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Research Note

Solving Nonlinear Ordinary
Differential Equation as a Control
Problem by Using Measure Theory

S.A. Alavi', A.V. Kamyad* and M. Gachpazan!

In this paper, a new technique is introduced for finding the approximate solution of a nonlinear
ordinary differential equation. In this method, first an ordinary differential equation problem is
changed to an optimal control problem which itself is transformed into a measure theoric control

problem, then this new
Finally, the solution of the

roblem is converted to an infinite dimensional linear programming.
infinite dimensional linear programming is approximated to the solution

of a finite dimensional one and using the solution of this problem, an approximate solution for
the original problem is obtained. Also, in this method, the total error of the approximate solution

is found.

INTRODUCTION

There are many numerical methods for finding the
solution of an ordinary differential pquation. Here, a
new technique is introduced for finding an approximate
solution of a nonlinear ODE. A nonlinear ODE of the

form:

v™ =g(t,y,y, .., gD,

teJe, (1)

is considered with the initial conditipns:

y(ta) = yanl(ta) =Y, ...,y(n—l)(t(

where J = [t,,t5] with interior J°|

is an n-cell in Euclidean space R™
is a continuous function.

) = Yn-1, (2)

A=7xQ,Q
and g : A - R

Using measure theory, an

approximate solution y(t), ¢ € J, of the initial value

Problem 1 is found.

It should be noted that, due to the equivalency
of an nth order ODE with a system of n first order

ODEs, the above problem can be

extended to find

an approximate solution of a nonlinear system of first

order ODEs as follows:
o = f(t,z), (z,t)eJ°xQ,

z(ta) = za,

(3)
(4)
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where z(t) = (z1(t),z2(t),...,z0(t))* and z, =
(z1(ta), T2(ta), ..., ta(ta))? are vectors in R™; also, f =
(fi, f2, .., fa)t is a continuous function on A.

Rubio used measure theory to find a piecewise
constant optimal control for classic optimal control
problems [1]. A boundary optimal control problem for
diffusion and wave equations, using measure theory,
is considered by some authors (e.g., [2-7]); in [8],
measure theory is used and an optimal control of an
inhomogeneous wave problem with internal control is
found.

CLASSICAL OPTIMAL CONTROL
PROBLEM

Let:
=Y, 2= y’, ey Ty = 3/"_‘17 (5)

then Problem 1 changes to the nonlinear system with
initial Conditions 3 and 4, where z;(t,) = yi_1, ¢ =
1,2,...,n, and:

Tip1(t)

filtz) = { 9(t,)

Let k and k; be non-negative real constants such that
llg(t, )|l < kllz|| + k1, for (¢t,z) € J x R™; then:

1=1,2,..,n—-1
1 =n.

12 =D a? + g%t ) < Nlall? + (Kllz] + kr)?
=2

< (kollz|| + k1)?  for(t,z) € J x R™,
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where ko = k + 1. Therefore, using Theorem 3.2 of [9],
there is a solution z(t) of z' = f(¢,z) on j = [ta,ts] for
which z(t,) = zo.

Let U = [a,b] be a closed subset of R such that
g(t,z) € U, (t,z) € Aand Q = J x Q x U. Also, let
control u(-) be a measurable function u(t) : J — U.
The vector function is defined as go = (g1, 92, .., gn)%,
go : &8 — R™, where:

l‘i-}-l(t) 1= 1,2, = 1

gi(t,z,u) = { u(t) i=

A trajectory for u(-) is an absolutely continuous func-
tion z(-) such that:

a'(t) = go(t, z(t), u(t)).

Define P(-) = (z(-),u(-)) as a trajectory-control pair,
which is called admissible if «(-) is a control function
and z(-) is a trajectory for u such that z(t.) = za.
The set of admissible pairs will be denoted by W. It is
obvious that W is non-empty.

