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damage modeling method is employed to predict the failure of pinned
nforced composite laminates. The analysis is performed using finite
approaches towards analysis are implemented. One is based on linear
one has been enhanced by nonlinearity of the material behavior. The
then predicted by means of a logical combination of suitable failure
aterial property degradation rules. A computer code is developed
ict the maximum failure load, together with the failure mode of the
ent ply orientation material properties and geometries. Results of the
h those of other experimental and theoretical methods for the same
ies were also performed to evaluate the effect of joint geometry and

for predicting failure mechanism and ultimate load.
Humphris [2] investigated the strength of a laminated
composite structure by using Tsai-Hill failure criterion
to study the failure trend. Soni [3] circumvented this
by delaying the application of the quadratic failure
criterion until all plies had reached failure. Work
by Tsiang and Mandell [4], Conti [5] and Serabian
and Oplinger [6] used Tsai-Hill criterion, however,
they examined only failure initiation. In order to
predict failure modes, models have been developed
which incorporate the concept of progressive damage
modeling [7-9]. A complete two-dimensional study
has been carried out by Lessard [8] and Lessard and
Shokrieh [9], in which they have investigated the
damage behavior of pin-loaded composite plates and
have developed a damage progression model capable
of predicting net-tension, shear-out and bearing failure
modes.

The aim of this paper is to present a finite
element analysis in conjunction with a progressive
damage modeling of laminated pinned joints. Different
failure criterion together with both linear and nonlinear
material behavior modeling are to be employed and the
results are compared with those from the experiments.
Although fiber buckling and delamination is a possibil-
ity where the fibers go under severe compression loads,
this phenomenon is not to be taken into consideration
in the forthcoming analysis.
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A LAMINATED PINNED JOINT

Consider a plate (length L, width W, thickness H)
made of N fiber reinforced unidirectional plies, as
shown in Figure 1. The ply orientations are arbitrary
but must be symmetric with respect to the plane.
Perfect bonding between each ply is assumed. A single
hole of diameter D is located along the center line of
the plate and a rigid pin is inserted into the hole.
Under tensile loads, mechanically fastened joints
generally fail in three basic modes referred to as net-
tension, shear-out and bearing (in addition, a combi-
nation of these three mechanisms may occur). Typical
damage due to each mechanism is shown in Figure 2.
In order to determine the state of propagation
of damage at any load level and the extent of the
contact region between the rig pin and the plate in
the hole region, a progressive damage modeling method
is used to analyze the pinned joint problem. This
method consists of three major parts: the primary
stress analysis, checking for the failure and degradation
of material properties in the damaged regions (an
iterative procedure); linear and nonlinear analyses and
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Figure 1. Geometry of the laminate containing a
pin-loaded hole.
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Figure 2. Typical failure mechanisms for the pinned joint
configuration.
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the respective failure criterion and degradation in each
type of analysis.

A computer code has been developed which can
be conveniently used for the analysis of laminated
composites containing pin loaded holes.

THE LINEAR 2-D MODELING

Stress Analysis

A closed form solution for the stress analysis of com-
posites, in particular the pin loaded joints, cannot be
found in the literature. Furthermore, because of high
nonlinear nature after failure due to the change in
material properties of damaged regions, the approxi-
mate analytical solutions are no longer valid. For these
reasons and the nature of progressive damage modeling,
the finite element technique is a suitable tool for the
analysis of such cases. Two-dimensional approximation
modelings have been commonly used, mainly due to the
computing efficiency of two-dimensional finite element
modeling. In cases like the pinned/bolted joint, the
two dimensional plane-stress approximation is quite
valid and can provide useful results. However, in the
joining configuration, where out-of-plane effects may
play an essential role in the failure analysis, the two-
dimensional analysis is insufficient.

Stress on the laminate is calculated on the basis of
anisotropic theory of elasticity. Accordingly, the strain
€;;(z,y) is assumed to be a function of the coordinates
on the plane of the junction and cross thickness is
considered to be constant. The general stress-strain
relation for orthotropic material may be expressed as:

{o} = [Cl{e} (1)

where the stiffness matrix [C] is in the form of:

Ci1 Ci2 Cis
[C]l= [Ca C22 Cog| . (2)
Ce1 Csz Ces

If the plate is made of N layers, then the equivalent
stiffness may be determined according to:

