Scientia Iranica, Vol. 7, No. 1, pp 57-61
(© Sharif University of Technology, January 2000

Research Note

Riemann Mapping for the
Family z™(z2" — b),m # n

M. Rabii'

In this paper, it is shown that the connectedness locus M(m,n) for the family of maps z —
z™(z"—b), m # n is connected by constructing a Riemann map for the complement C\M(m,n).
In particular, C\ M(m,n) is simply connected. Therefore, the external rays of M(m,n) can be
defined and a combinatorial picture of the connected locus can be given. In the quadratic case,
22 + ¢, the parameter space is based on the critical value, whereas in the case presented here, it
is based on the critical point. Consequently, the definition of Riemann map is different from the

quadratic case.

INTRODUCTION

In the quadratic case, Douady and Hubbard in-
troduce the conformal map ¢ +— ¢.(c) from the
complement of Mandelbrot set onto the comple-
ment of the closed unit disk, where ¢, is the
Béttcher map of 22 + ¢ at infinity. Based on
this work, Thurston gives a combinatorial picture
of Mandelbrot set which is useful in explicating
the dynamical behavior. However, this model can-
not be used for higher degrees as the example of
F i(z) = 2(2+ 1), Fi(z) = z(z* — 1) shows (see

).

In this paper, the Riemann mapping from C\
M(m,n) to C \ D is introduced. By using this
map, a combinatorial model of the connected locus of
M(m,n), m # n can be given. The method follows
the lines of [2] except that in [2] the argument is based
on the sole critical value, whereas in the case presented
here, it is necessary to keep track of several critical
points.

For convenience %ﬂc" and z™(z" — b) are de-
noted by b and by f.. By definition:

M(m,n) = {c € C: The Julia set of f. is connected}
or equivalently:
M(m,n) = {c: The sequence {ff(a)}

is bounded for all critical points & of f.}.
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Let the simplified notation e(t) for €2™* be used.
(Thus e(k/n) is an n-th root of unity.) The critical
points of f. consist of the points e(k/n)c with 0 < k <
n—1 together with the super-attracting fixed point z =
0 when m > 1. Note that f.(e(k/n)z) = e(mk/n)f(2)
for any z. Hence, the orbit of every critical point of fc
is bounded if, and only if, the orbit of the critical point
¢ is bounded.

"Let ¢ be any root of the equation b = 2%, so
that the derivative of 2™(z™ — b) at c is zero. The
notation f, will be used for the pair consisting of
the polynomial z +— 2z™(z" — b) together with the
marked critical point ¢. (Thus f. and fe(1/n)c agree as
polynomials and have the same Julia set, but different
designated critical points.) It will be shown later why
the case m # n is skipped.

One can see that under the » to 1 mapping:

n+m
m

L:z— 2",

the image of M(m,n) will be the connected locus of
Fy(z) = z™(z" — b). Since M(m,n) is compact, (see
Lemma 2) the connected locus of the family Fi(2)
will be locally connected, provided that M(m,n) is
locally connected. In fact, more information about the
boundary of this connected locus may be obtained by
studying the boundary of M(m,n).

PRELIMINARIES

In this section some lemmas are proved and the tools
needed for the definition of the Riemann mapping are
introduced.
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Lemma 1

For each m,n, there exists a constant P = P, such

that:
c€ M{m,n) < |f¥)" < P

Proof

Let P=max(2m+1, m+n+1)
and P =4 for (m,

n) = (2,1). Define:

Vk > 0.

for (m,n) # (2,1)

W()={2€C:|2"| > g[d” , |27 > P}.

One can see that for any z € W(c),

m+n

el 2 12712 = T2 e
> 27| - 2R )
> |Zm”zn[£f‘_m___”)

P

In addition, for any z € W(c), there e
such that |z]™ > P + ¢, therefore,
following can be proven:

If¥(2)] > P*(1 + %)k ;Y2 e We).

Hence, |f¥(z)| tends to infinity as &
so the sequence {f*(z)} cannot be |
¢ € M(m,n), consequently the se
bounded. Therefore, f*(c) ¢ W(c)
result:

> (2™ > |z].