Now, it is assumed that:

folt, 2(t), u(t)) = lu(t) — g(t, 2]l (6)
considering the functional I : W — R defined by:

umzﬁnwﬂmwmm (1)

The classical control problem consists in minimiz-
ing the functional I over the set W. If the optimal
solution is zero, then fo = 0, so u(t) = g(t,x) or
y(™(t) = u(t) and an exact solution y(t), t € J, for
Problem 1 can be obtained; otherwise, if the optimal
solution is approximately zero, an approximate solution
for Problem 1 can be obtained.

Remark

In Equation 6, fo(t,z(t),u(t)) can be defined as:
folt,2(t), u(t)) = [u(t) ~ g(t, 2)]*.

Let B be an open ball in R™*! containing A
and C'(B), the space of all continuously differentiable
functions on B such that they and their first derivatives
are bounded on B. Now for all ¢ € C'(B), ¢9(t,z,u) =
do(t, x)go(t, z,u) + ¢e(t,z), (t,z,,u) € Q is defined;
therefore, if P(z(-),u(-)) is an admissible pair,

_/wwumwmﬁ=¢mwn—mmxnzA¢
; (8)

for all ¢ € C'(B), where xp = (z1(ts),22(ts), ... Zn(ts))*
is an unknown point in R™. In particular, if h(t, z(t),
u(t)) is a real-valued continuous function of time only,
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ie., h(t,x1,u1) = h(t,z2,u) for all t € J and (z1,u1),
(22,u2) € @ x U; then:

/J h(t, 2(t), u(t))dt = an, 9)

where ay, is Lebesgue integral of h over J. Now consider
D(J°), the space of all infinitely differentiable real
functions with compact support in J°. Define:

¥;(t, @, u) = z;9' (1) + g5(t, 7, u)(t),

for j = 1,2,...,n and all ¢ € D(J°). Then, it follows:
/%mﬂmwmmz/@wmm
J J
+/wmammmwmu
J

=%uwmw—/m—%mummmwmw

or:
[ wsteatueri =0, j=12..n  (0)
J
since ¢ is a function with compact support in J° and
P = (z(-),u(")) is an admissible pair. Equalities 8 to
10 are properties of the admissible pairs in the classical
formulation of the optimal control problem, thus, this
problem can be transformed into a new non-classical
one.

TRANSFORMATION

For an admissible pair P, the mapping:
Ap: F — / F(t,z,u)dt,
J

defines a positive linear funtional on the space C(Q) of
the continuous real-valued functions on ; therefore,
an admissible pair P can be considered as a positive
linear funtional Ap on the C(2) and Equations 8 to 10
can be rewritten as follows:

Ap(¢°)=0¢  ¢€C'(B)
Ap(f) = as feCi()
Ap(p;)=0 Y e D), j=1,2,..,n; (11)

where C1(2) denotes the subspace of C(Q2) of those
functions which depend on time only.

The set W can be considered as a set of positive
linear functionals on C(£2). To enlarge this set and
perhaps overcome some of the difficulties associated
with the classical formulation of the optimal control
problem, a new framework is developed through consid-
ering all positive linear functionals on C((2) satisfying
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equalities akin to those in Statement 11. Through Riesz
representation theorem, it is convenient to identify such
functions with a positive Radon measure on Q [10]; the

set @ of all such measures can be
which satisfies:

me¢')=A7¢  ¢€C'(B)
u(f) =ay fe Q)
u(;) =0 ¥ e D(J°), j

Therefore, the new optimization j
minimizing the linear functional I
by:

p— u(fo) = /Jfodu,

over the set ). It should be not

taken into account

=12,.,n (12)

roblem consists in
: @ — R, defined

ed that this is an

infinite dimensional linear programming problem. The

existence of an optimal measure in

set ) is considered

for the functional I; a topology is defined on set Q

induced by the weak*-topology on
all positive Radon measure on (.

Proposition

The measure-theoretical control pi
find the minimum of the linear fui

set (), attains its minimum p* in Q.

The proof of this theorem c
Chapter 2]. In the following section
problem is considered.