N b
cn =Y ZEhr, 3)
p=1
where h and H are the thickness of pth ply and the
thickness of the plate, respectively. (Cf’j)” is the
transformed reduced stiffness matrix for pth ply at
nth increment. (Cf’j) is transformed reduced stiffness
matrix of laminate at nth increment. By employing the
equilibrium equations together with the kinematical
relations in conjunction with the constitutive equations
described above, the governing equations may be de-
rived. If this equation is multiplied by the chosen shape
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functions integrated over the elemen

t domain and the

divergence theorem is applied one can derive the usual

weak formulation in matrix form as:
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found in the maximum stress criteria. However his
criteria do not cover all the failure modes and in his ma-
trix compressive failure mode formulation determining
transverse shear strength is difficult. To resolve these
difficulties, Chang and Lessard [12] and Lessard et al.
[13] have completed Hashin criteria. This makes the
combined failure criteria ideal for use in finite element
models, especially when adapted to progressive damage
models. For the composite laminated joints, the failure
is checked here at each increment of loading for the
following failure modes:

1. Matrix failure,
2. Fiber failure,

3. Matrix-fiber failure.

Of course, for each mode of failure the nature of the
stress, whether it be tensile, compressive or shear, will
make a difference.

Assuming z and y to be, respectively, the lon-
gitudinal and transverse directions of the plate under
consideration, the following failure categories with their
criterion may be explicitly defined.

Matrix Failure
Matriz Tensile Stress

According to Hashin failure criteria, cracking of the
matrix material under tension would start once the
stresses satisfy the relation,

a 02y\2 .
(S—i;) + ( 57 ) >1 subjected to oy >0, (5)
where o, and 0., are the transverse tensile stress
and shear stress in each layer, respectively. S} is the
transverse tensile strength and S? is the ply shear
strength.

Matriz Compressive Failure

Lessard and Shokrieh [9] proposed failure when the
nature of stresses in the region is of the compression
type once:

(6)

g 2y 2
y . .
(S—g) + ( 5 )* >1 subjected to o, <0,
where 0., and S? are defined as before, o, is the
transverse compressive stress and S! is the transverse
compressive strength.

Fiber Failure

Fiber Tensile Failure

Hashin failure criteria have suggested the following
relation for this mode of failure:

2

(Ua:) + (0_"2)2 >1 with o; >0,

St SP Q)

where o, is the longitudinal fiber stress and Sf is the
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longitudinal tensile strength.

Fiber Compression (Bearing) Failure

In this mode of failure, Hashin states that it is not clear
whether shear stress produces a weakening or strength-
ening effect on compressive strength in fiber direction.
Consequently, the failure criterion is represented in the
following simple maximum stress form:

Og

(ﬁ) >1 subjected to o, <0, (8)

where S¢ is the fiber compression strength.

Fiber-Matrix Failure

This type of failure mostly occurs in shear mode,
which is important for compression failure dominated
by shear stresses. Hashin [11] proposed that the failure
criteria in this mode take place once the following
inequality is satisfied:

2

(;_:) + (2:"’)2 >1 subjectedto o, >0, (9)

where S; and S, are defined as before.

Degradation

As soon as failure occurs, the material properties in
the damaged region would be degraded. The degree
of property loss strongly depends upon the failure
mechanisms. In the following, a new material stiffness
due to degradation is presented.

Matrix Degradation

If matrix failure in tension or compression is predicted
in a layer of the laminate, only the transverse modulus
and Poisson’s ratio in the damaged area of the layer are
reduced to zero. However, the longitudinal modulus
and the shear properties of the layer are unchanged.
The plane stress stiffness matrix is shown here both
before and after application of the degradation rule.

EI Ez }l
1-vavy l—u:V,, 0 E-’” 0 0
1_E_v_’i£_.. == 0 | = 0 0 o0 ,
—VgV, —vgv,
0 Y O v Gmy O 0 Gzy (10)

where E; and E, are the fiber and matrix moduli,
respectively, G,y is the shear modulus and v, and vy
are the Poisson’s ratios associated with a single layer
of composite material.

Fiber Degradation

In the damaged zone either under tensile or compres-
sive loads for fiber breakage, both E, and v, are
reduced to zero, however, the longitudinal and shear
moduli of the failed layer degenerate according to the
Weibull distribution as follows:
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Ez _I
-E— B e_(:;o)ﬁ , g—xz— = e—'(m

s

: (11)

where E, and G,, are the reduced tensile and shear
moduli, respectively. A is the damage zone predicted
by this mode, 4, = 2 is the fiber failure interaction
zone associated with the measured ply tensile strength
X: and § is the shape parameter of the Weibull
distribution for the property degradation. é can be
estimated by the following expression [14]:

6:2d(4_5;f_)% [—(521)’:}@, (12)
Yy

where d is the diameter of the fibers, Sy is the average
fiber strength, 7, is the yielding stress of the matrix
and L is the length of the fibers under consideration.
For this catastrophic mode of failure, the plane stress
stiffness matrix is shown here both before and after
application of the degradation rule.

