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Analysis of Pulsatile Flow Through
Stenotic Arteries

G.R. Zendehbudi' and M.S. Moayeri*

In this paper, results of numerical solutions to steady and pulsatile flow through axially symmetric
stenoses are presented. The analysis is restricted to laminar flow, Newtonian fluid and rigid
boundary. Using a non-orthogonal grid, discrete forms of the transformed governing equations are
obtained by a control volume formulation, which are then solved for physical velocity components
and pressure. To ensure a true periodic solution, calculations are performed over several periods
and the results of two successive periods are compared. To validate the numerical results, several
test cases, for which either experimental data or analytical solutions are available, are considered.
For the pulsatile flow, an experimentally measured physiological waveform, as well as a simple
harmonic pulse having the same stroke volume, are used as the forcing function and the results
are compared. It is concluded that although the behavior of these flows may be similar at some
instances of time, for an accurate analysis of pulsatile flow through stenotic arteries, the actual
physiological waveform should be considered as the inflow boundary condition.

INTRODUCTION experimental studies have been performed under differ-
ent simplifying assumptions. Almost all experimental
studies have been performed in rigid stenoses. In most
of these studies, the flow has been assumed to be
steady [3-6]. Experimental studies of pulsatile flow
through rigid stenoses have been reported by Young
and Tsai [7], Siouffi et al. [8] and Rabinovits et al.
(9]. Lieber and Giddens [10] measured the apparent
stresses of turbulent pulsatile flow through a rigid

stenosis. Measurements of pulsatile flow in a flexible

Atherosclerosis is a disease of large and medium size
arteries in which deposits of cholesterol and lipid
substances on the interior wall of the arteries and
proliferation of connective tissues cause a local partial
reduction in the arterial cross-sectional area (stenosis).
Although there remains uncertainty with regard to the
exact mechanisms responsible for the initiation of this
phenomena, it has been established that development

of atherosclerosis, even in the early stages of the
disease, is strongly related to the characteristics of
the blood flow in the arteries (e.g. [1,2]). This
has attracted the interest of many investigators and,
therefore, the hemodynamical characteristics of flow
through stenoses, aneurysms and other geometries in
the arterial system have been continually investigated
over the past 30 years.

Although a large number of investigations has
led to better understanding of the flow disturbances
induced by a stenosis, most of the theoretical and
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tube, partially occluded by a hollowed rigid cylinder to
model a stenosis, have been carried out by Rooz et al.
[11].

A number of numerical and approximate analyti-
cal studies on the blood flow through stenotic arteries
have been presented in the literature. Numerical
solutions of steady flow through axially symmetric rigid
stenoses, with blood as a Newtonian fluid, have been
reported by several investigators, among which are
Deshpande et al. [12], Fukushima et al. [13], Lee [14]
and Siegel et al. [15]. This problem, taking the non-
Newtonian properties of the blood into consideration,
has been studied by Scott et al. [16], Nakamura and
Sawada [17], Hogen and Henrikson [18], Srivastava and
Saxena [19] and Moayeri and Vali [20].

As some examples of pulsatile flow through
stenotic arteries, Back et al. [21] obtained a numerical
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solution to pulsatile flow in the coronary artery of
man with double constrictions. The wall was assumed
rigid and Navier-Stokes equations, written in terms of
vorticity and stream function, were|solved through a
finite difference method. In that study, a measured flow
rate-time relationship for the left coronary was used as
the forcing function. O’Brien and Ehrlich [22] used a
simple sinusoidal flow and the vorticity-stream function
formulation of Navier-Stokes equations to obtain a
numerical solution for pulsatile flow in a rigid stenosis.
Theodorou and Bellet [23] used a perturbation method
along with a finite difference algorithm to obtain an
approximate solution for pulsatile flow of a power-
law fluid in the rigid stenoses. A cosine function
was used for the flowrate-time relationship and the
variations of pressure gradient and the wall shearing
stress with time were obtained for different values of the
power-law index and Reynolds number. Approximate
analytical solutions to pulsatile flow in mild stenoses
have been reported by Misra and Chakravarty [24],
Misra et al. [25] and Cavalcanti [26]. In these, the
elastic properties of the wall have been included in the
analysis.

