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Research Note

Efficient Spectral Coding of Speech Using
Generalized Sorted Codebook Vector
Quantization Applied to LSF Parameters

H.R. Sadegh-Mohammadi'

Sorted Codebook Vector Quantization (SCVQ) is shown to be a very efficient vector quantization
method. This paper presents different approaches for generalizing the SCVQ method, including

related algorithms for the training and optimization of the associated codebooks.

Then,

applications of the generalized SCVQ in spectral coding of speech using the quantization of
Line Spectral Frequencies (LSFs), which are the most popular parameters to represent the
linear prediction model for spectrum quantization in speech coders, are described. Different
experiments were conducted to evaluate the performance of the new method. Lower quantization
distortion of the new method is verified through computer simulations.

INTRODUCTION

Finding high quality speech coding methods at low
bit rates is a major goal for the speech processing
community. One requirement for this achievement is
the reproduction of the spectral envelope at the decoder
side with very low distortion. The research trend in
the spectral coding area is focused on quantization
methods that provide the best compromise between low
quantization rate, low encoding degradation and high
efficiency in the implementation stage.

Spectral coding of speech is one of the most
important stages of low rate coders, which use the
linear prediction models, such as Code-Excited Linear
Prediction (CELP) [1]. Among the various represen-
tations of the linear prediction coefficients, Line Spec-
trum Frequencies (LSFs) [2] are often used for short-
term spectrum quantization because of their desirable
properties, which are exploited during spectral coding.
Various quantization techniques have been developed
for LSF's during the last decade, including many Scalar
Quantization (SQ) and Vector Quantization (VQ)
methods.

Although vector quantizers can achieve lower
distortion than scalar quantizers at the same bit rates
(or alternatively, realize the same quality at lower bit
rates), their application has been restricted by their
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considerable computational and storage costs. Cost
reduction has its price; namely an increase in quanti-
zation distortion. Fortunately this quality degradation
is minor and now there are VQ methods requiring only
medium amounts of memory and moderate computa-
tion.

Sorted Codebook Vector Quantization (SCVQ)
proposed in [3] is verified to be an efficient method
for the quantization of the LSFs. That reference also
presents a particular algorithm which optimizes the
associated codebooks. Since then, two algorithms have
been suggested for selection of a key parameter (called
sorting parameter) in the SCVQ method [4,5]. While
the performance and implementation costs of SCVQ
have proved to be notably impressive, it is still possible
to further reduce its quantization distortion by the
generalization of this method for spectral coding or
other similar applications.

In this article, a generalization of SCVQ using a
combination of several approaches is suggested and its
application to spectral coding of speech is described.

This paper is organized as follows. In the next
section, a brief review of the principles of SCVQ is
presented. Then, various approaches are proposed for
the generalization of generic SCVQ and generalized
training and optimization procedures are referred for
design of the related codebook. Moreover, the selection
of a set of key parameters in this method (i.e., sorting
parameters) is addressed. Simulation experiments are
also provided and the results of quantization with
different methods are evaluated in terms of different
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to propose several generalization schemes and combine
them into a unified framework. These schemes are
introduced in turn.

Generalization Using a Shift Variable

In this generalization approach, a shift variable o is
introduced in the search procedures, i.e., in selection
of the codevectors located in the neighborhood of the
central codevector associated with the central index.
In the generic SCVQ method, the brute-force search
is performed over the 2k codevectors in the vicinity of
the central index, i.e., only the codevectors with indices
within the range of i —k+1 to i+ k, are being searched.
Here, it is suggested that the search is carried on the
codevectors with indices within the range of i+0,—k+1
to i + 0; + k, where each central index has its own
associated shift variable (o;), which may be different
from the others.

It should be noted that this change increases the
storage cost slightly. However, there is no need to
modify the algorithm when the central index is either
less than k or greater than N — k, as in the SCVQ
method with the equal search strategy [3]. An example
of incorporating this generalization method into the
SCVQ schematic diagram for the quantization of first
three LSF's is depicted in Figure 1. In this example, the
shift variable associated with the 69th central index is
equal to 3 and the offset value is set equal to 8. The
Qs block represents the scalar quantization stage.

It is noteworthy that the shift table is a look-
up table which contains the shift variables associated
with all central indices. A simple heuristic algorithm
for training this table is as follows. After the training
and optimization of the SCVQ codebook with a proper
method, such as the correlation algorithm (CA) [3] or
the direct selection algorithm (DSA) [5], all training
vectors whose central indices are equal to 1 (7 = 1) are
selected.