APPROXIMATION

M*(Q), the set of

oblem, which is to
nctional I over the

an be found in [1,
the approximation

The above infinite-dimensional linear program is ap-

proximated by a finite-dimensional
tion of this problem is approximate
by an optimal admissible pair. Th
have been effected in several stages

First, the minimization of T

one, then the solu-
d in a suitable way
ese approximations

over the subset of

M*(9Q) is considered, defined by a requirement that
only a finite number of the constraints in Statement 12

be satisfied. This is achieved by

choosing countable

sets of functions whose linear combinations are dense
in the appropriate space, and then selecting a finite

number of them. The underlying
-dimensional;

space is not finite

however, the minimizing measure is

a linear combination of a finite number of unitary

atomic measure. Nevertheless, th

e support of these

atomic measures are unknown; these supports can,
however, be approximated by introducing a set dense

in Q.

Set 2 will be covered with a
the appropriate intervals for each
Z, u, into a number of equal subintervals.
be divided into N equal cells Q;, ; = 1,2,..

grid, by dividing
component of t,
Let Q
. N;
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points z; = (t;,z;,u;) € §; are chosen and ¢ =
{257 =1,2,...,N}. The set ¢ is an approximate dense
subset of the set 2. Thus, the solution of the infinite
dimensional linear programming problem, introduced
above, is approximated by the following problem (see
Chapter 4 of [1]):

Minimize:

N
> asfo(z;)

Jj=1

over the set of coefficients a; >0, 7 =1,2,...

such that :

( N

> ai¢l(z) = A¢ i=1,2,.. M

1=1,2,.., M,

< a;xi(z) =0
7=1

(14)

Al

> a5 fe(t;) = ax

\ J=1

k=1,2,.. M;

where t; is written for the corresponding components
of z; and ar, = fjfk(t)dt. The functions {fx;k =
1,2, ..., M3} are defined by:

H = 1 t€ Jp=(ta +(k—1)d,t, + kd)
filt) = 0  otherwise,

where d = t—’M;;— The functions {¢;; i = 1,2,..., M;}
are monomials in the components of z only and {x;; { =
1,2,.., M2} = {93 j = 1,2,..,51,8 = 1,2,..,n},
for some integer j;; the functions * are of the form
sin(27st), 1 — cos(2wst).

The dimension of the linear programming prob-
lem is M = M; + M, + M; equalities by N + n vari-
ables; because in Relation 14, i.e., A¢; = ¢;(ts,Tp) —
¢i(ta, xa), the vector:

Ty = (ml(tb)vx2(tb)v "'axn(tb)) = (/817[3% -"vﬂn)»

is unknown and g;, 1 = 1,2,...,n, must be selected as
n free variables.

Now, y(-) is constructed (an approximate solution
of the original Problem 1) from the solution {aj;j =
1,2,..., N} of the above linear programming problem.
Nevertheless, only the control function needs to be
constructed; since y{™(t) = wu(t), therefore, by initial
Condition 2, y(t), ¢ € J can be obtained. It is noted
that y(t) € C™1(J), the space of all continuously
differentiable functions on J of the order n — 1.

It is well-known that the linear form Statement 13
attains its minimum at an extreme point of the feasible
set defined by Relation 14 and that such a point has,
at most, M +n number of non-zero elements. Let J be
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divided into R equal subintervals and N = R X s, pair
(3,7) can be correlated to m as:

m=(—-1)s+7,

1=12,..,R, j=12,..,s,
(for m = 1,2,...,N). Also, let ki; = a,. Then, a
piecewise-constant control is defined as:

'u(t) = Um, t € B’ijy (15)

where u., is a component of a triple zy, = (tm, Tm, Um)
and:

B,’j = [ti_l + Z kim,ti—1 + Z kim)- (16)

m<j m<j

Example 1

Consider the initial value problem:

te(0,1) (17)

The exact solution of this problem can be written as:

u(t) = éet, teo 1. (18)