It is seen that most experimental and numerical
studies of pulsatile flow through stenotic arteries have
been performed under the assumption of a simple
periodic variation of the inflow with time, ie., one
harmonic. However, from the available data on canine
and human arteries, the arterial flux waves are different
from a single harmonic pulse and, therefore, for an
accurate prediction of pulsatile flow characteristics
through stenotic arteries, the actual physiological flow-
time variation should be considered

The main purpose of the present study is to
compare the physiological flow characteristics in a
stenosis with those obtained under [the assumption of
a simple harmonic flow. For the physiological flow, the
waveform given in [27] for the canine femoral artery
(Figure 7) is used. Numerical solutions are obtained
under the conditions of laminar flow, Newtonian fluid
and axially symmetric rigid stenose‘gof different sever-
ity. Using a non-orthogonal grid,| discrete forms of
the transformed governing equations are obtained by
a control volume formulation and| solved for physi-
cal velocity components and pressure. For pressure-
velocity coupling, SIMPLER algorithm is used. It is
concluded that for an accurate analysis of pulsatile
flow through stenotic arteries, the actual physiological
waveform should be considered for the inflow boundary
condition.

GOVERNING EQUATIONS

For axially symmetric flow of incom

tonian fluids, the non-dimensional

momentum equations in cylindrical

pressible and New-
mass and linear
coordinates can be
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written as:
%(T’u) + %(Tu) =0, (1)
Stg—t(ru) + %(ru2 - RLGZ—:) + %(mv - ég%)
- —T%‘z B 'r;){e’ A3)

in which the dimensionless variables r* = r/rg, 2* =
z/7o, u* = u/ug, v* = v/ug, t* = t/T and p* = p/pu}
have been used. St = % and Re = ™% are
the Strouhal and Reynolds numbers, respectively, and
asterisks have been dropped for convenience. In the
dimensionless parameters, v and v are the velocity
components in the z and r directions, respectively,
o is the undisturbed arterial radius, T is the period
and wuo is the maximum average velocity over the
inlet section. For steady flow, this is the average
flow velocity. Considering a general transformation
¢ = &(r,2) and n = n(r,z) and using the chain rule
of partial differentiation, the governing equations can
be written in the following general form:

fa 0 r a9 99
Sta + 5_§[T(T"u - 2yV)¢ — m(a‘a—é - 55'5)]

r o¢ 8¢

=B — 15 =S¢ »
TRe " B¢ ) (f;)

3]
+ —a—n['r(zg) —reu)p +

where J = zgry — znTe, @ = 22 + 72, B = zgzy + TyTe
and v = z} + 7. Also, the expressions for a, ¢ and
S, for different equations are as described in Table
1.

In the second part of this study (to be reported
in a separate paper), deformability of the wall is taken
into consideration, for which a new grid is generated
at each iteration. For this reason, the simple non-
orthogonal transformation £ = 2z, n = r/r5(2) has
been chosen, where 7 (z) represents the geometry of the
wall. With this transformation, the metric coefficients,
as well as the transformed equations, assume much
simpler forms. Also, for the purpose of clustering
the grid lines near the wall and in the vicinity of the
stenosis throat, appropriate functions have been used.

Table 1. Description of parameters in the transformed
governing equations.

Equation a ¢ S
(1) o |1 0
(2) Jru | u —g—e(rr,,p) + %(rrfp)
(3) v { v | F(ranp) - £(rzep) + I ~ oh7)
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DISCRETIZATION OF TRANSFORMED
EQUATIONS AND SOLUTION
PROCEDURE

To obtain the discrete approximation of Equation
4, control volumes in a staggered arrangement are
considered. Each equation is integrated over its proper
control volume and values of ¢ and its derivatives at
control surfaces are approximated in terms of nodal
values at surrounding points where the variable ¢ is
stored. This results in the following general equation
for the momentum equations:

//St(%(rjq&)dfdn = Ao¢¢o + ZAk¢¢k + Sdb(a )
k 5

in which k stands for the neighboring nodal points at
the east, west, north and south of the grid point “O”
and A’s are finite-difference coefficients combining the
effects of convection and diffusion.

In Equation 5, S; depends on the neighboring
nodal values of velocity and pressure. In calculating
¢o at each iteration, Sy is treated as a constant whose
value is obtained using the nodal values of u, v and p
calculated in the previous iteration.