1—€:uy 1€Z:Vy O EI 0 0
B B gl [0 0 0.
T G, 0 0 G| (13)

Fiber-Matriz Degradation

For this mode of failure, the material loses its shear
properties and Poisson’s effect which are reduced to
zero, however, the shear modulus of the failed layer
would be degraded based on Equation 13. Therefore,
for this mode of failure, the new material properties
matrix is:

oy e 0 E. 0 0
1_’_31/_'11_ = 0| — 0 E, O i
Oz Y Ofl- v Gzy 0 0 G;y (14)

RESULTS OF THE LINEAR ANALYSIS

To assess the accuracy of the finite element code,
problems with existing solutions were selected to be
compared with the numerical solutions generated by
the code. The first problem considered was an isotropic
plate containing a pin loaded hole. As shown in
Figure 3, the stresses calculated by the code are in
good agreement with De Jong approximate solution
[15]. The parameters used in numerical calculations
are chosen as:
4 E L P
D=0.3in, 3—0.5, D= 4.0, —5—14, P, = Dt

In the second problem, the stress distribution in
an orthotropic plate with a finite width containing an
open (unloaded) hole was calculated. The calculations
were performed for a plate with symmetric laminate lay
of up to [0/90]s. An analytical solution for this problem
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Figure 3. Stress o, along X-axis in a
finite width containing a loaded hole.
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Figure 4. Stress oy along X-axis in an orthotropic finite
plate [0/90], containing a circular hole.

Table [1. Material properties for three graphite/epoxy materials.
Materials
AS4/3501-6 T300/SP286 T300/976
E. (GPa) 156 130 150
E, (GPg) 13 8 8
E, (GPa) 7 5 5
Vg — 0.23 0.3 0.3
a (MPa)—3 2.4423 x 1078 — 3.64579 x 108
St (M Ba) 1517 1231 2308
st (M Ha) 1593 1083 1585
Sf (M Ra) 46 50 43
st (M Ba) 253 193 842
SP (MPREa) 107 50 115
8 (GPa) 7.6 6.6 7.6
§ (mm?) 0.355 — 0.3449

was provided previously by Nuismer

and Whitney [16],

who modified Lekhnitskii’s earlier solution [17] for an

infinite plate. The results given
good agreement between the stre
the present code and those given
Whitney.

Comparison of the present res
oretical results given by Nuismer
is demonstrated here. Parameters
calculations are:

Material: Graphite - Epoxy 7300

in Figure 4 show
sses calculated by
by Nuismer and

ults with the the-

and Whitney [16]
used in numerical

/5208

E, =14 x 10°Ksi, E; = 1.6 x 10°Ksi,

G2 = 0.77 x 10%Ksi,

Vg = 029, S? = 0333KSI,

. W
D = lin, o
Upon loading a laminated composite plate to final
failure, the three main failure mechanisms become
evident. For any particular case, the results can
be generated by the proposed model through varying
material properties, geometry or ply layout. Material
properties for the cases studied are shown in Table 1.
To see how progressive damage modeling
works, a sample case of a graphite-epoxy material
(T'300/SP286) with layout is chosen. The configura-
tion and final failure mechanism are shown in Figures
5 and 6. The experimental failure load for this example
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Figure 6. Predicted mechanism of failure for [0/ + 45/90],, layer 2.

is reported 4982 N [9]. The failure load of 4796 N is
predicted by the computer code which is 3.73% below
the experimental failure load.

Parametric studies have been performed using
the computer program for various materials, geom-
etry and ply configurations. As an example of a
parametric study, the following case is considered:
using graphite epoxy material 7300/976 (see Table
1 for material properties), with a cross ply lami-
nate configuration, bearing strengths are compared
for various geometries, as shown in Figures 7a and
7b.