Xists € =€y > 0
by induction, the

tends to infinity,
bounded. Now let
quence {f¥(c)} is
, k> 1 and as a

P 1 1

[FE@I < ()7 el or [f2()] < PF. (1)
In particular for k = 1,

n n+m P L n +m L

— < (=)= —|c™ < P~ 2

Rl S ()l or — e < (2)
By using the following inequality:

m+n+4+1.1m 1_,m

() o S 1, (mAn+ )T ()7 <m

m

in the case m < n and the inequality:

(e ()t <
n

(2m + 1) (

m, n_
;)m+" va

in the case m > n and (m,n) # (2,1), |c*| < m is
concluded. (Note that in the first case P=m +n +1

and in the second case P = 2m +1.)

Therefore, |f*(c)|» < PVk > 1

is obtained. B
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Lemma 2
M(m,n) is compact.
Proof
Define Q1(z) = —Z22"*™ and Qi(z) Qr-1(z))™

(Qik-1(2)"— 2™ 2m) so for any ¢ € M(;L,n), Qrlc) =

fE (o).
Let T = Ty = {2 : |2|™ < P}, where P is as
Lemma 1. So the following is obtained:

c€ M(m,n) < |f¥c)* < P
= |Qk(0)|" <P
= Qr(c)eT
—ceQ (D).

Therefore, M(m,n) = (5, Q7 (T). Since Qy is
a polynomial and T is compact, then M(m,n) is
compact. B

Now the tools needed for the definition of the
Riemann mapping are introduced. In fact, it will be
defined as the limit of a sequence. For simplicity,
M = M(m,n) is used.

Definition 1
For any ¢ € C,

Wc(m):{zeé;fck(z)ﬁooask—»oo},
Q={(:,0) eCxC:ce C\ M, z€ W)},
Q' ={(z,¢) €Q:G.(2) > Ge(c)},

where G, is Green function for K(f.) and K(f,) is
filled-in Julia set (see [3]).

Lemma 3
V' satisfies the following properties:

L. (00,¢),(fe(c),c) € O,
2. V(c)={z: (z,¢) € '} is simply connected,
3. 2 is open in C x C.

Proof
1. Note G¢(fc(c)) = (n + m)G.(c) > G.(c).
2. For c € C\ M, define:

AF(e) = {2z € W, (0): Ge(2)> (n+ m)*G.(c)}.

It is clear that A%(c) = Q'(c) and A*t1(c) € A¥(e).
In addition,

z€ AF(c) <= Go(2) > (n + m)*G.(c)
= expG(z) > exp((n + m)FG.(c))

<= [e(2)] > exp((m +n)*Ge(c)),
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where . is a Béttcher map (see [3]) corresponding
to the super-attractive fixed point co. So for a large
k, A¥(c) is a simply connected open set. Moreover,
fo(DF(c)) = AF+1(c) and f. is an unramified (n +
m)-fold covering from AF(c) to A**1(c) which has
only one critical point at co. So for any k > O:

X(8%(e)) +m +n —1 = (m+n)x(A*(c)),

where x is Euler characteristic. Therefore, x(A*(c))
=1 for any k, in particular x(A%(c))=x (' (c))=1.

3. Define G(z,c) as G.(z). Continuity of G follows
exactly as in [4], so Q' = G71(]G(c), ) is open. W

Proposition 1
For m # n, the equation:

n
xmin _mAT xm+ 2=, 3)
has at least one solutlon in C which is not a critical
point.