The time derivative term in Equation 5 is written
as:

/ / St(r7)o 222 dedn = Bo(95™ - 45), (6)

in which By = St(rJAEAn)o/At and n represents the
time level. The right-hand side of Equation 5 should
also be referenced to a time level. This is done by using
a linear combination of the values at time levels n and
n + 1, so that Equation 5 is written as:

Bo(¢5*" — 65) = 0(Aopdo + ), Aksdr + So)™H
k

+(1-0)(Aogdo+ D _ Aksdr + So)™
k (N

in which @ is a weighting factor such that: explicit
forward-difference scheme is given by 6=0, Euler im-
plicit scheme by #=1 and Crank-Nicholson scheme by
6=1/2. To ensure stability, the implicit scheme with
0.5< 8 <1 was used in this study. In fact, numerical
experiments on the simple pulsatile flow in a straight
tube showed that in addition to the stability, § also
has an effect on the accuracy of the solution such that
accuracy decreases as 6 increases towards the value
of 1.0. No convergence was obtained for § <0.5 and,
therefore, the optimum value of §=0.65 was obtained
and used in all subsequent calculations.

Equation 7 can be written in the following general

form, from which ¢5*! can be calculated, where ¢ may
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be replaced by u or v:
06851 =) Argdpt + 8, . (8)
k

For pressure calculation, SIMPLER method of
Patankar [28] is formulated for use in the (¢ — 7)
plane. In SIMPLER method, pressure is calculated
through a pressure equation obtained from the conti-
nuity equation and velocity components u and v are
corrected based on the pressure corrections calculated
by a pressure-correction equation. To save space,
derivation of these equations is not given here; their
general form is the same as Equation & with ¢ taking
the values of p and Ap, where Ap is the pressure
correction term.

Equation 8 shows that the value of a variable
¢ at the node “O” depends on the values of ¢ at
the surrounding nodal points E, W, N and S. When
Equation 8 is written for the grid points over a
constant &-section and previously calculated values of
¢ at the sections £ £ AE are used, a system of linear
equations with tridiagonal matrix is obtained, which is
then solved by Thomas algorithm. In this way, each
equation is independently solved section by section.

Solution is obtained iteratively and the conver-
gence criterion is defined as 3 |outflow — inflow| < ¢,
where € is a small numerical value and summation is
over all control volumes. Numerical calculations are
performed according to the following steps:

1. A first approximation for u, v and p distribution is
assumed.

Pressure equation is solved.

u and v equations are solved.

Ap equation is solved and u and v are corrected.

EAE o

Steps 2 to 4 are repeated until the convergence
criterion is satisfied.

6. The above calculations are repeated at each time
step for several periods and the results obtained for
each period are compared to those for the previous
period. A periodic solution is obtained only when
the variables calculated at different points and at
different times over two successive periods become
almost identical.

A computer program in FORTRAN was written
to perform the numerical calculations. Extensive
numerical experiments on the simple pulsatile flow
in a straight tube, for which analytical solution is
available, were carried out to study the effect of such
factors as the dimensionless time increment and the
ratio Ar/Az, using different clustering coeflicients.
Numerical solutions, using different values of the above
parameters, were obtained and compared with the
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analytical solution given in the Appendix. As a
result, the optimum values of At € 0.01 and 0.4 <
Ar/Az < 2.5 were obtained and used in all subsequent
calculations. For the case of pulsatile flow through
stenoses, a 100x11 grid was found to be optimum for
obtaining a grid independent solutjon. Calculations
were performed on a Pentium 120 computer. With € =
5.0E-4, the average number of iterations to satisfy the
convergence criterion at each time step was about 2000.
Furthermore, the number of periods over which the
calculations had to be continued to obtain a completely
periodic solution was ranging from 2 to 4, depending
on the stenosis severity and the flow waveform.

VALIDATION OF COMPUTATIONAL
RESULTS

To check the validity of the numerical results, the
following test cases are considered.

Steady Flow Through a Rigid Stenosis

In this case, numerical solutions to steady flow through
a stenosis with 56% area reduction are obtained for
different values of Reynolds number| The geometry of
the stenosis is specified by the following cosine curve:

r {1—%[1—{—005(%)]; —20<25 2

To 1; | z||> 20 (9)

where zo/ro = 4, h/ro = 1/3 and L/r¢ = 32 (Figure 1).