Now, an approximate solution of the above or-
dinary differential equation is computed. Let J =
[0,1], A= [0, 1], U= [0,2], M1 = 1, Mz = 8, M3 =
10, M =19, ¢; = z(t) = y(t), Az = 0.125, Au = 0.25
and R = 10; therefore, N = 640. Also, let Z; =
(t;,z5,u5), §=1,2,...,640; t;, z;, and u; are selected
as:

todit1 = tesi4s = . = tedirea = 0.117
i=0,1,..,9,
Tesitjt1 = Toai+8j+2 = - = Teai+sj+s = 0.147

i=0,1,..,9, j=0,1,..,7,
Ui = Uigg = Uip16 = ... = Uiye32 = 0.281
i=1,2,..8.

Consequently, using Statements 13 and 14, the follow-

65

ing linear programming problem is obtained:
Minimize
640
; 2
> s - get’ - z;]%q;
j=1
subject to:

(-~ 5Nl +ajla; +8=0
2?4:01 [27sz; cos(2mst;) +

leti 4+ x;)sin(2mst;)]e; =0, s=1,2,3,4
e 2 J J

S04 [27(s — 4)z; sin(2m(s — 4)t;) +
(Let +z;)(1—cosRn(s—4)tj)la; =0 s=5,6,7,8
e4j+1 T Qpaj42 T .o+

Qg45+64 = 017 ] =O) 1u27 79

| B is a free variable, o; >0, j=0,1,2,...,640.

Using the solution of the above linear program-
ming problem, the optimal value of the objective
function is found as:

I* =0.0033,

also, the final value of approximated Solution 15 is as
follows:
y(1) = 8 = 1.008.

Using the result of this finite dimensional linear
programming and Solution 15, an approximated piece-
wise constant control function is obtained; since '(t) =
z(t) = u(t), an approximated solution y(-) € C(J) can
be attained for Statements 17 and 18 as:

( 0.56t t € {0.0000,0.0671)
0.40t — 0.056364 t € [0.0671,0.1000)
0.28t + 0.055636 t € {0.1000,0.1958)
0.56t + 0.000812 t € [0.1958,0.3792)
1.40t — 0.317716 t € [0.3792,0.4000)
0.56t + 0.018284 t € [0.4000,0.4699)
1.40t - 0.376432 t € [0.4699,0.5000)
0.56t + 0.043568 t € {0.5000,0.5571)
1.40t — 0.424396 t € [0.5571,0.6000)
0.84t — 0.088396 t € [0.6000,0.6666)
1.68t — 0.648340 t € [0.6666,0.7000)
0.84¢ — 0.060340 t € [0.7000,0.7445)
1.68t — 0.685720 t € [0.7445,0.8000)
0.84t — 0.013720 t € [0.8000,0.8228)
1.68t — 0.704872 t € [0.8228,0.9000)
| 1.96¢ — 0.956872 t € [0.9000, 1.0000]

The approximated solution y(-) and the exact
solution Y'(-) can be seen in Figure 1.
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Figure 1. Final status for Example 1.

Example 2

Consider the nonlinear differential equation:

1

v+ (1) - w(t) = ~2(t - 3)
1 1g,0.s
—g(t—g) (32 —t+1), tie(0,1), (19)
with the initial conditions:
1 -1
0)=—, ¢'(0)=—. 20
y(0) Tt y'(0) 5 (20)

The exact solution of this problem| can be written
as:

-1, 1,
y(t)"_:g’*(t_g) ) tG[O,l].

As in Example 1, an approximate solution of this
problem can be computed. Let z1(t)|= y(t), z2(t) =
y'(t), J = [0,1], A = [-0.1,0.1] x [-05,0], U =
(5 2], Mi=2, My =8, M3 =10, M =20, ¢1(t) =
z1(t), #2(t) = z2(t), Azy =0.05, Azp =0.125, Au =
0.5 and R = 10; therefore, N = 640. Also, Z; =
(ti,xli,xzi,ui),i = 1,2,...,640, where t,‘, T1iy, T2q
are selected for ¢ = 1,2,..,640, as mid-points of
intervals At, Ax;, Axy;, respectively (like Example 1);
moreover, it is assumed that:

Ulpi = Usi = Ug4i = ... = Up374; = —— + glﬁ
i=0,1,2,3.

