. The base of the 
at
surface is supported, so that no movement is possible
in any direction. The experimental result, as displayed
in Figure 6a, is fairly well reproduced by the present
model, implying that the correct physical framework
has been incorporated.

Solubility

Solubility is the amount of sodium formate that will
dissolve in the water. Solubility of sodium formate
has special signi�cance in the design of brine-mixing
tanks. In this section, a classical particle dissolution
rate expression is developed, which will be used to
predict particle dissolution rate phenomena in the
discrete model detailed in preceding sections. Consider
a single grain of sodium formate, which dissolves in the
surrounding water, as shown in Figure 7. When there
is little sodium formate already in solution, dissolving
takes place rapidly. As the solution approaches the
point where no sodium formate can be dissolved,
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Figure 7. A di�usion model for the dissolution of a single
grain of sodium formate in water. Shown are the
concentration �eld within the solid phase,
Cs(r) = Cs = constant (r � Rp), and the concentration
jumps across the interface, �Ceq = Cl0 �Cs, at the solid
surface. Note that the solution has lower average
concentration of sodium formate, C1, than the
equilibrium value Cl0.

dissolving takes place more slowly. In this case, adding
heat is one way to increase solubility.

The goal is to �nd both the dissolution rate and
the concentration pro�le around a single, stationary
grain of sodium formate. The mass balance in spherical
coordinates originating from the center of the grain
may be given as:

@Cl
@t

=
1

r2

�
@

@r

�
Dsolr

2

�
@Cl
@r

���
: (21)

Assuming that the di�usivity, Dsol, changes insigni�-
cantly in the radial direction, Equation 21 reduces to:

@Cl
@t

= Dsol

�
@2Cl
@r2

+
2

r

�
@Cl
@r

��
; (r > Rp):

(22)

The solution to this problem, using a spherical trans-
form variable, u = Clr, and then taking the Laplace
transform with respect to time, may be given as:

C� =
Rp

r
erfc

 
(r=Rp)� 1p
4Dt

sol=Rp

!
; (r=Rp � 1): (23)

The solution (Equation 23) indicates that, at short
times, namely; t << R2

p=�Dsol, an expression for the

interfacial 
ux may be given as J(t) �=
p
Dsol=�t(Cl0�

C1), whereas, at long times, namely t >> R2
p=�Dsol,

it simpli�es to a value that depends on the grain size,

as given by J(Rp) �= Dsol(Cl0�C1)=Rp. This suggests
that using the smaller size grains may increase the
interfacial 
ux.

The interface, as illustrated in Figure 7, moves
during the dissolution processes. Note that the posi-
tion of the interface can be tracked by the interface
characteristic, Ksphere = (Rp(t) � Rp0)=

p
4Dsolt. It

is straightforward to obtain the expressions for the
characteristic equation:

2(Ksphere)
2
h
1�p�Kspheree

(Ksphere)
2

erfc(Ksphere)
i
=�S;
(24)

and the interfacial speed given as:

dRp

dt
= (Ksphere

p
Dsol)t

�1=2 =
�p
t
: (25)

The di�usion layer thickness may be predicted, using
the following expression:

�B
Ksphere

=
�S

2(Ksphere)2
: (26)

As shown in Figure 8, the thickness of the boundary
layer decreases with increasing the magnitude of satu-
ration, jSj. Note that the ratio between particle size
and di�usion layer thickness is an important factor in
controlling the shape of the particle dissolution pro�les.