This geometry has also been used by Forrester and
Young [3] and Young and Tsai [4] in their experimental
studies and by Deshpande et al. | [12] in their nu-
merical solution of Navier-Stokes equations, therefore,
comparison can be made with previous theoretical and
experimental results.

To obtain steady solution, a time marching tech-
nique with the following boundary conditions is used.
A fully developed laminar velocity profile is considered
at the inlet section I = 1, while nqg specified velocity
distribution is given at the exit section I = IN. At
this section, v is obtained by extrapolation, using the
v-values calculated at the previous sections. Moreover,

o

Figure 1. Stenosis geometry used in steady flow analysis.
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at each iteration, using the form of the u-distribution
obtained at the section (IN — 1), values of u(IN) are
adjusted such that the continuity of flow between the
inlet and outlet sections is satisfied [20].

The variation of dimensionless pressure drop
(Ap/pud) with Reynolds number is compared with
experimental data of Young and Tsai [4] in Figure
2.  Considering that initial instability and initial
turbulence have been reported by Young and Tsai to
occur at Re = 150 and Re = 250, respectively, Figure 2
demonstrates a good agreement with the experimental
measurements in the range of laminar flow conditions.

The separation-reattachment curves from differ-
ent studies are shown in Figure 3. There is an
excellent agreement between the present result and
the numerical solution of Deshpande et al. [12].
Also, a good agreement exists between the present
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Figure 2. Comparison of pressure drop for steady flow
through the stenosis of Figure 1.
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Figure 4. Analytical solution of u(r,t) in a straight tube
for the flow given by Equation 10 with €, = 0.2, w = 2w,
b0 = 7, Re = 100 and St = 0.01.

result and experimental data of Forrester and Young
[3]. Apparently, the considerable discrepancy between
experimental results of Young and Tsai [4] and those of
Forrester and Young indicates a probable mispresenta-
tion of the experimental data of Young and Tsai.

Simple Pulsatile Flow in a Straight Rigid Tube

An analytical solution for pulsatile flow in a straight
tube is presented in the Appendix. According to that
solution, given the mean velocity for a simple pulsatile
flow in the form:

#(t) = 1 — €y + cos{wt + )], (10)

the pressure gradient —%ﬁ and velocity u(r,t) can
be obtained. To validate the numerical results, the
waveform of —Q%gﬂ obtained by analytical and nu-
merical solutions are compared in this test case. For
this purpose, the input function (Equation 10) with
€,=0.2, w = 27 and §y = m was first used to obtain
analytical solutions for ——%ﬂ and u(r,t). Then, the
analytical results of u(r,t) were used as the inlet
boundary condition to obtain a numerical solution.
The analytical solution of u(r,t) for the case of Re =
100 and St = 0.01 is shown in Figure 4. Analytical and
numerical results for dp/dz are compared in Figure 5,
rendering an excellent agreement.

Harmonically Oscillating Flow Through a
Stenosis

Young and Tsai [7] have measured the pressure drop
across a stenosis with 56% area reduction for an
oscillating flow characterized by @(t) = cos(wt) and for
a Reynolds number of 1830, based on the diameter of
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Figure 5. Comparison of analytical and numerical
solution of dp/dz for the flow of Figure 4.
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Figure 6. Comparison of dimensionless pressure drop
through a stenosis for a harmonically oscillating flow,
h/re = 0.333, Re = 915 and St = 0.075.

unconstricted region. The geometry of the stenosis is
specified by Equation 9, as shown in Figure 1. In this
test case, the above experimental conditions are used to
obtain a numerical solution for the same flow with Re
=915 and St = 0.075. The waveform for dimensionless
pressure drop obtained from the numerical solution is
compared with the waveform measured by Young and
Tsai in Figure 6. It is seen that the agreement is
generally good except for a slight shift in phase which
may be due to uncertainities in the measurements.

