Scientia Iranica, Vol. 6, No. 1, pp 43-50
(© Sharif University of Technology, January 1999

Research Note

A New Transformation Technique for Accurate
Estimation of Partly-Occluded Ellipse Parameters

A. Shamaie!, S.M. Fakhraie* and B. Benhabib?

One of the main problems in the area of recognition and accurate pose-estimation of objects
is estimation of the five basic parameters of elliptical shapes, present in an object, based on
a set of edge-point data collected from occluded images. In this paper, a new error function,
a numerically-efficient transformation and a new analytical algorithm for achieving the desired
prediction accuracy are introduced. Some experimental results are also provided.

INTRODUCTION

Flexibility of a robotic work-cell can significantly be
enhanced via the utilization of visual sensors within
the process. Much research work has been reported
regarding the process of sensing the position and
orientation (pose) of objects.

Identification of work-pieces or sub-assemblies,
determination of the pose and estimation of the salient
features are the major applications of object recogni-
tion in industrial environments [1].

Multiview feature representation based on either
the characteristic views of an object or the discrete
view-sphere representation as well as volumetric meth-
ods based on the exact specification of an object have
been developed [2]. However, due to the need for a
3D matching process, these methods are complex and
computationally expensive [1].

Furthermore, several mathematical algorithms
based on the use of markers with circular geometry, for
extraction of 3D coordinates from the markers’ images,
have already been developed [3-5]. In addition, some
error functions and their geometrical interpretations
have been proposed [1,6,7].

In this paper, some error functions and their
geometrical interpretations are formulated. A new
error function, based on a novel geometrical interpre-
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tation of an existing error function is defined for the
estimation of five basic ellipse parameters. Then, a
new transformation based on the distance of ellipse
edge points to the center of coordinates is proposed.
Moreover, an analytical algorithm is developed through
which the previously defined error functions and the
transformation proposed here are combined. Finally,
the results of the simulated experiments are presented.

PARAMETER ESTIMATION OF
ELLIPTICAL SHAPES

Problem Statement

Omne approach to the elliptical parameter estimation
problem is using optimization techniques. From a
mathematical point of view, the fitting of a conic or
several conic sections to a set of data has been ad-
dressed in various papers [8,9]. Also, some applications
have been addressed in other papers discussing this
problem [1,6,7]. Alternative methods have been in-
vestigated for dealing with the same problem, namely:
using the Hough Transformation for the detection of
curves [10]; using a modified Hough Transformation
for the detection of ellipses [11]; decomposing the five-
dimensional Hough Transformation space into three
sub-spaces based on the edge-vector-field properties of
ellipses [12]; estimating the parameters of an ellipse
by combining transformation, projection and optimum
approximation techniques [13] and elliptical-shape pa-
rameter extraction through using the moment and
Fourier descriptors [7].

Herein, it is assumed that the input data have a
high degree of accuracy. This leads to the following
definition of the problem:
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Figure 1. Five basic parameters of an ¢llipse.

“Given a set of 2D-image coordinates of edge points
of an occluded-ellipse, it is required to determine
the best ellipse that fits the peints and subse-
quently estimate its five basic parameters (Fig-
ure 1), namely, location: (X,Y") (ellipse center),
orientation: © (the angle between the z-axis of the
computer-image frame and the major axis of the
ellipse), and shape: A and B (major and minor
radii, respectively).”

Estimation of Parameters

Since the objective of this research is achieving a high
degree of accuracy in parameter estimation of occluded
ellipses, naturally, solutions have been| chosen that yield
the most accurate results. The reader should refer
to some comparative papers regarding the accuracy of
different estimation methods {7].

Previous Error Functions for Parameter

Estimation

The five parameters of an ellipse, | based on a set
of 2D coordinates, can be estimated by defining an
error function and then minimizing it. However, the
accuracy of the estimation process|depends on the
geometrical nature of the error function.

The Error Function J, and Its Geometrical Nature
Let:

QX,Y)=aX?+bXY +cY?+dX +e¥Y +f=0
(1)

be the general equation of an ellipse. Moreover,
let (X;,Y:), i = 1,...,N be a set|of points fitting
an elliptical shape. If this set of 2D coordinates
includes the edge points of an elliptical shape, it should
be applicable to the general equation of the ellipse.
Therefore, the quantity Q(X;,Y;) vanishes if the point
(X;,Y;) is on the ellipse. It is negative, if the point is
inside, and positive, if the point is outside.
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o X
Figure 2. Distances of an edge point (P) and the cross
point (P') from the ellipse center.