The solution concentration, C1, increases with
time, due to continuous dissolution of sodium formate
granules in water. However, the local concentration
could be nearly uniform everywhere within the mixing
tank, due to perfect stirring induced by the axial

ow turbine. In this light, if the kth grain dissolves
at the rate of 4�Jk(t)R

2
p, then, the total rate of

accumulation of sodium formate in the tank per unit

Figure 8. Variations of dimensionless di�usion layer
thickness with saturation.
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volume is
PNp

k=1 4�Jk(t)R
2
p=Vwater. Thus, the average

local concentration, C1(t), may be given as:

C1(t) = 4�=Vwater

Z t

0

NpX
k=1

Jk(t
0)R2

kdt
0:

In actual situations, as illustrated in Figures 9 and 10,
the dissolution is not di�usion-controlled and can be
complicated by the translational and rotational motion
of the particles, as well as particle-particle interactions.
In this case, the mass transfer coe�cient [26] may
be estimated using Sh = 2kRp=Dsol = (2(1 � �s) +
ARe�pSc

�). Currently, no information exists for the
coe�cient of A and power �. However, it is reasonable

Figure 9. A perspective view of initial con�guration of
sodium formate grains in the mixing tank. Roughly
2 � 106 monosized particles with diameter of 1.5 mm are
used in the simulation.

to assume that � � 0:33 [27]. Note that k characterizes
the stirring induced by the movements of the grain,
which brings fresh portions of the water in contact
with the sodium formate, thereby, increasing the rate
of solution.

The simpli�ed di�usion layer model presented in
this section provides an approximation for estimat-
ing the dissolution rate and the concentration pro�le
around the grain of sodium formate in a brine-mixing
tank, as illustrated in Figure 1a.

Liquid Phase

To predict the solution 
ow �eld in the mixing tank,
a generalized form of the Navier-Stokes equations for
the solution interacting with sodium formate granules
is used which may be given as:

(�sol(1� �s)ui);i � (�sol(1� �s));t = 0; (27)

(�sol(1� �s)ui);t + (�sol(1� �s)uiuj);j =

� ((1� �s)p);i + ((1� �s)�ij);j

� (1� �s)�solg�iz + fi: (28)

The last term on the right hand side of Equation 28
represents the particle e�ect on the solution, which
is given as the sum of all hydrodynamic forces on
the particles in a computational cell, namely fi =
�1=(Vc(1� �s))

PNc

s=1 F
D
i .

By applying the Gaussian �lter G(xi � �i) =

(
=��
2
)1=2 exp(�
jxi � �ij2=�2

) with �lter width
�i(i = x; y; z) (taken equal to the grid spacing)
to Equations 27 and 28, the �ltered equations are

Figure 10. Temporal evolution of position of sodium formate grains in the mixing tank. Roughly 2� 106 initially
monosized particles with diameter of 1.5 mm were used in the simulation. The angular velocity of the axial 
ow turbine is
set at 925 rpm. The instantaneous realizations each separated by roughly 0.25 sec. Movements of particles can be clearly
seen.
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obtained as follows:

(�sol(1� �s)ui);i � �sol(1� �s);t = 0; (29)

(�sol(1� �s)ui);t + (�sol(1� �s)uiuj);j =

� ((1��s)p);i + ((1��s)�ij);j

� (1� �s)g�sol�iz + f i: (30)

Notice that any quantity, such as ui in the 
ow domain,
can be decomposed as ui = ui + u0i, where u0i is
the subgrid-scale part that accounts for the scales not
resolved by the computational grid.

Equations 29 and 30 look like the equation of
motion of a 
uid of variable density, � = �sol(1 � �s).
Hence, a Favre �lter can be de�ned as:

�

ui =
�ui
�
: (31)

This gives rise to the alternative decomposition, ui =
�

ui + u00i , where u
00

i represents the subgrid-scale part ui,
based on Favre �ltering. The Favre �ltered governing
equations are given as:

(�
�

ui);i � �;t = 0; (32)

(�
�

ui);t + (�
�

ui
�

uj);j=�
�
(1� �s)

�

p
�
;i
+
�
(1� �s)

�

�ij

�
;j

+ �ij;j � �g�iz + f i: (33)

In Equation 33, the molecular stress tensor and the
subgrid scale stress tensor are given as:

�ij = �2

3
�solup;p�ij + �sol(ui;j + uj;i); (34)