PHYSIOLOGICAL FLOW THROUGH
STENOSES

In this section, numerical solution to a physiological
flow through stenoses of different area reduction is
presented. The geometry of stenoses is given by
Equation 9 (Figure 1), with 29/r9 = 3,L/r¢ = 11 and
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h/rg = 0.125, 0.250 and 0.375. The
is specified by the waveform given

physiological flow
by Daly [27] for

the mean velocity %(¢) in the canine femoral artery,

as shown in Figure 7, for which Re

= 391.2 and St

= 0.004544 can be calculated. Using the waveform of

Figure 7, analytical solutions for u(
flow in a straight tube are obtained (s
which are shown in Figures 8 and 9,
u(r,t) given in Figure 8 is then used

r,t) and B—SEQ for
ee the Appendix),
respectively. The
as the boundary

condition at the inlet section for the numerical solution

of the physiological flow through the stenoses.

As

a further validation of the numerical results, this
boundary condition was also used to obtain a numerical

solution for %ﬂ in a straight tube, ¥
with the analytical results in Figure
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Figure 8. Analytical solution of u(r,t) for the
physiological flow of Figure 7 in a straight tube.
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Figure 9. Pressure gradient for the physiological flow of
Figure 7 in a straight tube (analytical and numerical
results are exactly the same).

decision should be made on the types of information
(and also the form of presentation) to be included in a
paper to illustrate the significant behavior of the flow.
Therefore, only a limited amount of results, specially
at instances marked by A, B, C and D in Figure 7, are
presented here.

The waveforms of pressure drop for physiolog-
ical flow through stenoses of different severity are
illustrated in Figure 10. According to this figure,
there is no significant difference in the waveforms for
different stenoses at diastolic phase after the maximum
backflow, corresponding to the point C in Figure
7. However, the pressure drop corresponding to the
systolic peak increases with increasing stenosis severity.
Also, note that there is a shift in phase between @(t)
and Ap/pud.

The dimensionless wall shear stress for physiolog-
ical flow through the stenoses and at four instances
A, B, C and D are demonstrated in Figure 11, in
which different scales have been used for 7 at different
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Figure 10. The waveforms of pressure drop for the
physiological flow.
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Figure 11. Wall shear stress, Re = 391.2, St = 0.004544, (—__)h/ro = 0.375,(— — ——)h/ro =0.25,(....... Yh/ro = 0.125.

instances. Figure 11 reveals that: a) No separated
flow exists for the stenosis of h/rg = 0.125 at all four
instances considered. b) For small values of q, with
either forward or backward flow next to the boundary,
such as points A and D, separation does not occur
in any of the three stenoses. ¢) Maximum absolute
value of the wall shear stress increases with increasing
stenosis severity. d) The location of the maximum
absolute wall shear stress shifts from one side of the
throat to the other side as ¢ changes from zero (points
A and D) towards its peak (points B and C).

COMPARISON OF NUMERICAL
SOLUTIONS FOR PHYSIOLOGICAL AND
SIMPLE PULSATILE FLOW

In this section, the behavior of physiological flow
through a stenosis is compared with that of an equiv-
alent simple pulsatile flow. Equivalent simple pulsatile
flow is considered as a flow specified by Equation 10,
with @(0) = 0, having the same stroke volume as the
physiological flow. Applying the condition %(0) = 0
to Equation 10, §o = cos™!(1=%x) is obtained. Then,
integrating the waveform of the ‘i)hysiologica.l flow given
in Figure 7 and also Equation 10 over one period, 0.142
and (1l-¢,) are obtained, respectively, so that the e,-
value of the equivalent simple pulsatile flow is 0.858.
The waveform for the equivalent flow is also shown in
Figure 7.

The boundary condition u(r, t) at the inlet section
required for obtaining the numerical solution of the
equivalent flow is found through the analytical solution
of this flow in a straight tube, as discussed in the

Appendix. Numerical solutions for the physiological
and equivalent simple pulsatile flow are obtained only
for the stenosis of h/rg = 0.375. Different approaches
can be considered for comparing the behavior of these
flows as fluid passes through the stenosis. In one
approach, the results can be compared at the same
instances of time. Another approach is to compare
the results at three points corresponding to conditions
of initial zero, peak forward and peak backward flow
rates on each waveform, i.e., at points A, (B,B’) and
(C,C') in Figure 7. Nevertheless in another approach,
the results are compared at the points A, E and F
where two flows have equal flow rates at the same time
instances. Apparently, using different approaches, dif-
ferent conclusions may be drawn from the comparisons.
In the following, the comparison of results based on the
second approach is first presented. Then, to show the
difference, results are also compared at the points E
and F and at the instance when physiological flow rate
takes on its first zero during diastolic phase, i.e., point
D in Figure 7.