Using Statements 13 and 14, the following linear
programming problem is obtained:

Minimize

S.A. Alavi, A.V. Kamyad and M. Gachpazan

640 1
Y IU; + 523, — 2y + 2t - 3
j=1

3l = 360 14 1)

subject to :
(- 2?101 Ty + B1 = 57,
Z?iol ujaj + P = é
Z?iol [27s21; cos(2mst;) +

To; sin(2mst;)]la; =0 s=1,2
2?4:01 [2msza; cos(2mst;) +

u;sin(27st;)]a; =0 s=1,2
Z?iol [2mszy; sin(2nst;) +

T2;(1 = cos(2mst;)]a; =0 s=1,2
2?4:01 [27msxq; sin(2mst;) +

u;(1 — cos(2mst;)ja; =0 s=1,2
Q10i+1 + Qigi42 + ... +

ar0ie64 = 0.1 i=0,1,2,...,9

B1 and By are free variables. «; >0

j=0,1,2,...,640.

In this example, the cost function takes a value
of I* = 0.0104. Also, using the solution of the above
linear programming problem, y(1) = 8 = (1) =
—0.1017.  The outcomes of this finite dimensional
linear programming as well as Solution 15 result in
the following approximated piecewise constant control
function:

(1 t € [0.0000, .2000)

52 ¢ € [0.2000,0.2822)
13 t € [0.2822,0.3000)
52 t € [0.3000, 0.5000)

¥ ¢ € [0.5000,0.8000)

53¢t €(0.8000, 1.0000]
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Figure 2. Final status for Example 2.

Since y"(t) = x4(t) = u(t), an approximated solution
y(-) € C(J) can be computed for Statements 17 and
18 as:

y(t) =

1342 - 0.1111¢ + 0.0123

3 t € [0.0000, .2000)

7212 4+ 0.0138t — 0.0001 ¢ € [0.2000,0.2822)
1842 — 0.1624t +0.0247 ¢ € [0.2822,0.3000)
2242 +0.0250t — 0.0033 ¢ € [0.3000, 0.5000)

=212 4+ 0.3375t — 0.0815 ¢ € [0.5000, 0.8000)

=3242 4 0.8375t — 0.2815 t € [0.8000, 1.0000]

The approximated solution y(-) and the exact
solution Y(-) can be seen in Figure 2.

CALCULATION OF ABSOLUTE ERROR

A bound is first found for error in the above mentioned
method. Let Y(¢) and y(t), respectively, denote the
exact and approximated solutions of Problem 1; it is
clear that Y9 (t,) = y()(t,) = vi,4 = 0,1,...,n; thus,
error can be considered as follows:

1Y =yl = /J Y () - y(t))t

- /J | /ta[Y'(tl) — /(b)) |at
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< [ [ i) -yiaa
s/J/J/JIY”(ta)—y”(tg)ldtgdtldts.‘.

§//.../|Y(")(tn)—y(”)(tn)|dtn...dt1dt.
JJJ J

However, using Equations 6 and 7,

I:/Jlg(t,x)—-u(tﬂdt

:/ Y™ (1) — 4™ (1) | dt,
J

where the functional I is an objective function for
the classical optimal control problem for which the
solution is approximated by the solution of the linear
Programmings 13 and 14; the minimum value of the
objective function in Statements 13 and 14 is equal to
I*; therefore,

Y —ylli < / .../I*dtn_l...dtldt
J J

or,

1Y -yl <

where At =ty — t,.

Due to the above discussion, the error of Ex-
ample 1 is equal to 0.0033; similarly, the error of
Example 2 is equal to 0.0104.

It is also noted that the error in transformation
of an optimal control problem to a linear programming
problem is considered in [11].

(At)"I* |
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