For this collection, the shift variable is changed
from a minimum to a maximum integer threshold
and for each particular value the whole quantization
process is performed. Total quantization distortion is
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Figure 1. An example of LSF1-3 sub-vector quantization by a GSCVQ method when the shift variable is incorporated

into the block diagram.
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calculated for all training vectors in the collection and
any particular value that minimizes the total distortion
is selected as the final value for the shift variable
associated with the first codevector. This procedure
is continued for the other codevectors in the codebook
until the shift variable for the last codevector is chosen.
The selected shift variables are stored in a look-up table
like the trained shift table.

In general, for some central codewords the de-
scribed algorithm suggests several shift values as the
best choices. This happens especially with small
training data sets. In fact, the algorithm proposes
a range of integer values. According to previous
experiences, in these cases, it is better to consider the
integer shift value that is located in the middle of the
proposed range as the final choice. It is noteworthy
that any suitable distortion measure can be chosen for
the calculation of the quantization distortion. A proper
range for searching the best shift variable associated
with the ith central index is:

Oimin S 01 —<— Oimax ’
Oimin = ma'X(O'L - k7 1) )

Oipnr = min(o; + k — 1,N). (1)

Generalization Using Neighborhood
Dependencies

The second generalization approach is about changing
the neighborhood relationship between various code-
vectors in a small region from one-dimensional space in
the index domain to a multi-dimensional dependencies
in that domain. In other words, it is possible to replace
the neighborhood dependencies between codevectors
from a ladder type sorting table to a multi-dimensional
hyper-table, such as a two-dimensional rectangular
table.

To clarify this statement, a simple diagram is
presented which shows the difference between generic
and generalized SCVQ using this approach based on

the previous example (ie, ¢ = 69 and k£ = 8).
Here, the first approach for generalization of SCVQ
is not used, so the shift variable is not considered
for simplicity. Figure 2 demonstrates an example
of neighboring codevectors (the unshaded areas) for
generic and generalized SCVQ. In both cases, the final
search is performed on 2k codevectors in the vicinity
of the central codeword.

Different schemes can be employed to choose
the codevectors which would be considered as the
neighboring codevectors in the quantization process.
For example, one may choose the 2k — 1 codewords
as the neighboring codevectors of a particular central
codeword whose distances are less than the others.
Although this scheme normally provides a very good
quantization result, its storage cost increases consid-
erably. However, if this general approach is used
propetly (e.g., as will be explained later), the additional
memory requirement will be insignificant. Moreover,
this method can be combined with the first generaliza-
tion approach in an appropriate manner to reduce the
implementation costs. For instance, one may look for
the best shift variables after organizing the neighboring
dependency.

Generalization Using Sorting Function Set

The third approach, which is a major generalization
scheme, is about expanding the sorting function in the
SCVQ from a single equation to a set of equations.
This approach will be discussed extensively later. Here,
with no loss of generality, a generalization from one-
dimensional to two-dimensional SCVQ is discussed. Of
course, the same concepts can be used for generaliza-
tion to higher dimensions.

Suppose the sorting function set is defined as:

[St=91(f1uf2m-~wat)} (2)

Tt = g?(flh f2t7 "'ath)

where ¢; and g are suitable functions similar to that
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(a) Example of one-dimensional neighboring dependency.
\ (b) Example of two-dimensional neighboring dependency. /

Figure 2. Comparison of one-dimensional and two-dimensional neighboring dependency.
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of the best sorting function among different functions
in the ordinary SCVQ, can be generalized for choosing
the best sorting function set among different function
sets. However, here just a generalization of the DSA
algorithm is explained. In the generalized DSA, a
training data set is chosen for performing the algorithm
and an unstructured codebook is trained using any
proper method (e.g., generalized Lloyd algorithm [6]).
For each function set candidate, the codebook is sorted
according to what has been mentioned for the GSCVQ
previously. Later, each target vector is replaced with its
associated central codevector and the total distortion
resulting from these replacements is calculated. This
procedure is performed for all function sets. Finally,
any function set candidate that results in the minimum
distortion is chosen as the best.

In a similar generalization, the codebook opti-
mization method presented in [3] can be used for devel-
oping a codebook optimization algorithm in GSCVQ.