�ij = ��
�
]�
ui
�

uj � �

ui
�

uj +
]
u00i

�

uj +
]�
uiu00j +
]u00i u

00

j

�
:
(35)

As a tentative �rst attempt at closure, the LES
equations, Equations 32 and 33, may be closed with
a subgrid-scale model for �ij given as [28]:

�ij = ��(]�ui�uj �
�

�

ui

�

�

uj)

+ 2C1��
2
i (
�

Smn

�

Smn)
1=2

�
�

Sij � 1

3

�

Spp�ij

�

� 2

3
C2��

2
i (
�

Smn

�

Smn)
1
2 �ij ; (36)

where C1 and C2 are dimensionless constants, whose
values may be determined by correlating the results of
analysis, such as that detailed in an earlier work [16].
However, a highly resolved 
ow �eld is required to

estimate the aforementioned constant accurately. Note
that Speziale et al. [28] have found that the values of
constants C1 and C2 for compressible turbulence are
0.012 and 0.0066, respectively.

The subgrid-scale model (Equaiton 36) was origi-
nally proposed for compressible turbulent 
ow. In the
present study, the model (Equaiton 36) is tested to
clarify its relevance for dense water-sodium formate

ows in the mixing tank, as illustrated in Figure 1,
for which the 
uctuating �elds might not be small
compared with those of the mean �elds.

Sample Results

By performing the simulations based on the discrete
model outlined in the preceding sections (which con-
tains only a few empirical parameters), an increased
understanding of the dynamics of dense liquid-particle

ows may be obtained in a mixing tank. Here, the
main goal is to address problems such as caking in a
brine-mixing tank.

The system, as illustrated schematically in Fig-
ure 1, represents a virtual type of brine-mixing tank.
The simulation is performed using pure water with air
above in a cylindrical mixing vessel. An axial 
ow
turbine is located in the center of the vessel, as shown
in Figure 1a. The rotor and impellers are made of
steel, whose physical properties as an elastic material,
are presented in Table 1. The 
ow is driven by the
rotational motion of the axial 
ow turbine in a xy-
plane, given as ! = !ez.

The particle dynamic type simulation is per-
formed to calculate the motion of particles in the
liquid. The contact force, as described in the preceding
section, is used to capture the major features of grain
interaction. A particle dynamic model is employed to
account for particle contacts of �nite duration, in which
the viscoelastic behavior of the particles is represented
using a nonlinear Hertzian type model, as presented in
the preceding section. Note that the use of a nonlinear
viscoelastic model is essential for capturing granular
structure formation and caking phenomenon in the
mixing tank.

Roughly 2 � 106 identical, slightly overlapping,
spherical sodium formate particles with an initial di-
ameter of dp0 = 1:5 mm are used to �ll the tank, as
illustrated in Figure 1a. The initial con�guration of
sodium formate particles in the tank is illustrated in
Figure 9a. The free surface, which was a heap type
before mixing began, was located at h�0 = h0=dp � 35.

Equations 17 and 20 are integrated using 4th
and 5th order embedded formulas from Dormand and
Prince [29], with �t = 5 � 10�8 s. The calculation of
drag force acting on a particle requires knowledge of the
local averaged values of the 
uid velocity components
at the position of the particle in the Lagrangian
grid. Due to the numerical solution method detailed
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below, these variables are only known at discrete nodes
in the domain. Hence, a mass weighted averaging
technique [30] has to be employed for calculating the
averaged quantities in the Lagrangian grid.

The solution of the gas �eld requires the compu-
tational domain, as depicted in Figure 9, to be divided
into cells. The calculation of the gas is based on
the numerical solution of the set of partial di�erential
Equations 32, 33 and 36. The 
ow is resolved using
5 � 105 tetrahedral cells. The mesh-spacing of this
grid should be larger than the particle diameter. The
solutions of Equations 32 and 33 require speci�cation
of the solids fraction at the appropriate grid nodes.
The value of the solids fraction is obtained from
particle dynamic simulations by counting the volume of
particles within each computational cell divided by the
volume of the cell. The linear interpolation routines are
used to communicate the information from grid-nodes
to particle positions and vice-versa.