The least-squares error criterion is one technique
to fit an ellipse to a set of N points. In this technique,
the following function should be minimized:

N

Jo =Y QXY . (2)

i=1

Thus, the objective is to determine the six parameters
a, b, ¢, d, e and f of an ellipse in a way that Jp
is minimized. This error function has been used by
different researchers. Bookstein [9] proved that (with
reference to Figure 2):

dy
d

d

(_+2)] ’ (3)

Q(Xi,Yi) 0<[ d

where (d; /d) is the ratio of the distance point-to-conic
(PP’) and center-to-conic (P'O’) boundary along the
ray PO'.

The analysis of the solution method [14], which is
based on the constraint f = 1 (implying normalization
with respect to f) has been shown in [1,6]. In this
paper, a review of this method is presented while
discussing the new approach.

By applying the normalization with respect to f,
the equation of an ellipse becomes:

QX,Y)=aX?* +bXY +cY?*+dX +e¥Y +1.
(4)

Now, using the least-squares error criterion, the error
function J; will be defined as:

N
L=Z@%%W~ (5)

A Geometrical Interpretation for Jy
Let (X;,Y:), ¢ = 1,.,N) be a set of data
points and the parameters of the optimal ellipse be
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(X0,Y5,0,4,B). Also, let (Xo,Y,0,A4’, B') be the
parameters of another ellipse that passes through the
data point (X,,Y;). The two ellipses are concentric
with the same orientation (Figure 3). An error can be
defined as the difference between the areas of the two
ellipses as,

e;=5-5. (6)
It has been shown that [1],

d.2
e; = TAB(1 - d—g) , (7)

t

where d; = P’O’, and d; = PO’.
By defining 6¢i = d! — d;, Equation 7 can be
rewritten in the following form:

€ = WAB[%(% +2)]. (8)

Safaee-Rad et al. [1] have proven that the error defined
by Equation 7 can be written as,

€; = _.FAB[Q(XN Y:L)]fEF s (9)
where,

(A?sin® © + B? cos® ©)

A2B2 ’
- 2(B? — A?)sin© cos ©
- A2B2 ’
_ (A%cos’ © + B?sin” 0)
€= A2p? ’

F=aX§+bXoYo+cYZ -1,

(¢} X

Figure 3. The area difference between two concentric
ellipses.
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and Q(X;,Y;) is the equation of an ellipse, in which the
constant term is normalized with respect to F. Based
on Equation 9, the error function J; is defined as,

- 1 112 Al € 12
Bo=) =g = S0P =3 —5l
i=1 i=1
N
=D QX Yil=p - (10)

The comparison of J, and J; demonstrates that
the only difference between them is that in Jy, f =
F, while in J;, f = 1, which is only a constant
multiplication factor. Thus, it can be concluded that
the two error functions are equivalent.

Based on this interpretation of the error function,
another error function, Js, has been defined, in which
the contributions of the data points to the error
function are uniform.

Error Function Js

To normalize the contribution of each data point to
the error function, a weighting factor has been defined.
This weighting factor is a function of the position of
an individual data point. Let §; be the distance of a
particular data point from the optimal ellipse (PP').
The amount of error due to this data point is:

62 + 2d;4;

er = TAB]| 7

] (11)

If this point was on the major axis of the optimal
ellipse, with the same §;, the error would be:

82 + 246;
A2

Through using the above two equations for a data point
(Xi,Y;), the following weighting factor can be defined:

e _ 4 [ 0+5s)
w"el“(A)[(H;;i)J ' 1)

€9 :WAB[ ] . (12)

Based on this weighting factor, the error function J3
has been presented as follows:

N N

Ty =Y w5 (5 — SO = YU Yl

i= =1

N
— E[wiQ(Xi,Y.;)]feEl . (14)

=1

To obtain each w; for each individual data point,
one must have an initial guess of the optimal ellipse
from which 6; and d; can be estimated for each data
point. For this purpose, using the optimal ellipse
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that has been obtained by minimiz]
function is proposed herein. After

ng the J; error
minimization of

each of the above error functions, a solution vector

= (a,b,c,d,e) will be obtained. The

five parameters

of an ellipse can then be estimated using the following

equations,
2cd — be
Xog= ——
7 B2 —4ac’
2ae — bd
Yy = —oo—
7 2 " dac’

O = arctan [(c— a) ++/(c —a)? +52-:| ’

b
4% = {%} [(c+a>+ (c—la) +b2}
v = [ oo -V
where:
F, = bde—ae® —cd (16)

b? — dac

A NEW ERROR FUNCTION
Proposed Error Function (oef)

In our newly-defined error function (oq

f), the contribu-

tion of each individual data point has been normalized.