SIMULATION EXPERIMENTS

Low rate speech coding area is currently dominated by
the linear prediction model, e.g., code-excited linear
prediction (CELP). The quality of the reproduced
speech in these coders depends, to a large extent, on
the performance of the spectral coding stage.

In this study, the focus is on a tenth order LP
model. Therefore, ten LSFs must be quantized for
each frame (30 ms) of the speech signal. Split VQ
is considered a good basis for the development of a
low cost method for spectrum quantization. The entire
LSF vector in each frame of speech (30 ms) is divided
into three sub-vectors of dimensions 3, 3 and 4. The
LP parameters are extracted in a similar way to the
FS1016 CELP standard [1]. This standard is also used
for the simulation with quantized LSF values. The
proposed SCVQ method has been used for quantization
of each sub-vector as well as other vector quantization
methods.

The codebooks used for this simulation were
trained on the same training data set and similar
conditions were applied to the test speech signals.
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Various codebooks have been trained on a database
of 10,240 LSF vectors extracted from almost 5 minutes
of speech signal. Two thirds of the training set was
taken from the TIMIT database and the rest from
other speech sample sources. The same number of
sentences were taken from male and female speakers.
Fach speaker pronounced just one sentence. The
LSF extraction method is as follows: First, the 8
kHz sampled speech signals are divided into 30 ms
non-overlapping frames (240 samples). The speech
samples in each frame are passed through a 30 ms
Hamming window centred on the middle of the frame.
Then, linear prediction coefficients are calculated by
the autocorrelation method without using preemphasis.
For each frame, the LP coefficients are converted to
ten LSF parameters. The LSF vectors are divided into
three subvectors of lengths 3, 3 and 4, while separate
codebooks are generated for each subvector.

Several codebooks have been trained for Unstruc-
tured Vector Quantization (UVQ); Tree-Searched VQ
(TSVQ), Sorted Codebook VQ (SCVQ) and General-
ized VQ (GSCVQ). All these VQs use codebooks of size
256. Hence, the overall number of bits needed for the
spectral coding stage is 24 bits/frame. In the SCVQ
method, the chosen sorting function was simply the
sum of the elements in each subvector and the offset
value for the final codebook search was k = 8.

In the first experiment, a SCVQ which uses the
sum of the elements in each subvector as the sorting
parameter is employed. The training and optimization
of the codebooks of this SCVQ are explained in [3].
Then, the first generalization approach (using a shift
variable) is applied to construct the GSCVQ method.
The proposed algorithm for selecting the best shift
variables is performed and the minimum and maximum
shift values for each central codeword are calculated.
Figure 4 shows the histogram of these minimum and
maximum shift values computed for the last subvector,
i.e., LSF7-10.

In this experiment, the final selection of shift
variables according to the new algorithm for the LSF7-
10 subvector results in the histogram illustrated in
Figure 5. It is obvious that the best value for the
shift variable is not always zero. Hence, the proposed
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(in GSCVQ-1).

generalization approach can marginally reduce the
quantization distortion. This was verified in this ex-
periment, where the quantization of the entire training
data set by this GSCVQ (GSCVQ-1) outperformed
that of SCVQ (as will be shown shortly).

In the next experiment, the GSCVQ-1 is used
along with another generalization of SCVQ that here-
after will be known as GSCVQ-2. This generalized
SCVQ is developed by a combination of the second
and third generalization approaches explained before,
where the function set includes the sum of the elements
in each subvector and the difference between the dis-
tance between the first two elements of each subvector
and the distance between the second and third elements
in that subvector.

In GSCVQ-2, the local search is conducted over
16 adjacent codevectors in the indices table (similar to
that of SCVQ). All GSCVQ and SCVQ methods used
the optimized codebooks.

The tests were conducted with 1,580 frames
extracted from 18 utterances (47 seconds of speech)
taken from TIMIT database with the same ratios of
male/female speakers as the training database. Dif-
ferent male and female speakers were included in the
training and test data sets. The LSFs of the test
database were quantized by the various methods and
were used in a simulated speech coder which is similar
to FS1016 (apart from the LSF quantization method).

Results of simulations with unquantized LSFs
and with the FS1016 quantization method (using 34
bits/frame) are also presented for comparison. Tables 1
and 2 depict the objective measures obtained via the
various quantization schemes. In Table 1, SD denotes
the log spectral distortion between the original and
quantized LPC spectra.