The governing equations are fully solved with a
second-order �nite volume method on a staggered grid,
where the time is advanced via a second-order implicit
scheme. The time step for the liquid phase equals
10�5 s. The grain size shrinks with time, due to the
dissolution of sodium formate in the water. Using
the di�usion layer model presented in the preceding
section, the particles shrink with di�erent dissolution
rates. Here, the Sherwood number is estimated as Sh =
[2(1��s)+0:86 Re0:55p Sc0:33] using the LES technique,
whose sample results are presented in Figure 4. The
new particle size is calculated every 5� 10�4 s.

Notice that it is assumed that the shape of the
grains is always spherical, as illustrated in Figure 10. In
actual situations, it is likely that the particles become
non-spherical, for which no reliable expression exists
for drag force, such as that presented in Equation 15.
These complexities are neglected at this stage.

The collision time of �ne particles, as illustrated
in Figure 11, having small impact velocity, could be
signi�cantly large, which may even be in the order
of 10�3 sec. This observation suggests that, by

Figure 11. Di�erent views of an instantaneous
con�guration of the sodium formate particles after nearly
t � 2 sec of simulation in which the rotation speed of the
four blade pitched blade turbine is set to ! = 925 rpm. In
the insets, only about 5000 particles are shown.

adding the adhesive force between sodium formate
grains, the collision becomes completely plastic, with
no restitution period after the approaching period
during a collision. In this light, exceeding a critical
size for grains phenomena, such as caking, might be
prevented. The results, as illustrated in Figure 12,
suggest that a combination of tangential and axial
action may guarantee ideal mixing [31].

Notice that the role of the adhesive force between
the grains in the development of large solid structures
in a brine-mixing tank merits further investigation.
It is likely that non-spherical structures will form in
actual situations. These complexities are neglected at
this stage.

Fluid Structure Interaction

Mixing processes in a mixing tank appear to be of
an interdisciplinary nature, comprising those physical
phenomena which involve signi�cant mutual interac-
tion among hydrodynamics and structural forces. The
problem involves signi�cant nonlinearities and viscous
e�ects, but, nothing that could be termed a systematic
theory has been developed to date.

The advantage of the proposed approach is that
issues such as Fluid-Structure Interaction occurring in
the mixing tanks, can be investigated. Figure 13a
illustrates the velocity �eld at the rotation speed of
the turbine of ! = 250 rpm. As can be seen from
Figure 13a, the 
ow of a solution-particle mixture at
su�ciently strong rotation may lead to the anisotropic
structuring of turbulent eddies. This may cause elastic
deformation of the impeller, as depicted in Figure 13c.
The deformation of the rotor, in turn, could change the
boundary condition of the 
uid problem signi�cantly.
Using an approach outlined in [32], the deformation
of the rotor and blades of the axial 
ow turbine in
a mixing tank can be predicted. In this case, the
analysis should provide a strong coupling between the

Figure 12. Tank with mixing turbine. (a) An
instantaneous con�guration of solid particles in a high
speed axial 
ow turbine; (b) A typical con�guration of
solid particles around the Ruston turbine which rotates at
! = 400 rpm [31]; (c) Combination of tangential and axial
action that guarantees ideal mixing.
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Figure 13. (a) The instantaneous velocity vector �eld in
a cutting xz- and yz-planes passing through the revolving
axis of the impeller of the mixing tank; (b) A �nite
element grid for the rotor and blades; (c) Deformations of
the elastic rotor caused by rotating liquid-particle system.
The rotor and blades are color-coded using the local
displacement magnitude where the red color represents
signi�cant displacement as large as 5.0 mm.

dynamics of liquid-particle 
ow and the dynamics of
structures. Using a �nite volume approach for the axial

ow turbine [32], a coupled system is developed, in
which the interaction forces between 
uid and structure
are accounted for and the resultant motions of the rotor
are predicted, as illustrated in Figure 13c.