A weighting factor has been defined w

hich is a function

of the position of each individual data point.
Let 6, be the distance of a particular data point

to the optimal ellipse. The amount of

data point is:
2 5.
e; = TAB {61+—3d’61]

d;

error due to this

If the point with the same §; was on the minor axis of

the optimal ellipse, the error would be:

2 )

BZ

By using Equations 16 and 17, th
weighting factor for a data point (X,

(L+35)
1+ 35)

Based on this weighting factor

function (oef) is introduced as follows:

N

=

=1

S SH)?

oef = Z{wz
N
Z QXL Y2y

(17)

following new

Y;) is defined:
(18)

the new error
QXL Y=

(19)
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This error function differs from J3, (Equation 14) in its
weighting factor, as observed by comparing Equations
13 and 18.

Classification of Different Application
Examples

The occlusion of ellipses might be of different forms.
In Figure 4, several types of the occluded ellipses are
shown.

For each ellipse, after constructing each of the
above error functions, one should minimize and extract
the unknown parameters of the error function. This
minimization process chooses the parameters obtained
from the error function with an optimized value very
close to zero. The above discussed error functions
have five independent parameters and the minimiza-
tion process can be performed using an appropriate
optimization technique. Omne of the most efficient
methods is the quasi-Newton technique, which has the
advantages of the classical Newton method in rapidly
and accurately minimizing a function and also the
capability of searching for a global minimum.

One of the important parameters in function mini-
mization through the quasi-Newton method is the ratio
of the maximum to minimum eigenvalues of the Hessian
matrix of the function. It has been demonstrated in
[15] that if the algorithm for finding the minimum of
a function converges to a local minimizer X* (where
V2f(X*) is positive as well as definite, and evmax
and evmin are the greatest and smallest eigenvalues of
V2 f(X™)), then one can show that {X,} satisfies:

| Xprr — X ||
I Xe =X —

€Vmax ™ €Vmin

lim sup

k—oo

c, c={—mM™———) ,
€Vmnax + e'/min(20)

in a particular weighted /3 norm, and that the bound
on “c” is tight for some starting Xo. If 72f(X*) is
suitably scaled with evmax = €Vmin , then “c” will be

very small and convergence will be fast, but if 2 f(X*)

—~ O CD

C

N\
g e Y,

Figure 4. Some of the possible forms of partly-occluded
ellipses.
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(13 ’7

is poorly scaled, then will be almost 1 and the
convergence may occur very slowly.

Therefore, by reducing the above discussed ratio,
the optimization process will work more efficiently. In
this paper, this ratio is referred to as the maximum-to-
minimum eigenvalue ratio (MMER) for simplicity.

In the previous section, two different error func-
tions were discussed in which the contribution of each
edge point has been considered in construction of
the error functions. In these two error functions
(J3 and “oef”), the existence of weighting factors,
which are always smaller than 1, will greatly affect
the coefficients of the variables which consequently
will change the difference between the maximum and
minimum eigenvalues of the Hessian matrix of the error
functions J; and “oef”. Based on the definitions of
the error functions and the difference between their
weighting factors, in various cases of occlusion, MMER
for error function “oef” is different from MMER for
J3. In some cases, MMER for “oef” is smaller than
MMER for Js, implying that the minimization process
of the “oef” error function converges faster and more
accurate results are obtained in comparison to J3 error
function. However, in some other cases, the reverse
situation occurs.

Based on a comparison between MMER of J; and
“oe f” error functions, a new algorithm is developed for
the rapid and accurate extraction of the parameters of
a partly-occluded ellipse.

A NUMERICALLY-EFFICIENT
TRANSFORMATION

By simplifying the error function J;, based on its
parameters and coefficients, the following is ob-
tained:

ZX“ a? +( ZX Y2)b? + ZY“
+(Z Zyze +2[ZX Yi)ab
ZX2Y2 ac + ZX3 Jad + ( ZX Yia
+ (Z X?)a+ (Z X:Y3)be + (Z X2Y;)bd
+ (Y] XY be + (3 XY+ (3 Xi¥)ed

+ (oY ee+ (3 Ve + (Z X.Y;)de

+ (Z X;)d+ (Z Yi)e + %n] (i from 1 to n) ,
i i (21)
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In the above equation, there is a symmetrical
relation between X and Y coordinates of edge points
constructing the coefficients of the error function. If
there is a large difference between the values of X and
Y coordinates of edge points, as can be seen from the
parameteric form of Jy, the differences between the
elements of Hessian matrix of error function J; become
significant. Let,