Axial velocity distribution at some different sec-
tions and the wall shear stress for the physiological
and the equivalent simple pulsatile flow at points A,
(B,B’) and (C,C’) are shown in Figure 12. In this
figure, shear stress is measured vertically from the
stenosis boundary. Note that, to show the differences
more clearly, different scales have been chosen for each
variables u and 7 at the points A, B and C.

As seen, at the point A (¢t = 0), where both flow
rates are almost zero, the trend of variation of shear
stress along the flow is almost the same for both flows
except that the magnitude of shear stress for the simple
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separation region at upstream of the throat for the
physiological flow while the separation region in the
simple flow is much longer. This is due to the fact
that at point C’, the magnitude of flow rate for the
equivalent simple flow is almost three times as large as
that for the physiological flow at point C.

Figure 13 depicts the comparison of the wall shear
stress and u-velocity distributions of the two flows at
the instance shown by point D in Figure 7. According
to this figure, there is a reverse flow near the boundary
and a slightly smaller forward flow in the central region
for the physiological flow, resulting in an overall reverse
flow of ¢ = -0.0104 with no separation region. In spite
of that, the whole simple flow occurs in the positive
direction with a long separation region downstream of
the throat. Figure 14 indicates that the behavior of

——— Physiological, t = 0.41,q = —0.25

[ T = 0.0584
w = 1.095

Fo—

oo Simple pulsatile, t = 0.78,¢ = —0.719, point c’
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Figure 12. Axial velocity distribution at different
sections and wall shear stress for the physiological and
equivalent simple pulsatile flow at points A, (B,B’) and

(C,C"), h/ro = 0.375, Re = 391.2 and

St = 0.004544.

flow is much larger than that for the|physiological flow.

This is because there is a forward

flow next to the

boundary in both cases, however, the forward flow rate
is greater in the simple flow. This can be explained with

the help of Figure 16. There is a
flow near the boundary and almost e
in the central portion in the simple
negligible flow of ¢ =0.0004. On the
16 indicates that there is no bac
central portion in the physiological
only a small amount of ¢ = 0.0048
the boundary.

Figure 12 demonstrates that th)
difference between shear stress di

points (B,B’) where both flows are a
this condition, there is a comparabl
at the downstream vicinity of the th
At the points (C,C’), where both flg
direction, the magnitude of shear st
flow is much larger. Furthermore

significant forward
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flow, resulting in a
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Figure 13. Comparison of u-velocity distribution and
wall shear stress for the two flows at the instance D of
Figure 7.
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Figure 14. Comparison of u-velocity distribution and
wall shear stress for the two flows at the instances E and F
of Figure 7.
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the two flows is almost the same at ¢ = 0.2 (point E)
where flow rates are also almost the same. However,
this situation does not exist at ¢ = 0.56 (point F)
where both flow rates are again almost the same. Note
that the comparison has not been made exactly at the
point in question because the results of calculations
have been stored only at each 0.02 dimensionless-time
intervals. That is why there is a slight difference in ¢
for the two flows at the instances of time marked by
points E and F, for example.

Variation with time of the wall shear stress at
different sections of the two flows can also be compared.
This is done only for the section z = 0, which is
shown in Figure 15. The waveform of @(¢) for the two
flows are also presented in this figure which indicates
that the waveform of the wall shear stress at section
z = 0 is almost the same as that of #(¢) for each
flow and only the numerical values of 7 and u(t) are
different. However, the numerical results (not shown
here) indicate that this is not the case for any other
section.

Streamlines of the two flows at point A are
compared in Figure 16. The physiological flow has 2
stagnation points on the center line and 2 stagnation
rings, forming 4 vortex rings, with a small amount
of forward flow next to the boundary. On the other
hand, the simple pulsatile flow has only one stagnation
ring with no stagnation point on the center line.
Therefore, simple flow consists of 2 vortex rings of

0.25
—— < —Physiological 1.0

- < ~Simple pulsatile
g 015 Physiological— > 2
® 4
2 0.5 &
g 0.05 f 7 £
= 0.0 &
-
=-0.05}
]
2z L 1-0.5

-0.15 . .