Presently, no details, such as the 
ow dynamics
of sodium formate grains in a mixing tank at di�erent
rates of rotation of the turbine, can be provided, using
even the simpli�ed approach described above. Limi-
tations in the available computational resources urge
using an alternative approach, such as a continuum
approach, which has been proposed in an earlier work
[16]. Indeed, the discrete model developed in this
paper provides substantial insight into the physics of a

mixing tank, which could lead to improved constitutive
equations for continuum models.

SAMPLE RESULTS OF CONTINUUM

MODEL

Further exploration of a mixing tank requires a dif-
ferent routine, along with the present approach. To
this end, the approach suggested in [16] is generalized
to investigate the dynamics of liquid-particle 
ows in
a mixing tank. The results presented in this section
suggest that the continuum model retains the essential
features that characterize the liquid-particles 
ows.
Impressions of the distribution of solid particles for a
mixing tank, as illustrated in Figure 1, are given in
Figure 14. The free surface of the sodium formate, as
depicted in Figure 9, located at h� � 35, was nearly 
at
before mixing began. Solid concentration, as predicted
by the model after t = 2 sec of continuum type
Eulerian-Eulerian simulation, is depicted in Figure 14b.
In this case, the initial solids fraction is set to �s = 0:55
and the rate of rotation of the axial 
ow turbine
is ! = 925 in the z-direction. The particle size
is 1.5 mm. No dissolution model is used in the
continuum model. As can be seen from Figure 14b, the
results of the continuum model compare favorably with
those obtained by molecular dynamic simulation, as
illustrated in Figure 14a. More results will be presented
in the sequel to this paper, in which the details of
a continuum approach for liquid-particle 
ows will be
discussed.

CONCLUSIONS

A generalized model was build for reliable and accurate
predictions of complex, multi-phase processes. The
use of a model was presented in investigating the
dissolution of sodium formate grains in a mixing tank
with an axial 
ow turbine. A detailed overview has
been provided of processes in liquid-particle 
ows to

Figure 14. (a) An instantaneous con�guration of grains
taken from Figure 11; (b) Sample results of continuum
model for the distribution of solid volume fraction in the
mixing tank in a cutting yz-plane taken after 2 sec; (c)
The pro�le of solid volume fraction along the thick solid
line as shown in (b).
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obtain insight into the hydrodynamics of a mixing
tank and to arrive at a simpli�ed but realistic model
for a mixing tank. The simpli�ed model includes
an equation of motion for spherical sodium formate
particles having repulsive and dissipative interactions
with its neighbors. In addition, the liquid-particle
interactions are taken into account, using an empirical
formula for drag force exerted by the liquid on the
particles. In addition, the simpli�ed di�usion layer
model is presented, in order to estimate the dissolution
rate and the concentration pro�le around a grain of
sodium formate in a brine-mixing tank.

The model is tested through its application to
describe the origin of phenomena, such as caking.
While progress on the computational and theoretical
fronts has been encouraging, there are still many
many open problems, including the missing physical
properties in Table 1. In addition, the exact role of the
adhesive force in the development of large structures in
a mixing tank merits further investigation. Note that,
due to limitations in available computational resources,
neither current details, such as the 
ow dynamics
of sodium formate grains in a mixer with di�erent
rotational rates of the impeller, nor the in
uence of
particle size on the dissolution of sodium formate, can
be provided.

Limitations, as mentioned above, in available
computational resources, urge that further exploration
of a mixing tank requires a di�erent routine, along
with the present approach. To this end, in the
sequel to this paper, as an alternative approach, a
continuum approach will be proposed, which retains
the essential features that characterize the liquid-
particle 
ows. This attempt might help in overcoming
the di�culties which lie in building a comprehensive
hydrodynamic theory for the next generation of mixing
tanks.