25 XY L XY T XYY
Zi X?}/i 221' X?Yf Zl Xiyis
H= Zz X¢2Y1'2 Zz XiYiB 2 El Yf (22)
Ei X‘LS Zz XiQYi ZiXiYi2
Zi Xz'ZYi Zi XiYiZ ZiYiB
XD XX
> XY .

be Hessian matrix of error function J;. Referring to
Gerschgorin theorem [15], a large difference between X
and Y parameters causes a great difference between the
related elements of H matrix, which itself results in a
greater difference between the center of regions where
the eigenvalues might exist. As a result, a larger value
for MMER is obtained. This means that the ratio of the
maximum to minimum eigenvalues of Hessian matrix
of error function J; becomes large and diverges from
1. As discussed in the previous section, this leads to a
low speed or failure in convergence.

If all of the edge points move in the direction of
one axis, namely, the mean value of the coordinates
of points in that direction is larger than the other,
the difference between the maximum and minimum
eigenvalues of the Hessian matrix of J; will be reduced,
and the optimization process will converge faster and
more accurately than before. Based on this point of
view, a Transfer-to-Center transformation has been
proposed that strongly affects the accuracy and speed
of the optimization process.

In this transformation, first the mean values of
X and Y coordinates of the edge points are obtained
and, then, if there is a large difference between these
two values, a constant will be subtracted from the X
or Y coordinate (whichever has a larger mean value)
of all edge points (e.g., if the mean of ¥ coordinates
is larger than the mean of X coordinates all the edge
points in the direction of ¥ axis are moved closer to
the center). This constant value can be equal to the
difference between the above two mean values. Also, if
these two values are far from the center point (0, 0), two
constant values are subtracted from the coordinates
of edge points. These constants can be close to the
minimum value of each set of coordinates.
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related algorithm in the next section.

ANALYTICAL

Details of this transformation are discussed in a

PARAMETER-EXTRACTION ALGORITHM

In the proposed new algorithm, more

accurate results

are obtained using the Transfer-to-Center transforma-
tion and a combination of three different error functions
(J1, J3 and “oef”). In this method, comparing MMER
for J3 and “oef” error functions determines the way the

algorithm is completed.

1.

. Use the coordinates of the edg

The proposed algorithm is show

Transfer-to-Center Transformation;

a) Determine the mean value of t
of all edge points (p,).

b) Determine the mean value of th
all edge points (fy).

c¢) Compute p = {us — pyl

n below:

he X coordinate

e Y coordinate of

d) d1) If (s >> py), Then: move all of the edge

points in the direction of X
center by subtracting p fro
of edge points, else:
d2)
points in the direction of Y

axis closer to the
m X coordinates

If (up << pty), Then: Move all of the edge

axis closer to the

center by subtracting p from Y coordinates

of edge points.

e) Compute the mean values again.

f) If the mean values are far from the center of

coordinates (0, 0), (e.g. fz, Hy

> 100), Then:

f1) Obtain the minimum values of the X coordi-

nates (mg).
f2) Obtain the minimum values
nates (my).
3) Subtract m, from the X an
coordinates of edge points.

occluded ellipse to construct the J

Minimize the error function J; and
estimation of the ellipse parameter

By using the results of Step 3, co
functions Js and “oef”.

of the Y coordi-

d my from the Y

e points of the
i error function.

obtain an initial
S.

nstruct the error

Compute the minimum and maximum eigenvalues
(eVmin and evpayx) of the Hessian matrix of both Js

and “oef” error functions.

If (eVmax/€Vmin) for J3 is less than t
Then:

6.1 Minimize the error function J:

hat of the “oef”,

and extract the

optimal ellipse parameters. Else:

(2]

6.2 Minimize the error function

the optimal ellipse parameters|

oef” and extract
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7. Transfer the X and Y coordinates of the center of
the extracted ellipse to its main position if necessary
(reverse of the Transfer-to-Center transformation).

End of the algorithm.

EXPERIMENTAL RESULTS

Based on the above analytical algorithm, several exper-
iments are performed in which real images of ellipses
taken by a (512 x 480) CCD camera, as shown
in Figure 5, are used. As a determination of the
satisfactory level of fit, there are different techniques
as used in [1}, or the MSE value of error function.

The Mean Square Error (MSE) function is eval-
uated by using the extracted parameters from each
of the error functions and substituting them in
Zi[Q(Xi,Yi)F as a determination of the satisfactory
level of fit. Therefore, an estimation that yields a result
which makes the MSE value smaller than the other is
preferred.