0.0 0.2 0.4 0.6 0.8 1.0

YT

Figure 15. Time variation of the wall shear stress for the
physiological and equivalent simple pulsatile flow at = = 0.

Figure 16. Comparison of streamlines for the
physiological and simple pulsatile flow at the point A of
Figure 7.
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Figure 17. Time average of the wall shear stress, h/ro =
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Figure 18. Time average of center line pressure, h/ro =

0.375.

opposite directions at the upstream and downstream of
the throat, a relatively large forward flow next to the
boundary and an almost equal backward flow in the
central region. According to Figure 16, the behavior of
the two flows is completely different at point A, while
Figure 12 indicates a similar trend for the wall shear
stress at that point.

Although the time average of flow variables is
not indicative of the pulsatile flow behavior, the time
averaged wall shear stress and center line pressure for
the physiological, equivalent simple pulsatile and an
equivalent steady flow are compared in Figures 17 and
18, respectively. Figure 17 illustrates that the largest
range of variation (maximum minus minimum) of the
time averaged wall shear stress occurs for the simple
pulsatile flow and the smallest range for the steady flow.
Figure 18 indicates that based on the time average
of the center line pressure, the pressure drop for the
physiological and simple pulsatile flow is the same and
much smaller than that of the steady flow. Note that
the Reynolds number for the equivalent steady flow is
55.55; that is why Figure 17 indicates that there is no
separated region for the steady flow.

SUMMARY AND CONCLUSION

Most experimental and numerical studies of pulsatile
flow through stenotic arteries have been performed as-
suming a simple harmonic pulse as the inflow boundary
condition. In this paper, numerical solutions to a
physiological flow and a simple harmonic flow of the
same stroke volume through a stenosis with 61% area
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reduction have been obtained and some of the results
have been compared. Comparison mostly includes
the wall shear stress distribution and axial velocity
profile at different sections, which is made at some time
instances.

Different approaches have been used to compare
the results. In one approach, comparison is made
at some time instances when both flows have zero,
peak forward and peak backward flow rates (Figure
12). This indicates that the behaviar of the two flows
is similar only when they are at their peak forward
flow, which occurs at different time|instances. In the
second approach, comparison is made at a common
time instance (Figure 13, point D) when the flow rates
are different. This shows two completely different
behaviors for the two flows. In the third approach,
comparison is made at the instances when both flows
have equal flow rates (Figure 12, point A, Figure 14,
points E and F). This demonstrates |a similar behavior
only at point E (Figure 7) where the simple flow
approaches its systolic peak but the| physiological flow
is at the beginning of its diastolic phase.

Comparison of the time variation of the wall shear
stress at different sections indicates that the waveform
of 7 is almost the same as that of @(¢) at the throat
of the stenosis and this is the case only at this section.
Comparison of the time average of the wall shear stress
distribution illustrate a larger variation of 7 for the
simple flow (Figure 17). Also, comparison of the time
average of center line pressure (Figyre 18) shows that
the pressure drop of the two flows are equal and much
smaller than that of an equivalent steady flow.

Comparison of streamlines of the two flows has
also been made at different time instances, although
only at ¢ = 0 has been presented (Figure 16). This,
too, indicates that the relatively close similarity of the
flow behavior exists in some instances.

The present analysis shows that although the
behaviors of the two flows are almost similar in some
instances, they should be considered as two flows
with completely different behaviors. Therefore, for
an accurate analysis of pulsatile flow through stenotic
arteries, the actual physiological waveform should be
considered as the inflow boundary condition.
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APENDIX

The dimensionless equation for pulsatile flow in a
straight tube can be written as:

6_u 1 6(6u) _@
8t rRedr' Or 8z’

Solution to homogeneous form of Equation Al can be
written in terms of its eigenfunctions as:

St (A1)

D=3 a®do(r) (A2)
n=1

where J; is the Bessel function of the first kind and
the eigenvalues \,’s are obtained using the boundary
condition u(1,t) = 0. Substitution of Equation A2 into
A1l results in:

E(St dan

n=1

an)Io(hnr) = =22 . (A3)
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For a simple harmonic flow, %E can be written as:

_op -
=% = & + ®sin(wt + 6) , (A4)

so that Equation A3 is written as:

Z(Stda"

a,,)Jo(/\nr) ® + Psin(wt + 8) .