The trends in the results are evident and make
sense upon examination. In Figure 7a, there is a sharp
decrease in the bearing strength as E/D approaches
unity, which indicates that the hole is too close to
the specimen edge to adequately support the load. In

€~

Figure 7b, there is a sharp decrease in the bearing
strength as W/D approaches 2.0, which indicates that
the hole is too close to the sides of the specimen to
adequately support the load. It is also important
to capture the mechanism of failure. Figures 8-
12 show typical transition from shear-out mode of
failure (E/D = 1.0) to bearing mode of failure (E/D
= 4.0) as the edge distance ratio E/D is increased
(Figures 8-11) and transition from net-tension mode
of failure to bearing mode (Figures 12 and 13) takes
place.

The change in mechanism of failure helps to
explain why there are transition regions in the graphs
of Figure 7a at E/D = 1.0 to 2.0 and Figure 7b
at W/D = 2.0 to 3.0. For Figure 7a at low values
of E/D, the failure mechanism is shear-out which is
a weak type of failure and at high values of E/D,
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Figure 7a. Variation of ultimate strength of a [0/90].,
cross-ply laminate, W/D = constant, E/D =1 to 4
(7'300/976).
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Figure Tb. Variation of ultimate strength of a [0/90],,
cross-ply laminate, E/D = constant, W/D = 2 to 4
(T300/976).
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the failure mechanism is bearing which is a better
method of resisting load. For Figure 7b at low values
of W/D, the failure mechanism is net-tension mode
and at high values of W/D, the failure mechanism is

bearing,.

NONLINEAR 2-D MODELING

When the structure is damaged in a region, the assump-
tion of linear behavior, at least in that region, is no
longer valid. Therefore, the nonlinear behavior should
somehow be taken into account. It must be mentioned
that the failure criterion implemented in the linear
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Figure 9. Transition failure mode, [0/90], t = 3.429, W/D =4, E/D =2, Force =9128.724.

NONLINEAR MATERIAL BEHAVIOR

MODELING
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part of the analysis have actually made the problem
piecewise nonlinear. Here, only the nonlinear material
behavior is implemented and not the nonlinearities in
the large deformation analysis.

Fiber-reinforced organic matrix composite materials
exhibit material nonlinearity, primarily in the shear-
stress/shear-strain relationship of each unidirectional
layer [18]. The other single layer material properties
tend to remain linear over the elastic range. This is to
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Figure 10. Bearing failure mode, [0/90], t = 3.429, W/D =4, E/D = 3, Force =11650.82.

and Poisson’s ratios v; and v, behave linearly before
failure, while shear modulus G, is very nonlinear in
the elastic range. The nonlinear behavior is introduced
in the play level. In plane stress the stress-strain
relations in each ply may be expressed as:

L
k=l

where z and y are coordinates parallel and normal to
the fibers, respectively, and C is the reduced stiffness
matrix. The function f shows a relationship between
the shear stress and shear strain. Different functions
have been introduced in this regard (see for example
[18-20]). Here, the nonlinear shear-stress/shear-strain

C;L-y E, : . )

relation advanced by Hahn [18] is chosen. Accordingly:

(16)

— 3
Yy = a Ory + QO
Ty

7
where G, is the initial ply shear modulus and a is
a constant that has to be determined experimentally.
The tangent shear modulus, G, defined as the slope
of the shear stress versus shear strain at each current
position is determined according to:

do 1
Gp=e—t . — . 17
. dvyzy ?'1,_, + 3a J’f_y i

Modified Nonlinear Failure Criteria

The failure criterion which was introduced in the linear
part of this analysis would be enhanced by adding
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Figure 11: Bearing failure mode, [0/90], t = 3.429, W/D =4, E/D = 4, Force =11650.82.
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Figure 12. Net-tension failure mode, [0/90], ¢ = 3.429, W/D =4, E/D = 4, Force =9128.742,
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Figure 13. Bearing failure mode, [0/90], t = 3.429, W/D = 3, E/D = 4, Force =12523.97.

some additional terms. These additional terms are
determined through finding a strain energy equivalent
to that of the linear case which must be calculated
by integrating over the strain range. This failure
criterion may be employed to determine the failure of
the laminated composite structures.