Proof

It is clear that X = 1 is a solution. Moreover, if
ged(m,n) = k, m = k"k, n = k'k, then X =
e(tk'/n), 0 < t < k — 1 is also a solution. On
the other hand, X = e(ij/n), 0 < j < n—1 are
the critical points of multiplicity one for h(X) =
Xm4n_min ymy . Then, this equation has 2k roots
(counting with multiplicity) which are critical points
(X = e(tk'/n),0 < t < k —1). Since the number
of solutions is m + n = (k" + k')k > 2k, then there
exists a € C such that « is a solution but not a critical
point. m

Corollary 1
If o is a non-critical solution of Equation 3, then ac is
a cocritical point for f.. ®

Let D(w;r) = {z € C: d(z,w) <t }, where d
is the spherical metric on C. Define V(c) = D(ac;rc),
where 7. is the minimum distance ac from the critical
points and K (f.). Based on the results of Mafié et al.
(see [5]), the Julia set J(f) varies continuously under a
deformation of f through hyperbolic maps. So one can
see that 7. is continuous. Let ¢ = ; min{d(ac, z), 7c —

z)}, z € V(c). Since the maps ¢ — 7. and ¢ — ac
are continuous, there exist §; < € and § > 0 (very
small) such that:

d(c,d)< § = d(ac,ac)< b= T.—€ <Tu <TctE

It is claimed that: If d(c,¢’) < 6, then D(z;€) C V().
First, 4e < . — d(ac, 2), so for any z' € D(z;€):

d(ac',?') < d(ac', ac) + d(ac, z) + d(z,2')
<8 +d{ae,z)+¢
< 2¢ + d(ac, 2)

<T.—2e< 1.
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Therefore, V = U, g\ p(V (€} X {c}) are open sets.
Deﬁne Q" =Q'JV and ®*)(z,c) as a branch of

(fk(2))1 ey , for (z,¢) € Q. Tt is clear that " is an
open set in C x C and ®*¥) is locally injective since it
has no critical points in V(c) |J @'(c).

Lemma 4

The map ®*) is well-defined and analytic in Q"

Proof
Define:

z ={(z,c)eCxC: (—i—,c) €N},

and for any (2,¢) € 3, H¥)(z,¢) =

H®) is non-zero and analytic on ). In addition,
Z(c {z: (z ¢ e Sotis simply connected (Note that
V'e)={z: (2,0) eV} =V )UQ()and V(c) is
simply connected), so (H®)(z, c))("+">‘ is well-defined
and analytic and for any (z,c) € Q”,

1 .
S
S ()

z

c)) (m-;")’c

@(k)(z,c) = (fck(z))(_m-:_n)k _

(H®(L,

Therefore, %) is well-defined and analytic. m

Lemma 5
(a) ®*)(z,c) ~ z near infinity (i.e., the ratio of the
two sides goes to 1 as z — 00).

(b) ®®)(fo(2),c) = (BHF+V(z,c))™+,

Proof
(a) @¥)(z,¢) =

(fck(z))(,,,—j;)r ~ z near infinity.
(b) BW)(£.(2), ¢) = (F¥+1(2))TomF
= ((ff+1(z))m)m+n

= (3¢t (z, c))™ " m

Now it is shown that the sequences of functions
{®(*)}x>; are uniformly convergent in:

W ={(z2,c) eCxC:

P
ce C\ M,|z|" > Elcl", |z|* > P},

where P is as described in Lemma 1.
It is clear (see proof of Lemma 1) that for any
(z,c) e W,

2| < [fe(2)l < -+ < |fE(2) < -+
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In addition,

&=+ (7 ¢)
o) (2, c)

_ (m+mn)c"

m(f&(2))"

= (1= S TR

If the last quantity is written as 1 + 8(%)(z,¢), it is

obtained that:

+n)c, —1
o0z, 0) = (1 - ANy,
m(fE(z)m
s0:
2 (m 4+ n)c’
g(k) <
O S G G
< 2 1 1
“(m+n)k P~ (m+n)k
Therefore, there exists analytic function ® such that
{®*)},>, uniformly converges to it in W. W is an

open set, so W N Q" is an open set in . Moreover,

W NQ" # 0. If it is proven that (4
then (by the usual proof of Vitali Thed
an extension on ' and additionally {
and uniformly converge to ® in Q". T\
enough to show that ®*) is uniformly
compact subsets of Q. Let A be a cg

is normal in Q"
rem) ® will have
®(F)} will locally
0 prove this, it is
bounded on the
mpact subset of

Q. Since f¥(2) tends to infinity locally and uniformly,
an open neighborhood around z, U(z) can be chosen
for any z, such that f* tends to infinity in U(z) as &k
tends to infinity. There exists a finite number U(z,)

such that A C |J,U(zp), so N can

that Vk > N, Vz € A, |f*(2)| > 1,
Vk > N, Vz € A, |9%)(z,¢)| > 1. By

the map z +— 1, {2(®} is uniformly

result, it will be normal.