In Table 2, the SSD is the synthesized spectral dis-
tortion that measures spectral distortion between the
LPC spectra of the original signal and the one extracted
from the synthesized speech [3]. The third objective
measure is segmental signal to noise ratio (Seg-SNR),
which evaluates the errors of the synthesized speech
produced by the decode..

The results presented in these tables demonstrate
almost similar achievements for SCVQ and GSCVQ
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Table 1. Results of spectral distortion comparison.
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Table 4. Cost comparison.

Percent Percent

Quantization SD of Frame of Frame
Method [dB} with with

SD > 2dB SD > 4dB
Unquantized — — —
FS1016 Std. 1.53 12.34 0.57
UuvQ 1.40 11.65 0.00
TSVQ 1.58 16.90 0.06
SCVQ 1.53 16.08 0.38
GSCVQ-1 1.53 16.07 0.32
GSCVQ-2 1.54 14.75 0.36

Table 2. Results of SSD and Seg-SNR comparisons.

Quantization | > °" | ssD| | Seg-SNR

Method Bits Per | 14g] [dB]
Frame’

Unquantized — 2.11 9.44
FS1016 Std. 34 2.30 8.77
uvQ 24 2.29 9.12
TSVQ 24 2.37 9.07
SCVQ 24 2.34 9.05
GSCVQ-1 24 2.34 9.03
GSCVQ-2 24 2.34 9.01

methods. For a more precise comparison, it is bene-
ficial to compare the results of quantizations for VQ

methods using a proportional MSE d
as follows:

D=

Yo [Fal?
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stortion measure
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where F,, and F,, are the original and quantized vector

in the nth frame, respectively, and
total number of frames in the test

N represents the
data set. While

this measure might not be as useful as the others

for the spectral coding of speech, it

representing the quantization error
application areas.
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the total distortion D).

In this example, it is obvioug

that GSCVQ-1

always results in lower distortion compared to SCVQ,

Table 3. Results of proportional MSE distortion.

Miethoa | D1 | P2 ||ps | D
UuvQ 3.48 2.06 1.48 1.69
TSVQ 4.07 2.38 1.68 1.93
SCVQ 3.91 2.23 1.72 1.92

GSCVQ-1 3.86 2.18 1.71 1.91
GSCVQ-2 3.87 2.34 1.66 1.90

Quantization Stg::tge Computation Cost
Method [No. of Instr.]
[kbyte]

Unstructured VQ 5.00 7680
TSVQ 9.96 480
SCVQ 5.00 562
GSCVQ-1 5.75 565
GSCVQ-2 5.00 573

whereas for two out of three subvectors, the GSCVQ-2
provides lower distortion than SCVQ. In general, it can
be stated that for any particular case, the statistics of
the elements in each subvector throughout the training
database indicate whether SCVQ or GSCVQ is a more
snitable quantization method. In other words, the
statistics of any target subvector indicate whether a
one-dimensional or a multi-dimensional parameter is
more appropriate to represent the neighborhood corre-
lation between the elements of that target subvector.

Finally, the computational complexity and stor-
age costs of different vector quantization methods are
shown in Table 4.

The storage costs are calculated assuming single
integer precision and shift values; double integer preci-
sion for the VQ elements and floating point for the
scalar quantization elements. In the computational
cost estimation, one instruction represents multiply-
add comparison or data format conversion. It is
seen that SCVQ and GSCVQ-2 result in the best
storage cost compared to TSVQ. GSCVQ-1 is also
preferred over TSVQ, because of its lower memory
requirement.  While the computational complexity
of TSVQ is slightly lower than those of SCV(Q and
GSCVQ methods, the latter methods provide the best
combinational complexity and storage costs.

As a final comment, it should be noted that not
only the performances of the SCVQ and GSCVQ are
directly related to the choice of the sorting function
and the shift variables, but also the implementation
costs of these methods are related to these important
selections.

CONCLUSION

Different generalization aspects of the sorted codebook
vector quantization have been presented. This includes
changing the shift variable, neighborhood dependencies
as well as using a multi-dimensional sorting function
sct.  Moreover, a brief description of a method to
select a proper sorting function and to optimize the
codebook is presented. Application of a particular
GSCVQ to spectral coding of speech is discussed as a
case study and the results of experimental simulations
are presented. As shown, the generalized sorted
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vector quantization is a promisingly efficient method
for various applications.
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