A set of tables are provided herein to illustrate the
results of these experiments. Each ellipse is occluded
by a surface whose border lines are specified under
the table. In these tables, the first five columns show
the basic parameters of the ellipse and the last three
columns demonstrate the number of iterations, the
value of MSE function by substituting the results of
that row in the specified error function and MMER of
the employed error function, respectively.

In Table la, the original parameters of an ellipse
are illustrated. In Table 1b, the extracted parameters
using J; and improvement of extraction by using “oef”
have been described. In this table, the error function
“oef” has employed the results of J; error function’s
optimization as its initial values and has extracted the

Table 1a. Original ellipse parameters (Figure 5, Picture

1).

X Y © A B

453.20 | 217.37 | 0.0247 | 54.73 | 18.09

1 2
Figure 5. The pictures in this figure have been used here
in the experiments. In these pictures the top-left corner is
(0, 0) and the bottom-right corner is (512, 480).
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Table 1b. Comparison of the results extracted by using J; and oef.

Error Function X Y © A B MSE Value
Ji 444.7315 | 214.3169 | -0.1701 | 57.9433 | 29.4295 8.272 e -4
oef 453.3591 | 218.1202 0.0118 51.9467 | 18.3358 4426 e -5

Occluded by: (z > 441) and (z < 465); Percent of occlusion: %70.64

parameters closer to the original ellipse parameters.
This illustrated the effect of normalization of each data
point contribution to the error function.

In Table 2, the original parameters of another
ellipse are shown. In the next two tables, two different
occluded forms of this ellipse have been employed and
their parameters have been extracted using the above
algorithm. In Table 3, MMER for the error function
J3 is smaller than the error function “oef”. Therefore,
the MSE function has a smaller value and the results
obtained by using J; are more accurate than those of
“oef”. In Table 4, MMER for error function “oef” has
a smaller value than that of J;. Therefore, the MSE
function, by using these results, has a smaller value
than that of J; and the results are more accurate in
this case.

In Tables 5a to 5c, the effect of Transfer-to-Center

Table 2. Original ellipse parameters (Figure 5, Picture 2).

X Y © A B

197.01 | 175.63 | -0.0072 | 69.60 | 47.33

(TTC) transformation has been shown. Because of the
availability of the original ellipse parameters, MSE col-
umn of the tables has been eliminated. By comparing
the extracted parameters in Tables 5b and 5c, it can
be seen that by applying TTC transformation, MMER
value of the Hessian matrix of the error function has
been reduced and the results are much closer to the
original parameters.

SUMMARY

For the estimation of the parameters of a partly-
occluded ellipse, a new weighting factor and a new
error function have been defined. Also, the effects
of the ratio of maximum to minimum eigenvalues of
Hessian matrix (MMER) for each of J; and “oef” error
functions on the accuracy and the convergence time
of the optimization process have been discussed. By
which to combine error functions and the proposed
transformation, a new analytical algorithm for the
extraction of parameters of a partly-occluded ellipse
has also been developed. Finally, the results of some
experiments have been discussed.

Table 3. Comparison of the results obtained by using J3 and oef.

Error Function X Y Q] A B # Iteration | MSE Value | MMER Value
J3 197.6643 | 176.4844 | -0.0071 | 69.5732 | 47.1642 323 5783 e—4 2311 e+ 8
oef 197.6206 177.2977 0.0980 65.0408 | 49.5816 1001 5.400e—3 2.546 e 4- 8

Occluded by: (z > 197) and (z < 207); Percent of occlusion: % 6.5

Table 4. Comparison of the results obtained by using J3 and oef.

Error Function X Y © A B # Iterations | MSE Value | MMER Value
J3 198.4940 176.9712 0.0244 70.6668 | 45.1649 1003 1500 e — 3 3.799 ¢ + 8
oef 196.7609 | 175.9705 | -0.0041 | 69.3955 | 47.0972 167 1.773 e — 4 3.368 e + 8

Occluded by: (y > 140) and (y < 200); Percent of occlusion: % 55
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Table 5a. The ellipse parameters.
X Y (C] A B
99140 118.67 1.56 86.72 21.69
Occluded by: (x > 45)
Table 5b. The results of extraction without Transfer-to-Center transformation.
Error Function X Y ® A B MMER value
Jy 62.2041 118.6465 1.5583 | 48.1576 17.2618 5.5612e8
Table 5c. The results of extraction using Transfer-to-Center transformation (y = y — 90).
Error Function X Y ® A B MMER value
J1 99.7732 | 118.4420 | 1.5607 | 86.5725 | 21.2182 5.5072e4
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