RIEMANN MAP

Now the Riemann mapping can be pr

¥:C\M —C\D,

c— P (ac,c)

where « is as Proposition 1. Note t

be chosen such

or, equivalently
composing with
bounded. As a

esented. Define:

hat for any ¢ €

C\ M, (ac,c) € Q". Furthermore, for any (z,¢) € ",

8(z,¢) = lim 39 (z,¢) = lim (f4()

.._.Lk
T = o(2),

where . is Bottcher map (see [3]), so log|®(z,c)| =

logfpc(2)] = Ge(z) > 0 and |®(z,¢)|
¥, therefore, |¥(c)] > 1, Vce C

> 1, V(z,¢) €
M. Tt will be

proven that ¥ is a conformal isomorphism in several

steps.
lemma.

Before stating the steps, no

Lemma 6
|[¥(c)] > 1asc— M.

e the following
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Proof
It is known that G.(z) = lim ML_, in particular, if
koo (M+n)

c € M, then G.(c) = 0. Moreover, if c = OM, then
Gc(c) — 0 (see [4]). On the other hand, log|¥(c)| =
log |®(ac,c)| = G (ac) = G.(c), so if ¢ = OM, then
log|¥(c)] — 0 and |¥(c)] —» 1. m

Step 1
The set ¥~!(w) is finite, for any w € C\ D.

Proof

Suppose not, then there exists an infinite distinct
sequence {ck}r>1, such that ¥(cx) = w. If {c;} has an
accumulation point ¢, then by the Identity Theorem,
it is concluded that ¥(c) = w, Vc € C\ M. This
is a contradiction. Otherwise, ¢, — o0 as k — oo.
Therefore ¥(cy) — o0, so w = oo, which again is a
contradiction. B

Step 2
¥ is surjective.

Proof

If ¥ is not surjective, then there exists w € C\ D such
that w € ¥(C\ M).

(a) If w € ¥(C\ M), then there exists a sequence
{we} € ¥(C\ M) and {ct} C C\ M such that
U(ck) = wp — w as k — oo. By Lemma 6,
if ¢, — OM, then ¥(c,) — ID. So w must
belong to dD, which is a contradiction. And if
ck = c€ C\ M as k — oo, then ¥(c) — ¥(c), so
¥(c) = w, again a contradiction.

w ¢ ¥(C\ M). In this case there exists an open
neighborhood N around w in C\ D such that N N
T(C\ M) =0. Let:

A={N: NAW(C\M)=0,
N is an open neighborhood around w in C\D}

and N =Jye 4 N.

It is clear that for any N € A4, N C N.
For any w' € ON'\ WV, w' € ¥(C\ M). If not,
then there exists some w' € ON \ N, such that
w' ¢ W(C\ M), then there exists N’ around w'
such that N'N¥(C\ M) = 0. So N'UN is
an open neighborhood around w. As a result
NUNEeA, NUNCN, N CNandw €N,
a contradiction. Hence, w' € ¥(C\ M), for any
w' € AN\ N. From the proof of part (a), it is
concluded that for any w’ € ON \ N, w' € ID.
Therefore, SA C D and, as a result, N = C\ D
and ¥(C \ M) = 0, a contradiction again. m

Step 3
¥ is a conformal isomorphism.
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Proof
¥ is the composition of the following two maps:

¢+ (ac,c) W2 d(ac,c).

It is clear that g : C\ M +— g(C\ M) is bijection and

by Corollary 1, %% # 0, therefore, ¥ is locally injective

and as a result, by Lemma 6, it is a (k-fold) covering
space.
On the other hand, near infinity,
-n 1

¥(c) = @(ac,¢) ~ e — )7,

so ¥ is a conformal isomorphism. B
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