Future plans also include further research into a
micro-level mixing topic, which deals with liquid-solid
(solid-liquid) mass transfer across a phase boundary.
The problem deals more with the rate of the mass
transfer and less with the physical distribution of
the solids. Notice that the solids can be porous
catalysts for catalytic reactions, active agents for
adsorption, polymers and co-polymers for suspension
polymerization, or particles that need to be dissolved
or coated.

NOMENCLATURE

A projected area of particle

Cij interaction between large and small
scales

CLR lift coe�cient due to particle rotation

Cl concentration of sodium formate
within the boundary layer de�ned as
�ISF�SF + �w(1� �SF)

Cl0 concentration of sodium formate at the
solid surface

Cs concentration within the solid phase

C1 average concentration of sodium
formate de�ned as �ISF�SF1 + �w(1�
�SF1)

D impeller diameter

Dsol coe�cient of di�usivity of sodium
formate (liquid) in water

dp particle diameter

dp0 initial diameter of particle

E Young modulus

ei tangential unit vector

eVimp
s;jp unit vector in the direction of relative

impact velocity

el unit vector used in Equation 16

F fraction of a control volume occupied
by the liquid

F b
i Brownian force due to thermal motion

of the water

FD
i drag force

FF
i drag force from 
uid

F g
i gravitational force

F i
i force due to particle-particle interaction

F s�
i volume form of the surface tension

FLG lift force due to velocity gradient

g acceleration due to the gravity

G0 instantaneous (glassy) shear modulus

G1 long time shear modulus

H tank height

h height

J moment of inertia of particle j

J(t) interfacial 
ux

Kn coe�cient characterizing the viscous
behavior of the grains, as given in
Table 1

kt elastic modulus in a tangential
direction used in Equation 16

ktest kinetic energy

Ksphere interface characteristic de�ned as
R(t)�R0=

p
4Dt

e�

L linear size of the tank

Lij interactions among the large scales

mp particle mass

N revolution frequency of the impeller
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Nc number of particles in the cell

Nj number of neighboring particles in
contact with the jth particle at time t

p pressure

R distance from the axis of rotation

Rij interaction between the subgrid scales

r distance from center of particle

Rp particle radius

S dimensionless saturation de�ned as
(Cl � C1)=(Cl � CS)

Ti;j torque on particle j

ui liquid velocity

Vwater volume of water in tank

V p
i particle velocity

Vc volume of a computational cell

Greek

� parameter as de�ned in Equation 25

"ijk alternating tensor

�s solid volume fraction of sodium
formate (solid phase)

�SF volume fraction of sodium formate
(liquid phase) around a grain

�SF1 volume fraction of sodium formate
(liquid phase) in mixing tank

!i rotational velocity of particles

! angular velocity of rotation of impellers

!R particle rotational velocity relative to
liquid vorticity

� relaxation time as given in Table 1

�ij subgrid scale tensor

� surface tension coe�cient

�ij viscous stress tensor

�w kinematic viscosity of the liquid

�p Poisson's ratio

� apparent density

�g gas density

�m mixture density

�p material density of the grains

�w water density

�sol solution density

�ISF sodium formate (liquid phase) density

�ij Kronecker delta

�̂jp deformation of largest asperities
(represents overlapping between the
pth and jth particles)

�BL di�usion boundary layer

�jp tangential displacement

�g gas viscosity

�m mixture viscosity

�sol solution viscosity

�p surface friction coe�cient

Superscript

overbar spatial �lter

Dimensionless Number and Parameters

Fr Froude number de�ned as ((1��s)jui�
V p
i j)2=gL

Retank tank Reynolds number de�ned as
ND2=�w

Re particle Reynolds number de�ned as
(1� �s)dpjui � V p

i j=�w
RO Rossby number de�ned as L=u0!

St Stokes number as de�ned in
Equation 13

Sc Schmidt number V=Dsol

CD drag coe�cient 24=Rep(1+0:15Re0:687p )

C� dimensionless concentration

h� dimensionless height de�ned as h=H

h�0 initial dimensionless height of sodium
formate in the tank
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