Nonlinear Matriz Failure

According to Hashin failure criteria, cracking of the
matrix material under tension has the following form:

2 * ey
(G"”) + Jo " OrylYay
Sf f[";- ] o yd’}"zy
where o, and o, are the transverse tensile stress and
shear stress in each layer, respectively. S; is the trans-
verse tensile strength and ~,, is the ply shear-strain.
In the denominator of the second term, the upper

limit of integration is the ply ultimate shear-strain.
By introducing the ply, the shear-stress/shear-strain

> 1 subjected to o, >0,
(18)

relationship of the failure criteria may be expressed as:
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(19)

where G, is the initial ply in plane shear modulus,
a is the shear nonlinearity parameter and S, is the
ply shear strength. The remaining parameters are
as defined previously. Although the expression in
this mode appears complicated, it is important to
note that the extra terms are due to the definition
of the material nonlinearity. If this nonlinearity is
weak, i.e., @ — 0, the linear forms of failure would
be resulted. Similar to matrix tensile failure, the
other failure modes criterion may be converted from
linear to nonlinear form by just adding the equiva-
lent nonlinear shear stress-strain constitutive formula
introduced, so the material nonlinearity affects only
the shear-stress/shear-strain terms in their equivalent
linear failure criterion. For the sake of brevity, other
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modes and their failure criteria are not presented
here.

Nonlinear Degradation

Degradation in damaged regions in the nonlinear ver-
sion is the same as the linear case.

RESULTS OF THE NONLINEAR ANALYSIS

Nonlinear 2-D modeling seeks to improve upon the
results of the linear model. Using the 2-D nonlinear
computer code, progressive damage simulations were
generated. The results of these simulations were
compared to the last set of examples of the linear
case. The results indicated that they are enhanced in
comparison to the work by Lessard and Shokrieh [9]
who have employed the same failure criterion.
Nonlinear results improvement is clear and shows
that considering nonlinear material behavior is very
important. The results of these simulations were also
compared to a set of experiments performed using
AS4/3501-6 graphite-epoxy composite material [11]
(see Table 1 for material properties). The geometries
of the samples tested were chosen such that the three
possible pinned-joint failure modes could be observed.
The geometries correspond to two subgroups of exper-
iments; variation of specimen width and variation of
specimen edge distance. For all specimens, the layout
was given by [(45/0/ — 45/0/90/0/45/0/ — 45/0)],,
which is a 40 layer layout containing 4 different ply
angles with a dominant amount 0° of plies. Details
concerning the experimental method and results can be
found in [13]. Figures 14, 15, 16a and 16b summarize
the final failure results for the two sets of tests along
with predicted values generated from both the linear
and nonlinear codes. Each set of data is characterized
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Figure 14. Variation of ultimate strength of a [0/90],
cross-ply laminate, W/D = constant, £/D= 1 to 4
(T'300/976).
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Figure 15. Variation of ultimate strength of a [0/90],
cross-ply laminate, E/D = constant, W/D = 2 to 4
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Figure 17. Shear-out failure mode,

by weak specimens where the hole is located too close
to the sides, W/D < 3, or too close to the edge,
E/D < 3. As the mode changes to the bearing
mode of failure, the final failure stress stabilizes and
becomes independent of geometry (W/D > 4 and
E/D > 4).

The results show that the nonlinear model pre-
dicts very well for data in all ranges, and it is especially
promising that the results in the bearing range of
failure are close to the experimental values. The linear
model gives close results at the lower end of the E/D
and W/D scales, indicating that the linear model can
capture the shear-out and net-tension mechanism of
failure, but not the bearing mechanism. In summary,
the nonlinear modeling can predict the failure mode
and the ultimate load much better than the linear part
of the analysis. A series of figures (Figures 17-20) show
the computed results for the prediction of failure mode
for AS4/3501-6 using the nonlinear code of analysis.

6-%

(b)

Neg Stress x Dir. (0)
Pos. Stress x Dir.

[(45/0/-45/0/90/0/45/0/-45/0)2], t = 5.8, W/D = 4, E/D = 1, Force =16068.64.

In these figures, the different forms of failure under the
increase of loading may be seen.

CONCLUSIONS

A two-dimensional linear and nonlinear analyses of
laminated pinned joints are presented. The accuracy
and applicability of the algorithm and code are checked.
Although the problem in real life is three-dimensional,
the results of the two-dimensional problem do compare
very well with the experiment and might be employed
in a real design. A comparison between linear and
nonlinear analyses shows that the results are enhanced
by a nonlinear analysis, however, it is very much depen-
dent on the failure criterion, the nonlinear constitutive
rule and, also, on the degradation material rule, once
a part or a region of the pinned-joint is damaged. A
good knowledge of the failure and degradation rules
are, thus, a necessity.
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Figure 18. Transition failure mode, [(45/0/-45/0/90/0/45/0/-45/0)2], t = 5.8, W/D = 4, E/D = 2, Force =27196.49.
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Figure 19. Bearing failure mode, [(45/0/-45/0/90/0/45/0/-45/0)2], t = 5.8, W/D = 4, E/D = 4, Force =35266.95.
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