(A5)

When Equation A5 is multiplied by rJo(\nr)dr and
integrated from 0 to 1, the following equation for an(t)
is obtained:

dan + A 2[® + $sin(wt +6))

St T R T T AW

(A6)

Now, assuming a,(t) =
it can be shown that:

Cn + Apsin(wt) + B, cos(wt),

2Red®

Cn = SRACHE (AT)

A, = 2Re®(wReStsiné + A2 cos )/ D, , (A8)

B, = 2Re®(\2 sin§ — wReSt cos§)/ Dy, , (A9)
in which,

Dn = MJi(M)[(wReSE)? + M} .

Therefore, for a known pressure gradient %E as in
Equation A4 and given values of Re and St, a,(t) can
be calculated using Equations A7 to A9 and then is
substituted into Equation A2 to obtain u(r,t).

Likewise, for a simple harmonic flow, the dimen-
tionless flow rate can be written as:

a(t) = a(t) = 1 — e[1 + cos(wt + &o)] - (A10)

Therefore,

1
1 —¢[l + cos(wt + &p)] = 2/ ru(r, t)dr
0

Substitution for u(r,t) from Equation A2 results in the
following equation:

1—-¢—ccoswt cosbp + csinwt sinéy

o0
= Z %’\").(Cn + Ansinwt + B, coswt).
- n (A11)

Substituting for C,, A, and B, from Equations A7
to A9 and equating the coefficient of like terms at two
sides of Equation All, it is obtained that:



142
- 1—-¢
= e Al12
¢ 4R€Sl ! ( )
_ wReSth tan 60 - 52
=tan~! , Al13
§ = tan wReStS3 + S5 tan 6 ( )
~ € sin g
= = Al4
e 4 Re(wReStS3siné + Sz cosd) ( )
in which,
> 1
z_ o
—~ (wReSt)2 + X%’
! (A17)

S3 = ; A2 [(wReSt)? + x1]’

Therefore, for a known flow rate as in Equation A10
and given values of Re and St, ® and & and § can be
calculated from Equations A12 to Al4, that is, g’zl is
obtained.

Any waveform of a physiological flow, either @(t)
or %}l, can be expanded in terms of Fourier series.
For example, when the waveform of @(t) is known, it
can be written as:

N
i(t) = Ay + Z[Aj+1 sin(2jmt) + A4 N1 cos(25mt),
j=1 (A18)

where the coeflicients A; to Asnyyq can be obtained
from the given waveform using the method of least
square. For this case, Equations| A2 and A4 are,
respectively, written as:

N+1 oo

=22 anlt)

7j=1 n=1

JO(/\n'r (Alg)
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N
Z 41 8in(25mt) + By v 41 cos(25mt)],
i=1 (A20)
so that:
8U1 1 15} 8u1
St— — B
ot r Re ar( or o) =B
Ou,q1 1 90, ouj+1
St i+ _ -~
ot r Re Or (r or )
i1 8in(2j7t) + Bjg n11 cos(2jmt);
j=12,.., N, (A21)

where the coefficients B’s can be obtained in terms of
the known values of A’s using the same method as used
for Equation A5. The results are as the following:

84,
B = —
! Re
SaAj11 — 83C5 A5 v 11
By = J 1) ; =1,2,..N
i+ 4Re(S? + 83C3) o
SzA‘+N+1 +53C"A‘+1 .
B; = I JoIT. =1,2,..N
j+N+1 4R€(S§+S§C]2) v 2 y Hy 3

in which C; = 2jnReSt and S, and S3 are given by
Equations A16 and A17, respectively. Then, ur,t) is
obtained from Equation A19 in which:

a1n(t) = ﬂ,
’ A J1(An)
+1n(t) = 3577 2)1?22 )
[(CjBj+n+1 + AL Bjy1) sin(2j7t)
+ (MBj+n+1 — CjBjy1) cos(25mt));
j=1,2,..N .





